CN113937811A - 一种多能耦合配电系优化调度方法 - Google Patents

一种多能耦合配电系优化调度方法 Download PDF

Info

Publication number
CN113937811A
CN113937811A CN202111199625.1A CN202111199625A CN113937811A CN 113937811 A CN113937811 A CN 113937811A CN 202111199625 A CN202111199625 A CN 202111199625A CN 113937811 A CN113937811 A CN 113937811A
Authority
CN
China
Prior art keywords
power
power distribution
particles
distribution system
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111199625.1A
Other languages
English (en)
Other versions
CN113937811B (zh
Inventor
黄玉萍
张天任
廖晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN202111199625.1A priority Critical patent/CN113937811B/zh
Publication of CN113937811A publication Critical patent/CN113937811A/zh
Application granted granted Critical
Publication of CN113937811B publication Critical patent/CN113937811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种多能耦合配电系优化调度方法,该方法采用GA‑PSO算法进行可再生能源发电功率与区域负荷预测。本方法充分利用电动汽车的移动储荷特性,对电动汽车的储荷资源进行调度,实现快速、高效的配电网故障恢复,提升配电***的韧性,使得多能耦合的配电***在此规划下经济最优、稳定运行。同时本方法将遗传算法选择机制与交叉机制引入粒子群算法中,即在PSO算法的每次迭代后以一定的概率选择出待交叉的粒子放入杂交池中,杂交池中的粒子两两随机组合交叉后产生后代粒子,利用后代粒子取代双亲粒子,克服了传统PSO算法容易陷入局部最优的问题,提高全局搜索能力,从而实现多能耦合配电***的优化调度。

Description

一种多能耦合配电系优化调度方法
技术领域
本发明涉及能源互联网技术领域,尤其是涉及一种多能耦合配电系优化调度方法。
背景技术
近年来频发的自然灾害和高比例的新能源装机容量,给配电***的稳定性带来了巨大的挑战。如2021年2月美国大停电,造成累计切除负荷约20000MW,影响人口约400万,同时带来巨大的经济损失。为了提升配电网应对极端情况如自然灾害、网络攻击、供应端与线路故障等情况下的恢复能力,引入规模化灵活的电动汽车移动储能单元为电-热配电***提供供需平衡。通过改进多能源耦合配电***调度方法能够满足***内部关键负荷的供电需求,甚至还能为邻近的配电网***提供电力。
发明内容
为了解决上述背景技术所存在的至少一技术问题,本发明提供一种多能耦合配电系优化调度方法。
为实现上述目的,本发明的技术方案是:
一种多能耦合配电系优化调度方法,所述方法采用GA-PSO算法进行可再生能源发电功率与区域负荷预测,包括如下步骤:
步骤1:输入历史数据,所述历史数据包括历史气象数据、历史风力发电数据、历史光伏发电数据、历史配电***负荷数据及历史电动汽车的充电数据,并对风力发电功率、光伏发电功率、区域内的负荷功率进行预测。
步骤2:确定算法参数,随机产生一个包含M个粒子的种群;初始化粒子:初始化光伏容量与风机容量以及热容量的初始值为PPV0,PWT0,PKw0;赋予每个粒子一个随机速度:设定风电机组容量和光伏阵列容量变化的步长,设置迭代次数为N;设定可再生能源消纳率最大化为目标函数;其中,M、N均为正整数,
步骤3:更新粒子的速度和位置,计算出粒子的数值;
步骤4:粒子交叉和变异计算,选择部分粒子作为需要进行交叉遗传计算的群体,并对其进行交叉和变异计算;
步骤5:计算粒子适应度值和约束条件,根据目标函数计算所有粒子维护费用,根据粒子维护费用的大小确定粒子的适应度值,并根据适应度值对粒子进行排序;判断粒子迭代次数是否已经完成,如果未达到最大迭代次数,则转到步骤3继续执行;如果达到最大迭代次数,则转到步骤6;
步骤6:获得风力发电功率、光伏发电功率、区域内的负荷功率预测曲线,并根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G价格弹性系数,获得电动汽车参与V2G的服务价格;对响应服务车辆进行充放电优化调度,获得车辆调度方案与服务价格组合方案;
步骤7:计算区域内电动汽车可调度容量,确保配电网能量供需平衡。
进一步地,步骤2中,所述目标函数为可再生能源消纳率的最大化:
Figure BDA0003304444210000021
式中,δre为可再生能源消纳率;Prc为平可再生能源实际消纳总量,Pgr为可再生能源发电总量。
进一步地,步骤3中,更新粒子的速度和位置按照如下式:
Figure BDA0003304444210000022
Figure BDA0003304444210000023
上式中,
Figure BDA0003304444210000024
为粒子i(i=1,2,…,M)第k次迭代速度;
Figure BDA0003304444210000025
为粒子i第k次迭代位置;
Figure BDA0003304444210000026
为粒子i第k次迭代时的最优位置;
Figure BDA0003304444210000027
为第k次迭代时群体最优位置;ω为惯性权重;c1和c2为学习因子;r1和r2为[0-1]之间的随机数。
进一步地,步骤5中,所述约束条件包括电量不足期望值EENS和能源可靠性指数EIR。
进一步地,所述电量不足期望值EENS在风光储互补发电***中的计算公式为
Figure BDA0003304444210000028
式中,Pi表示第i种容量情况的概率;Ei为负荷不能被满足的电量;N为不同容量的种类数。
进一步地,所述供电可靠性指数EIR的计算公式如下式所示:
Figure BDA0003304444210000031
式中,EL,i为第i个月内负荷需求的总电量;WPV,i为第i个月光伏发电容量;WWT,i为第i个月风力发电容量。
进一步地,所述步骤6的根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G价格弹性系数包括:
获取光伏发电功率、风力发电功率、常规发电功率及常规负荷功率,计算供需之间的功率缺口,根据功率缺口设定电动汽车调度价格弹性系数,对电动汽车发出V2G服务邀约,获取电动汽车用户响应V2G服务邀请结果,分析参与服务车辆SOC状态与其历史充放电数据;
获取车辆服务区域、期望价格分布、用户参与V2G概率,预计在线时段,及在线时长分布。
进一步地,,所述步骤6的对响应服务车辆进行充放电优化调度包括:
a:调整V2G激励措施参数;
b:获取电动汽车当前在线服务车辆数量、当前并网时长及用户响应程度;
c:从智能决策库选择提升车辆服务响应程度、并网时长的***运行优化策略;
d:执行电动汽车充放电调度程序,对比分析激励措施及对应的车辆调度方案,返回最佳V2G车辆充放电调度方案及可调度容量,满足区域内电动汽车消纳可再生能源的目标,配电***下能量平衡。
进一步地,所述V2G激励措施参数包括分时服务价格、补贴策略。
进一步地,所述提升车辆服务响应程度、并网时长的***运行优化策略包括电动汽车-充/放电桩资源优化分配策略、用户信用度筛选策略。
本发明与现有技术相比,其有益效果在于:
本方法充分利用电动汽车的移动储荷特性,对电动汽车的储荷资源进行调度,实现快速、高效的配电网故障恢复,提升配电***的韧性,使得多能耦合的配电***在此规划下经济最优、稳定运行。
附图说明
图1为本发明实施例提供的多能耦合配电系优化调度方法的流程图;
图2为对响应服务车辆进行充放电优化调度流程图。
具体实施方式
实施例:
为使本发明的目的、技术方案及优点更加清楚、明确,下面结合附图和具体实施方式对本发明的内容做进一步详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
对于多能耦合配电***的区域整体性调度模型的建立,首先与要考虑的是多能优化问题。因此对一个区域综合性的优化指标就变得十分重要。为此,本发明公开了一种多能耦合配电系优化调度方法。
如图1所示,本实施例所通过的一种多能耦合配电系优化调度方法,该方法采用GA-PSO算法进行可再生能源发电功率与区域负荷预测,包括如下步骤:
步骤1:输入历史数据,所述历史数据包括历史气象数据、历史风力发电数据、历史光伏发电数据、历史配电***负荷数据及历史电动汽车的充电数据,并对风力发电功率、光伏发电功率、区域内的负荷功率进行预测。
步骤2:确定算法参数,随机产生一个包含M个粒子的种群;初始化粒子:初始化光伏容量与风机容量以及热容量的初始值为PPV0,PWT0,PKw0;赋予每个粒子一个随机速度:设定风电机组容量和光伏阵列容量变化的步长,设置迭代次数为N;设定可再生能源消纳率最大化为目标函数;其中,M、N均为正整数,
步骤3:更新粒子的速度和位置,计算出光伏发电功率、风力发电功率等粒子的数值;
步骤4:粒子交叉和变异计算,选择部分粒子作为需要进行交叉遗传计算的群体,并对其进行交叉和变异计算;
步骤5:计算粒子适应度值和约束条件,根据目标函数计算所有粒子维护费用,根据粒子维护费用的大小确定粒子的适应度值,并根据适应度值对粒子进行排序;判断粒子迭代次数是否已经完成,如果未达到最大迭代次数,则转到步骤3继续执行;如果达到最大迭代次数,则转到步骤6;
步骤6:获得风力发电功率、光伏发电功率、区域内的负荷功率预测曲线,并根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G价格弹性系数,获得电动汽车参与V2G的服务价格;对响应服务车辆进行充放电优化调度,获得车辆调度方案与服务价格组合方案;
步骤7:计算区域内电动汽车可调度容量,确保配电网能量供需平衡。
由此可见,本方法充分利用电动汽车的移动储荷特性,对电动汽车的储荷资源进行调度,实现快速、高效的配电网故障恢复,提升配电***的韧性,使得多能耦合的配电***在此规划下经济最优、稳定运行。同时本方法将遗传算法选择机制与交叉机制引入粒子群算法中,即在PSO算法的每次迭代后以一定的概率选择出待交叉的粒子放入杂交池中,杂交池中的粒子两两随机组合交叉后产生后代粒子,利用后代粒子取代双亲粒子,这样所生成的后代粒子即继承了双亲粒子的优点,同时又加强了粒子相互间的搜索能力,克服了传统PSO算法容易陷入局部最优的问题,提高全局搜索能力,从而实现多能耦合配电***的优化调度。
具体地,步骤2中,所述目标函数为可再生能源消纳率的最大化:
Figure BDA0003304444210000051
式中,δre为可再生能源消纳率;Prc为平可再生能源实际消纳总量,Pgr为可再生能源发电总量。
具体地,步骤3中,更新粒子的速度和位置按照如下式:
Figure BDA0003304444210000052
Figure BDA0003304444210000053
上式中,
Figure BDA0003304444210000054
为粒子i(i=1,2,…,M)第k次迭代速度;
Figure BDA0003304444210000055
为粒子i第k次迭代位置;
Figure BDA0003304444210000056
为粒子i第k次迭代时的最优位置;
Figure BDA0003304444210000057
为第k次迭代时群体最优位置;ω为惯性权重;c1和c2为学习因子;r1和r2为[0-1]之间的随机数。
具体地,步骤5中,所述约束条件包括电量不足期望值EENS和能源可靠性指数EIR。该电量不足期望值EENS在风光储互补发电***中的计算公式为:
Figure BDA0003304444210000058
式中,Pi表示第i种容量情况的概率;Ei为负荷不能被满足的电量;N为不同容量的种类数。
该供电可靠性指数EIR的计算公式如下式所示:
Figure BDA0003304444210000059
式中,EL,i为第i个月内负荷需求的总电量;WPV,i为第i个月光伏发电容量;WWT,i为第i个月风力发电容量。
具体地,所述步骤6的根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G(Vehicle-to-grid,车辆到电网)价格弹性系数包括:
获取光伏发电功率、风力发电功率、常规发电功率及常规负荷功率,计算供需之间的功率缺口,根据功率缺口设定电动汽车调度价格弹性系数,对电动汽车发出V2G服务邀约,获取电动汽车用户响应V2G服务邀请结果,分析参与服务车辆SOC(State of Charge,荷电状态,也叫剩余电量)状态与其历史充放电数据;
获取车辆服务区域、期望价格分布、用户参与V2G概率,预计在线时段,及在线时长分布。
具体地,如图2所示,所述步骤6的对响应服务车辆进行充放电优化调度包括:
a:调整V2G激励措施参数;
b:获取电动汽车当前在线服务车辆数量、当前并网时长及用户响应程度;
c:从智能决策库选择提升车辆服务响应程度、并网时长的***运行优化策略;
d:执行电动汽车充放电调度程序,对比分析激励措施及对应的车辆调度方案,返回最佳V2G车辆充放电调度方案及可调度容量,满足区域内电动汽车消纳可再生能源的目标,配电***下能量平衡。
如此,通过上述步骤即可以获得最佳车辆调度方案与服务价格组合。
具体地,上述的V2G激励措施参数包括分时服务价格、补贴策略。上述的提升车辆服务响应程度、并网时长的***运行优化策略包括电动汽车-充/放电桩资源优化分配策略、用户信用度筛选策略。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种多能耦合配电系优化调度方法,其特征在于,所述方法采用GA-PSO算法进行可再生能源发电功率与区域负荷预测,包括如下步骤:
步骤1:输入历史数据,所述历史数据包括历史气象数据、历史风力发电数据、历史光伏发电数据、历史配电***负荷数据及历史电动汽车的充电数据,并对风力发电功率、光伏发电功率、区域内的负荷功率进行预测;
步骤2:确定算法参数,随机产生一个包含M个粒子的种群;初始化粒子:初始化光伏容量与风机容量以及热容量的初始值为PPV0,PWT0,PKw0;赋予每个粒子一个随机速度:设定风电机组容量和光伏阵列容量变化的步长,设置迭代次数为N;设定可再生能源消纳率最大化为目标函数;其中,M、N均为正整数,
步骤3:更新粒子的速度和位置,计算出粒子的数值;
步骤4:粒子交叉和变异计算,选择部分粒子作为需要进行交叉遗传计算的群体,并对其进行交叉和变异计算;
步骤5:计算粒子适应度值和约束条件,根据目标函数计算所有粒子维护费用,根据粒子维护费用的大小确定粒子的适应度值,并根据适应度值对粒子进行排序;判断粒子迭代次数是否已经完成,如果未达到最大迭代次数,则转到步骤3继续执行;如果达到最大迭代次数,则转到步骤6;
步骤6:获得风力发电功率、光伏发电功率、区域内的负荷功率预测曲线,并根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G价格弹性系数,获得电动汽车参与V2G的服务价格;对响应服务车辆进行充放电优化调度,获得车辆调度方案与服务价格组合方案;
步骤7:计算区域内电动汽车可调度容量,确保配电网能量供需平衡。
2.如权利要求1所述的多能耦合配电系优化调度方法,其特征在于,步骤2中,所述目标函数为可再生能源消纳率的最大化:
Figure RE-FDA0003406527220000011
式中,δre为可再生能源消纳率;Prc为平可再生能源实际消纳总量,Pgr为可再生能源发电总量。
3.如权利要求1所述的多能耦合配电系优化调度方法,其特征在于,步骤3中,更新粒子的速度和位置按照如下式:
Figure RE-FDA0003406527220000021
Figure RE-FDA0003406527220000022
上式中,
Figure RE-FDA0003406527220000023
为粒子i(i=1,2,…,M)第k次迭代速度;
Figure RE-FDA0003406527220000024
为粒子i第k次迭代位置;
Figure RE-FDA0003406527220000025
为粒子i第k次迭代时的最优位置;
Figure RE-FDA0003406527220000026
为第k次迭代时群体最优位置;ω为惯性权重;ch和c2为学习因子;rh和r2为[0-1]之间的随机数。
4.如权利要求1所述的多能耦合配电系优化调度方法,其特征在于,步骤5中,所述约束条件包括电量不足期望值EENS和能源可靠性指数EIR。
5.如权利要求4所述的多能耦合配电系优化调度方法,其特征在于,所述电量不足期望值EENS在风光储互补发电***中的计算公式为:
Figure RE-FDA0003406527220000027
式中,Pi表示第i种容量情况的概率;Ei为负荷不能被满足的电量;N为不同容量的种类数。
6.如权利要求4所述的多能耦合配电系优化调度方法,其特征在于,所述供电可靠性指数EIR的计算公式如下式所示:
Figure RE-FDA0003406527220000028
式中,EL,i为第i个月内负荷需求的总电量;WPV,i为第i个月光伏发电容量;WWT,i为第i个月风力发电容量。
7.如权利要求1所述的多能耦合配电系优化调度方法,其特征在于,所述步骤6的根据可再生能源波动与电动汽车充放电容量关系,确定电动汽车V2G价格弹性系数包括:
获取光伏发电功率、风力发电功率、常规发电功率及常规负荷功率,计算供需之间的功率缺口,根据功率缺口设定电动汽车调度价格弹性系数,对电动汽车发出V2G服务邀约,获取电动汽车用户响应V2G服务邀请结果,分析参与服务车辆SOC状态与其历史充放电数据;
获取车辆服务区域、期望价格分布、用户参与V2G概率,预计在线时段,及在线时长分布。
8.如权利要求1所述的多能耦合配电系优化调度方法,其特征在于,所述步骤6的对响应服务车辆进行充放电优化调度包括:
a:调整V2G激励措施参数;
b:获取电动汽车当前在线服务车辆数量、当前并网时长及用户响应程度;
c:从智能决策库选择提升车辆服务响应程度、并网时长的***运行优化策略;
d:执行电动汽车充放电调度程序,对比分析激励措施及对应的车辆调度方案,返回最佳V2G车辆充放电调度方案及可调度容量,满足区域内电动汽车消纳可再生能源的目标,配电***下能量平衡。
9.如权利要求8所述的多能耦合配电系优化调度方法,其特征在于,所述V2G激励措施参数包括分时服务价格、补贴策略。
10.如权利要求8所述的多能耦合配电系优化调度方法,其特征在于,所述提升车辆服务响应程度、并网时长的***运行优化策略包括电动汽车-充/放电桩资源优化分配策略、用户信用度筛选策略。
CN202111199625.1A 2021-10-14 2021-10-14 一种多能耦合配电***优化调度方法 Active CN113937811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111199625.1A CN113937811B (zh) 2021-10-14 2021-10-14 一种多能耦合配电***优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111199625.1A CN113937811B (zh) 2021-10-14 2021-10-14 一种多能耦合配电***优化调度方法

Publications (2)

Publication Number Publication Date
CN113937811A true CN113937811A (zh) 2022-01-14
CN113937811B CN113937811B (zh) 2023-12-12

Family

ID=79279335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111199625.1A Active CN113937811B (zh) 2021-10-14 2021-10-14 一种多能耦合配电***优化调度方法

Country Status (1)

Country Link
CN (1) CN113937811B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200176A (zh) * 2023-07-26 2023-12-08 国网安徽省电力有限公司芜湖供电公司 一种基于新能源多负荷协同控制的需求侧控制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
CN107834601A (zh) * 2017-11-17 2018-03-23 燕山大学 一种考虑柔性负荷的独立微电网***容量优化配置方法
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170337646A1 (en) * 2016-05-19 2017-11-23 Hefei University Of Technology Charging and discharging scheduling method for electric vehicles in microgrid under time-of-use price
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
CN107834601A (zh) * 2017-11-17 2018-03-23 燕山大学 一种考虑柔性负荷的独立微电网***容量优化配置方法
WO2019196375A1 (zh) * 2018-04-13 2019-10-17 华南理工大学 基于需求侧响应的微电网最优机组及分时电价的优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张江林;庄慧敏;刘俊勇;刘友波;向月;高红均;张里;: "基于CS-PSO算法的电池储能***多目标优化运行策略", 工程科学与技术, no. 04 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200176A (zh) * 2023-07-26 2023-12-08 国网安徽省电力有限公司芜湖供电公司 一种基于新能源多负荷协同控制的需求侧控制方法及***
CN117200176B (zh) * 2023-07-26 2024-04-30 国网安徽省电力有限公司芜湖供电公司 一种基于新能源多负荷协同控制的需求侧控制方法及***

Also Published As

Publication number Publication date
CN113937811B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Sun A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage
Yang et al. Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review
CN105811409B (zh) 一种含电动汽车混合储能***的微网多目标运行调度方法
CN108688503B (zh) 计及输电阻塞的电动汽车用户充电选择辅助决策方法
CN110378548B (zh) 一种电动汽车虚拟电厂多时间尺度响应能力评估模型构建方法
Sharafi et al. A dynamic MOPSO algorithm for multiobjective optimal design of hybrid renewable energy systems
CN112508221A (zh) 一种有限储能下考虑源-荷不确定性的日前调度决策方法
CN110188915A (zh) 基于场景集的虚拟电厂中储能***优化配置方法及***
CN113326467B (zh) 基于多重不确定性的多站融合综合能源***多目标优化方法、存储介质及优化***
CN105811397A (zh) 一种基于多时间尺度的多能互补微网调度方法
CN106786977B (zh) 一种电动汽车充电站的充电调度方法
CN114362241A (zh) 一种基于新能源最大消纳及发电成本最优的混合调度方法
CN115239032B (zh) 计及能源自洽率的高速公路服务区微电网规划方法及***
CN113258561A (zh) 一种基于多属性决策的多种分布式电源的微电网多目标优化调度方法
CN112671035A (zh) 一种基于风电预测的虚拟电厂储能容量配置方法
CN114583729A (zh) 考虑全生命周期碳排放的光-储电动汽车充电站调度方法
CN115117940A (zh) 考虑风电、光伏及负荷不确定的风光水火储***低碳调度模型建模方法
CN106026077B (zh) 基于多目标优化的电网日前风电接纳能力评估方法的风电单位接纳成本指标确定方法
CN112418488A (zh) 一种基于两阶段能量优化的综合能源***调度方法及装置
Hao et al. Optimal design of electric vehicle parking lot based on energy management considering hydrogen storage system and demand side management
Miah et al. Energy storage controllers and optimization schemes integration to microgrid: an analytical assessment towards future perspectives
CN114723284A (zh) 一种含分布式电源和电动汽车的配电网可靠性评估方法
CN113937811B (zh) 一种多能耦合配电***优化调度方法
Han et al. An optimal control method of microgrid system with household load considering battery service life
CN117543581A (zh) 考虑电动汽车需求响应的虚拟电厂优化调度方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant