CN113956503A - 一种聚阳离子纳米抗菌剂、制备方法及其应用 - Google Patents

一种聚阳离子纳米抗菌剂、制备方法及其应用 Download PDF

Info

Publication number
CN113956503A
CN113956503A CN202111210250.4A CN202111210250A CN113956503A CN 113956503 A CN113956503 A CN 113956503A CN 202111210250 A CN202111210250 A CN 202111210250A CN 113956503 A CN113956503 A CN 113956503A
Authority
CN
China
Prior art keywords
polycation
antibacterial agent
nano antibacterial
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111210250.4A
Other languages
English (en)
Inventor
周勇
周晖
徐佳棣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Lingtuo New Material Technology Co ltd
Original Assignee
Anhui Lingtuo New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Lingtuo New Material Technology Co ltd filed Critical Anhui Lingtuo New Material Technology Co ltd
Priority to CN202111210250.4A priority Critical patent/CN113956503A/zh
Publication of CN113956503A publication Critical patent/CN113956503A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/12Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group, wherein Cn means a carbon skeleton not containing a ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及消毒剂技术领域,具体涉及一种聚阳离子纳米抗菌剂、制备方法及其应用,将季铵盐单体与疏水性单体共聚得到两亲性聚合物纳米胶束,其粒径在10‑800nm之间,本发明公开的聚阳离子纳米抗菌剂具有良好的水溶性和抗菌效果,在较低的浓度下可以实现有效杀菌;本发明公开的聚阳离子纳米胶束能够与带负电荷的细菌细胞膜产生静电结合,导致细菌死亡,是一种安全高效的抗菌制剂。

Description

一种聚阳离子纳米抗菌剂、制备方法及其应用
技术领域
本发明涉及消毒剂技术领域,具体涉及一种聚阳离子纳米抗菌剂、制备方法及其应用。
背景技术
细菌感染已经成为人类重大的卫生及安全问题。大量抗生素的开发和应用极大的限制了细菌感染的发展,但同时也带来了细菌耐药性的产生。因此,为了减少抗生素的使用,大量的阳离子抗菌剂、金属离子、金属纳米颗粒抗菌剂被广泛开发,使得细菌更难产生耐药性。由于细胞膜的双层磷脂结构,导致大部分细菌细胞膜带负电荷,携带正电荷的阳离子抗菌聚合物可以通过静电吸附作用与细胞膜相互结合,从而破坏细胞膜的完整性,达到杀伤细菌的效果。这种静电吸附作用导致的细菌死亡,使细菌难以产生抗药性。
季铵盐型阳离子抗菌剂作为一种广谱抗菌剂,结构种类较为丰富。相较于小分子阳离子化合物,阳离子聚合物对环境的毒性较小。然而季铵盐型阳离子聚合物的抗菌活性与分子量、阴离子类型、电荷密度等相关因素相关。一般来说,分子量过低会导致对细菌细胞膜的破坏程度不足,分子量过高会导致无法穿透细胞壁进而减小杀伤能力。同时,一定的疏水性会促使季铵盐阳离子聚合物形成胶束,使得表面的正电荷更加富集,疏水链段也会通过与细菌细胞膜的相互作用进而破坏细胞膜结构,从而提升抗菌活性。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决如何提升抗菌活性,减少使用量的问题,提供了一种聚阳离子纳米抗菌剂、制备方法及其应用。
为了实现上述目的,本发明公开了一种聚阳离子纳米抗菌剂,包括亲水性的聚阳离子段和疏水段组成的聚合物纳米胶束,所述纳米胶束的水合粒径为10~800nm。
所述聚合物结构如下所示:
Figure BDA0003308676250000021
其中,R1为H或CH3,R2为疏水链段。
所述阳离子单体的聚合度为5~100,所述疏水链段为PCL、PLA、聚甲基丙烯酸甲酯、聚丙烯酸甲酯、聚丙烯酸丁酯、聚甲基丙烯酸丁酯,所述疏水链段的分子量为300~30000。
本发明还公开了上述聚阳离子纳米抗菌剂的制备方法,包括以下步骤:
S1:制备聚阳离子两亲性聚合物:通过可控自由基聚合,将聚阳离子单体与疏水链段相连,得到聚阳离子两亲性聚合物;
S2:制备聚阳离子纳米抗菌剂:将步骤S1中得到的聚阳离子两亲性聚合物分散在水相中,充分溶解后装入瓶即得聚阳离子纳米抗菌剂。
所述步骤S2中水相为PBS、水、NaCl水溶液中的任意一种。
本发明还公开了上述聚阳离子纳米抗菌剂在抗菌防霉中的应用。
与现有技术比较本发明的有益效果在于:
(1)本发明利用廉价易得的阳离子单体与疏水单体共聚,得到了两亲性的聚合物链段,聚阳离子作为亲水段使电荷在聚合物纳米胶束表面的分布更加均匀,可以有效促进纳米抗菌剂与细菌细胞膜的结合能力,从而增加对细菌的杀伤力,减少用药量,有利于环境保护。
(2)本发明的纳米抗菌剂,最小杀菌浓度可以达到30mg/mL,且在水溶液中的稳定性非常好,杀菌的持续时间长,对非靶标生物的安全性较高,是一种高效、安全、稳定的抗菌剂。
(3)本发明的纳米抗菌剂,制备工艺简单,与常规的抗菌剂相比,可以减少有机溶剂的使用,是一种环境友好型抗菌制剂。
附图说明
图1为甲基丙烯酰氧乙基三甲基氯化铵的1H-NMR谱图;
图2为聚阳离子两亲性聚合物纳米胶束的动态光散射图;
图3为聚阳离子纳米抗菌剂的最小抑菌浓度曲线;
图4为不同浓度聚阳离子纳米抗菌剂与金葡菌共培养图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1
一种聚阳离子纳米抗菌剂的制备步骤如下:
S1:制备聚阳离子两亲性聚合物:
(1)合成聚甲基丙烯酰氧乙基三甲基氯化铵(P-DMC):21mg S-硫代苯甲酰巯基乙酸、1g甲基丙烯酰氧乙基三甲基氯化铵(1H-NMR谱图如图1所示)、3mg AIBN溶于10mL DMF中,随后经过充氮除氧后,70℃聚合12h。反应结束后,在乙醇中沉降,干燥后得0.8g P-DMC。
(2)合成P-DMC-b-MMA:将上述所得的P-DMC溶于10mL DMF中,加入0.2g甲基丙烯酸甲酯和6mg AIBN,经充氮除氧后,70℃聚合12h。反应结束后,在乙醇中沉降,干燥后即得0.9g聚阳离子两亲性聚合物P-DMC-b-MMA。
S2:称取0.1g P-DMC-b-MMA,用10mL去离子水溶解,即得聚阳离子纳米抗菌剂。通过动态光散射检测,显示其水合粒径为68nm,如图2所示,证明了聚阳离子纳米尺寸均匀。
实施例2
一种聚阳离子纳米抗菌剂的制备步骤如下:
S1:制备聚阳离子两亲性聚合物:
(1)合成聚甲基丙烯酰氧乙基三甲基氯化铵(P-DMC):42mg S-硫代苯甲酰巯基乙酸、3g甲基丙烯酰氧乙基三甲基氯化铵(1H-NMR谱图如图1所示)、10mg AIBN溶于20mL DMF中,随后经过充氮除氧后,70℃聚合12h。反应结束后,在乙醇中沉降,干燥后得2.8g P-DMC。
(2)合成P-DMC-b-MMA:将上述所得的P-DMC溶于20mL DMF中,加入0.6g甲基丙烯酸甲酯和9mg AIBN,经充氮除氧后,70℃聚合12h。反应结束后,在乙醇中沉降,干燥后即得3.1g聚阳离子两亲性聚合物P-DMC-b-MMA。
S2:称取0.1g P-DMC-b-MMA,用5mL去离子水溶解,即得聚阳离子纳米抗菌剂。
实施例3
将实施例1所制备的聚阳离子纳米抗菌剂进行抗菌测试:将金黄色葡萄球菌株置于液态培养基中,培养至细菌个数为108CFU/mL,随后稀释1000倍至105CFU/mL。将1mL的浓度为0.1mg/mL、0.5mg/mL、1mg/mL、4mg/mL、8mg/mL的实施例1所制备的聚阳离子纳米抗菌剂与0.1mL菌液分别置于试管中,在恒温培养箱中共培养24h,每4h取样测试紫外-可见吸收光谱,计600nm处吸收值。如图3所示,最小抑菌浓度为4mg/mL,在该浓度下,细菌增殖被有效抑制。
取0.1mL细菌个数为105CFU/mL的菌液分别与0.1mL的浓度为0.1mg/mL、0.5mg/mL、1mg/mL、4mg/mL、8mg/mL的实施例1所制备的聚阳离子纳米抗菌剂混合均匀,培养2h后涂板,涂板结束后在37℃恒温箱中培养培养24h。随后拍照观察菌落数,如图4所示,最低杀菌浓度为8mg/mL,在该浓度下,培养基上已无菌落。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (6)

1.一种聚阳离子纳米抗菌剂,其特征在于,包括亲水性的聚阳离子段和疏水段组成的聚合物纳米胶束,所述纳米胶束的水合粒径为10~800nm。
2.如权利要求1所述的一种聚阳离子纳米抗菌剂,其特征在于,所述聚合物结构如下所示:
Figure FDA0003308676240000011
其中,R1为H或CH3,R2为疏水链段。
3.如权利要求1所述的一种聚阳离子纳米抗菌剂,其特征在于,所述阳离子单体的聚合度为5~100,所述疏水链段为PCL、PLA、聚甲基丙烯酸甲酯、聚丙烯酸甲酯、聚丙烯酸丁酯、聚甲基丙烯酸丁酯,所述疏水链段的分子量为300~30000。
4.一种如权利要求1~3任一项所述的聚阳离子纳米抗菌剂的制备方法,其特征在于,包括以下步骤:
S1:制备聚阳离子两亲性聚合物:通过可控自由基聚合,将聚阳离子单体与疏水链段相连,得到聚阳离子两亲性聚合物;
S2:制备聚阳离子纳米抗菌剂:将步骤S1中得到的聚阳离子两亲性聚合物分散在水相中,充分溶解后装入瓶即得聚阳离子纳米抗菌剂。
5.如权利要求4所述的一种聚阳离子纳米抗菌剂的制备方法,其特征在于,所述步骤S2中水相为PBS、水、NaCl水溶液中的任意一种。
6.一种如权利要求1~3任一项所述的聚阳离子纳米抗菌剂在抗菌防霉中的应用。
CN202111210250.4A 2021-10-18 2021-10-18 一种聚阳离子纳米抗菌剂、制备方法及其应用 Pending CN113956503A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111210250.4A CN113956503A (zh) 2021-10-18 2021-10-18 一种聚阳离子纳米抗菌剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111210250.4A CN113956503A (zh) 2021-10-18 2021-10-18 一种聚阳离子纳米抗菌剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113956503A true CN113956503A (zh) 2022-01-21

Family

ID=79464237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111210250.4A Pending CN113956503A (zh) 2021-10-18 2021-10-18 一种聚阳离子纳米抗菌剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113956503A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195170A (ja) * 1996-01-22 1997-07-29 Hoechst Gosei Kk カチオン性エマルジョン及びその製造方法
US5693716A (en) * 1993-07-02 1997-12-02 The Dow Chemical Company Amphipathic graft copolymers and copolymer compositions and methods of making
CN1896112A (zh) * 2006-06-21 2007-01-17 苏州大学 无规共聚阳离子大分子乳化剂及其制备方法
CN101168583A (zh) * 2007-09-28 2008-04-30 东南大学 抗菌性高分子聚合物及其制备方法
CN106749878A (zh) * 2016-12-30 2017-05-31 中科院广州化学有限公司南雄材料生产基地 一种季铵盐阳离子型水性含氟聚丙烯酸酯和乳液及该乳液的制备
CN106905498A (zh) * 2017-04-10 2017-06-30 四川大学 一种阳离子聚丙烯酰胺的嵌段共聚物及其制备方法和用途
CN107325209A (zh) * 2017-07-31 2017-11-07 苏州大学 抗菌***联纳米粒子及其制备方法
CN107602735A (zh) * 2017-09-18 2018-01-19 湘潭大学 一种具有pH响应性的两亲性三嵌段共聚物及其制备方法
CN110437374A (zh) * 2019-07-10 2019-11-12 天津大学 一种季铵盐类两亲性阳离子聚合物及其应用
CN110437399A (zh) * 2019-07-10 2019-11-12 天津大学 pH敏感季铵盐类两亲性嵌段共聚物及其应用
CN111440262A (zh) * 2020-04-02 2020-07-24 安徽启威生物科技有限公司 一种抗菌聚合物及其制备方法
CN113444211A (zh) * 2021-06-11 2021-09-28 湖北大学 一种基于pisa的抗菌高分子纳米颗粒的制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693716A (en) * 1993-07-02 1997-12-02 The Dow Chemical Company Amphipathic graft copolymers and copolymer compositions and methods of making
JPH09195170A (ja) * 1996-01-22 1997-07-29 Hoechst Gosei Kk カチオン性エマルジョン及びその製造方法
CN1896112A (zh) * 2006-06-21 2007-01-17 苏州大学 无规共聚阳离子大分子乳化剂及其制备方法
CN101168583A (zh) * 2007-09-28 2008-04-30 东南大学 抗菌性高分子聚合物及其制备方法
CN106749878A (zh) * 2016-12-30 2017-05-31 中科院广州化学有限公司南雄材料生产基地 一种季铵盐阳离子型水性含氟聚丙烯酸酯和乳液及该乳液的制备
CN106905498A (zh) * 2017-04-10 2017-06-30 四川大学 一种阳离子聚丙烯酰胺的嵌段共聚物及其制备方法和用途
CN107325209A (zh) * 2017-07-31 2017-11-07 苏州大学 抗菌***联纳米粒子及其制备方法
CN107602735A (zh) * 2017-09-18 2018-01-19 湘潭大学 一种具有pH响应性的两亲性三嵌段共聚物及其制备方法
CN110437374A (zh) * 2019-07-10 2019-11-12 天津大学 一种季铵盐类两亲性阳离子聚合物及其应用
CN110437399A (zh) * 2019-07-10 2019-11-12 天津大学 pH敏感季铵盐类两亲性嵌段共聚物及其应用
CN111440262A (zh) * 2020-04-02 2020-07-24 安徽启威生物科技有限公司 一种抗菌聚合物及其制备方法
CN113444211A (zh) * 2021-06-11 2021-09-28 湖北大学 一种基于pisa的抗菌高分子纳米颗粒的制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YONG XIAO BAI等: "Synthesis and characterization of amphiphilic antibacterial copolymers", 《POLYMERS FOR ADVANCED TECHNOLOGIES》 *
杨秦欢;张廷有;: "2-甲基丙烯酰氧乙基长链烷基季铵盐的合成和应用", 中国皮革 *
杨超;黎钢;何彦刚;赵博;: "甲基丙烯酰氧乙基三甲基氯化铵与丙烯酰胺聚合研究进展", 造纸化学品 *
栗明献,彭政,姚兴芳,赵敏,巴信武: "甲基丙烯酰氧基乙基三甲基氯化铵与甲基丙烯酸甲酯共聚物的合成与表征", 河北大学学报(自然科学版) *

Similar Documents

Publication Publication Date Title
Cao et al. Polyprodrug antimicrobials: remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin‐resistant staphylococcus aureus
Zhao et al. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms
Worley et al. Nitric oxide-releasing quaternary ammonium-modified poly (amidoamine) dendrimers as dual action antibacterial agents
Seleem et al. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline
Sun et al. Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: in vitro and in vivo
Sun et al. Nanoassembles constructed from mesoporous silica nanoparticles and surface-coated multilayer polyelectrolytes for controlled drug delivery
Naves et al. Antimicrobial particles from emulsion polymerization of methyl methacrylate in the presence of quaternary ammonium surfactants
CN106880593B (zh) 一种同时负载纳米银和姜黄素的纳米抗菌剂及其制备方法与应用
Lee et al. Antibacterial performance of various amine functional polymers coated silica nanoparticles
Rao et al. Poly (acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium
Malathi et al. Green synthesis of gold nanoparticles for controlled delivery
Sandhya et al. Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections
Chang et al. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity
Gao et al. Construction of Antibacterial N‐Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti‐Infective Wound Therapy
Monjezi et al. A performance comparison of graft copolymer hydrogels based on functionalized-tragacanth gum/polyacrylic acid and polyacrylamide as antibacterial and antifungal drug release vehicles
CN102702451B (zh) 一种pH敏感且生物相容高效抗菌的聚合物胶束及其制备方法
Pranantyo et al. Nontoxic antimicrobial cationic peptide nanoconstructs with bacteria-displaceable polymeric counteranions
Luo et al. Positively-charged microcrystalline cellulose microparticles: Rapid killing effect on bacteria, trapping behavior and excellent elimination efficiency of biofilm matrix from water environment
Wei et al. Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper
Huang et al. Synthesis of acryloyl copolymer core–shell microspheres with antibacterial activity and surface cationic effects
Babaei et al. Preparation and characterization of chloridazon-loaded alginate/chitosan nanocapsules
Saraei et al. Co‐delivery of methotrexate and doxorubicin via nanocarriers of star‐like poly (DMAEMA‐block‐HEMA‐block‐AAc) terpolymers
Luo et al. Preparation, characterization and drug release behavior of polyion complex micelles
CN113956503A (zh) 一种聚阳离子纳米抗菌剂、制备方法及其应用
US20140093550A1 (en) Nanoparticle - Biocide Treatment of Biofilms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination