CN113908704A - 一种用于油水分离的全纤维素复合膜及制备方法和应用 - Google Patents

一种用于油水分离的全纤维素复合膜及制备方法和应用 Download PDF

Info

Publication number
CN113908704A
CN113908704A CN202111310919.7A CN202111310919A CN113908704A CN 113908704 A CN113908704 A CN 113908704A CN 202111310919 A CN202111310919 A CN 202111310919A CN 113908704 A CN113908704 A CN 113908704A
Authority
CN
China
Prior art keywords
oil
cellulose
composite membrane
water
water separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111310919.7A
Other languages
English (en)
Inventor
邓天昇
王驰洲
侯相林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN202111310919.7A priority Critical patent/CN113908704A/zh
Publication of CN113908704A publication Critical patent/CN113908704A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/085Thickening liquid suspensions by filtration with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/008Refining fats or fatty oils by filtration, e.g. including ultra filtration, dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于生物基可降解材料领域,具体涉及一种用于油水分离的全纤维素复合膜及制备方法和应用。为解决复合材料的基质、基底相容性差、分离效率低,原料与溶剂体系昂贵且不够环保等方面的问题,本发明以廉价的多孔型增强纤维素材料为基底,通过简单的复合方法,将再生纤维素与基底相融合,构建了全纤维素网络,其中,再生纤维素是通过氯化锌‑水这种绿色溶剂体系溶解纤维素后再生得到的。原始增强纤维素材料微米孔被填充,大大提高了复合膜在干、湿条件下的力学性能,同时复合膜特殊的亲水‑水下超疏油的润湿性质,使其可应用于高效的油水分离过程。

Description

一种用于油水分离的全纤维素复合膜及制备方法和应用
技术领域
本发明属于生物基可降解材料领域,具体涉及一种用于油水分离的全纤维素复合膜及制备方法和应用。
背景技术
近年来,工业的迅速发展不可避免的导致了严重的水资源污染问题,其中工业排放、石油泄漏使得含油废水呈现逐年递增形势,严重影响了海洋生态环境和人类的饮水健康。传统的油水分离工艺,如:重力分离、高速离心、化学消油剂等方法,存在着耗能高、工艺过程复杂、装置设备昂贵等系列问题,从而限制了其在分离过程中的应用。膜分离技术由于操作简单成为了油水分离过程中一种非常有效的手段。常见的高分子膜,如:聚砜(PSF)、聚酰亚胺(PI)、聚偏氟乙烯(PVDF)聚二甲基硅氧烷(PDMS)等拥有良好的分离效率,但自身难以通过环境微生物降解,并且分离过程中容易造成油堵塞,不符合当代绿色,可持续的要求。因此,目前需要寻找一种高效、成本低廉、绿色的油水分离膜去解决上述问题。
多孔型纤维素增强材料作为一种纯绿色的基底常被用于油水分离的复合材料中。多孔型纤维素增强材料表面多羟基,表面能高,容易和外界基质发生物理或化学交联,自身的大孔也有助于基质的附着。专利CN108854567A:一种油水分离膜的制备方法,将滤纸直接浸泡于超疏水性聚合物溶液中,溶剂挥发后得到超疏水-超亲油型复合分离膜,但这种分离膜只允许油通过,在后续循环过程中存在于分离膜中的油相难以处理。专利CN112982020A:一种高强度、高效油水分离滤纸的制备方法,将镍掺杂羟基硫酸铜纳米片沉积于通过聚乙烯亚胺与戊二醛交联改性的纤维素滤纸进行表面,得到超亲水-水下超疏油性能的高效复合滤纸,但由于纳米片与基底材料不相容形成非均相结构,因此存在表面基质脱落的风险,容易造成铜、镍重金属的二次污染。专利CN113005815A:一种用于油水分离的全纤维素复合纸及其制备方法和应用,分散良好的纳米纤维素附着于滤纸表面,形成了超亲水-水下超疏油复合滤纸,该材料表面的纳米纤维素与基底滤纸同质,氢键作用强烈,不易从基底材料剥离下来,但纳米纤维素造价昂贵不适用于大规模的生产。
发明内容
针对现有技术中,复合材料相容性差、分离效率低,原料与溶剂体系昂贵且不够环保等方面的问题,本发明提供了一种用于油水分离的全纤维素复合膜及制备方法和应用。该制备方法选择熔盐-水体系溶解再生的再生纤维素作为基质,增强纤维素材料为基底通过简单的复合过程,制备一种亲水-水下超疏油、可用于高效油水分离的绿色可降解全纤维素复合膜。这种由全纤维素构成的复合膜,通过制备工艺条件的改变调节材料的结构及孔径,还能增加材料水下超疏油性;良好的相容性便于结构的稳定,赋予了材料良好的机械性能;绿色无污染的原料,溶剂体系使整个生产过程更加绿色、环保。
为了达到上述目的,本发明采用了下列技术方案:
一种用于油水分离的全纤维素复合膜,由基底材料与纤维素基质组成,所述基底材料为增强纤维素材料,所述纤维素基质为外界加入的由纤维素相转变得到的再生纤维素。
进一步,所述纤维素为α-微晶纤维素粉、棉浆、棉短绒中的一种或几种按任意比混合的混合物;所述增强纤维素材料为商业滤纸、棉布、纱布中的一种。此类纤维素都以α-纤维素为主,杂质较少,容易溶解。此类增强纤维素材料,价格低廉、多孔、机械强度优良,是作为基底材料的较好选择。
一种用于油水分离的全纤维素复合膜的制备方法,包括以下步骤:
步骤1,将纤维素加入到氯化锌-水体系中,加热使纤维素溶解,得到纤维素溶液;
步骤2,将增强纤维素材料与步骤1中所得到的纤维素溶液进行复合,复合后随即在反溶剂中再生,干燥后得到全纤维素复合膜。用以上方法制备的用于油水分离的全纤维素复合膜,基质与基底相容性好、结构稳定、机械强度优异,用于油水分离时效果明显,材料完全绿色可降解。
进一步,所述步骤1中氯化锌-水体系的氯化锌与水的质量比2.0~2.5:1,所述纤维素与氯化锌-水体系的质量比为1:25~100。氯化锌-水体系的质量比在此范围内,Zn2+没有完全与水形成配合物,因此纤维素的羟基可以进一步与Zn2+作用,达到完全溶解纤维素的效果;纤维素与氯化锌-水体系的质量比在此范围内,溶解效果好,溶液黏度适中适合作为流动基质。
进一步,所述步骤1中加热的温度为60~90℃。加热温度和搅拌在此范围内反应时,纤维素溶解完全,且所需时间较短。
进一步,所述步骤2中复合的温度为20~60℃,在上述温度下复合,既能够保证基质溶液的流动性,又能确保氯化锌-水体系对基底的不会大幅度降解。所述复合的方法为溶液浸渍、表面涂覆。利用浸渍或者涂覆的方法,可以在短时间内增强纤维素材料与纤维素溶液结合。
进一步,所述步骤2中反溶剂为去离子水、甲醇、乙醇、质量分数为5~10%的盐酸水溶液、硫酸水溶液、磷酸水溶液、乙酸水溶液中的一种或几种按任意比例混合的混合物。以上溶剂对氯化锌都有一定的溶解度,再生过程中,可以将复合膜中的氯化锌置换出来,防止氯化锌都后续工艺的影响。
进一步,所述步骤2中干燥的温度为10~100℃。膜材料在此温度范围内干燥时,可以在保持其良好性能的前提下,完全将水除去。
一种用于油水分离的全纤维素复合膜的应用,应用于油水分离。
进一步,所述油水分离为油水混合物分离、含乳化剂的水包油乳液分离。
优选的,所述油水混合物与水包油乳液中的油相为石油醚、苯甲醚、甲苯、二甲苯、正己烷、环己烷、正庚烷、二氯甲烷、氯仿、四氯化碳等有机溶剂,大豆油、菜籽油、花生油、橄榄油等食用油,原油、煤油、柴油、汽油等工业用油中的一种或至少两种的任意比例混合物。
与现有技术相比本发明具有以下优点:
1.利用了氯化锌-水作为纤维素的溶剂,避免了有机溶剂的使用,使体系更加绿色、经济;材料的基底和基质都为纤维素,避免了不同质导致的基质结合弱而脱落的问题,制备出的材料为可完全生物降解的。
2.制备出的全纤维素复合膜的孔径从原始的微米孔变成了纳米孔,更有利于阻隔油的渗透,大大增加了油水分离的效率。
3.全纤维素复合膜在干、湿两种状态下都拥有良好的机械性能,较原始商业滤纸有大幅的提升。
附图说明
图1为本发明实施例6制备的全纤维素复合膜的XRD结果;
图2为本发明实施例6制备的全纤维素复合膜在空气中水的接触角和水下油的接触角;
图3为本发明实施例6制备的全纤维素复合膜的扫描电镜图;
图4为本发明实施例6制备的全纤维素复合膜过滤水包苯甲醚乳液前后的颜色变化图。
具体实施方式
下面结合附图和具体实施例对本发明进行清楚、完整地描述,但并不因此限制本发明的保护范围。
为了检验制备的全纤维素复合膜的应用效果,将制备的全纤维素复合膜在去离子水中预浸湿后固定在油水分离实验装置上,将20mL去离子水与20mL石油醚混合后,进行分离,利用质量法计算得到油水混合物分离效率;将20mL去离子水与1mL苯甲醚混合后,加入10mg的十二烷基硫酸钠,在强力机械搅拌下混合,得到水包油乳液,进行分离,利用紫外-可见分光光度计计算得到水包油乳液的分离效率。
实施例1
一种用于油水分离的全纤维素复合膜,所述全纤维素复合膜由基底材料与纤维素基质组成,所述基底材料为商业滤纸,所述纤维素基质为外界加入的由α-微晶纤维素粉相转变得到的再生纤维素。
一种用于油水分离的全纤维素复合膜的制备方法,包括以下步骤:
称取20g氯化锌、0.3gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在60℃下搅拌30min,使纤维素溶解成透明粘性液体。在20℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡1min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数5%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为9°,水下油的接触角为142°。通过万能试验机得到干膜的拉伸强度为38MPa,湿膜的拉伸强度为8MPa。油水混合物分离效率为95.4%;水包油的分离效率为97.8%。
实施例2
称取25g氯化锌、0.40gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在70℃下搅拌30min,使纤维素溶解成透明粘性液体。在20℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡5min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数5%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为15°,水下油的接触角为143°。通过万能试验机得到干膜的拉伸强度为40MPa,湿膜的拉伸强度为9MPa。油水混合物分离效率为96.1%;水包油的分离效率为98.0%。
实施例3
称取25g氯化锌、0.46gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在30℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡7min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数5%的硫酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为8°,水下油的接触角为150°。通过万能试验机得到干膜的拉伸强度为33MPa,湿膜的拉伸强度为7MPa。油水混合物分离效率为95.1%;水包油的分离效率为96.3%。
实施例4
称取25g氯化锌、0.35gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在40℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡9min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数5%的磷酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为21°,水下油的接触角为152°。通过万能试验机得到干膜的拉伸强度为46MPa,湿膜的拉伸强度为11MPa。油水混合物分离效率为96.9%;水包油的分离效率为99.1%。
实施例5
称取25g氯化锌、0.35gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在90℃下搅拌30min,使纤维素溶解成透明粘性液体。在50℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡12min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数10%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为18°,水下油的接触角为148°。通过万能试验机得到干膜的拉伸强度为42MPa,湿膜的拉伸强度为10MPa。油水混合物分离效率为97.1%;水包油的分离效率为99.2%。
实施例6
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在30℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡9min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数10%的硫酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。如图1,XRD结果可以看出在2θ=14.9°、16.4°、22.8°和34.2°处出现了纤维素的特征衍射峰,拟合后表明该复合膜是含有I型和II型纤维素的混合物;如图2,通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为32°,水下油的接触角为152°;如图3,扫描电镜可以看出商业滤纸已经被再生纤维素填充,且出现了纳米孔;通过万能试验机得到干膜的拉伸强度为54MPa,湿膜的拉伸强度为16MPa。油水混合物分离效率为98.2%;水包油的分离效率为99.9%。图4可以看出,分离前后乳液颜色从乳白色变为无色。
实施例7
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在纤维素溶液预热到50℃的条件下,对商业滤纸的表面进行涂覆,随即立刻浸泡在质量分数10%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为6°,水下油的接触角为146°。通过万能试验机得到干膜的拉伸强度为25MPa,湿膜的拉伸强度为4MPa。油水混合物分离效率为90.2%;水包油的分离效率为93.0%。
实施例8
称取20g氯化锌、1.20gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在纤维素溶液预热到30℃的条件下,对商业滤纸的表面进行涂覆,随即立刻浸泡在质量分数10%的磷酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为5°,水下油的接触角为148°。通过万能试验机得到干膜的拉伸强度为21MPa,湿膜的拉伸强度为6MPa。油水混合物分离效率为91.3%;水包油的分离效率为93.5%。
实施例9
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在纤维素溶液预热到30℃的条件下,对棉布的表面进行涂覆,随即立刻浸泡在去离子水中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在10℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为8°,水下油的接触角为138°。通过万能试验机得到干膜的拉伸强度为29MPa,湿膜的拉伸强度为25MPa。油水混合物分离效率为93.5%;水包油的分离效率为94.1%。
实施例10
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在纤维素溶液预热到60℃的条件下,对纱布的表面进行涂覆,随即立刻浸泡在去离子水中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在60℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为12°,水下油的接触角为140°。通过万能试验机得到干膜的拉伸强度为28MPa,湿膜的拉伸强度为28MPa。油水混合物分离效率为93.3%;水包油的分离效率为94.9%。
实施例11
称取25g氯化锌、0.35gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在70℃下搅拌30min,使纤维素溶解成透明粘性液体。在40℃的高低温箱中,将棉布在纤维素溶液中浸泡9min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在去离子水中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在80℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为9°,水下油的接触角为150°。通过万能试验机得到干膜的拉伸强度为38MPa,湿膜的拉伸强度为30MPa。油水混合物分离效率为95.1%;水包油的分离效率为97.6%。
实施例12
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在90℃下搅拌30min,使纤维素溶解成透明粘性液体。在50℃的高低温箱中,将纱布在纤维素溶液中浸泡12min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数10%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在80℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为11°,水下油的接触角为149°。通过万能试验机得到干膜的拉伸强度为31MPa,湿膜的拉伸强度为20MPa。油水混合物分离效率为95.6%;水包油的分离效率为96.6%。
实施例13
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在50℃的高低温箱中,将纱布在纤维素溶液中浸泡7min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在无水乙醇中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在20℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为8°,水下油的接触角为148°。通过万能试验机得到干膜的拉伸强度为30MPa,湿膜的拉伸强度为23MPa。油水混合物分离效率为91.9%;水包油的分离效率为95.4%。
实施例14
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在30℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡12min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在甲醇中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在100℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为30°,水下油的接触角为151°。通过万能试验机得到干膜的拉伸强度为48MPa,湿膜的拉伸强度为15MPa。油水混合物分离效率为96.9%;水包油的分离效率为99.2%。
实施例15
称取25g氯化锌、0.30gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在60℃下搅拌30min,使纤维素溶解成透明粘性液体。在30℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡12min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数5%乙酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为23°,水下油的接触角为148°。通过万能试验机得到干膜的拉伸强度为44MPa,湿膜的拉伸强度为12MPa。油水混合物分离效率为96.4%;水包油的分离效率为98.3%。
实施例16
称取25g氯化锌、0.70gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在30℃的高低温箱中,将商业滤纸在纤维素溶液中浸泡9min后取出,并将表面多余的纤维素溶液刮去,立刻浸泡在质量分数10%乙酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为32°,水下油的接触角为152°。通过万能试验机得到干膜的拉伸强度为51MPa,湿膜的拉伸强度为15MPa。油水混合物分离效率为98.4%;水包油的分离效率为99.7%。
实施例17
称取25g氯化锌、1.40gα-微晶纤维素粉于烧瓶中,加入10mL去离子水,在80℃下搅拌30min,使纤维素溶解成透明粘性液体。在纤维素溶液预热到50℃的条件下,对商业滤纸的表面进行涂覆,随即立刻浸泡在质量分数10%的盐酸水溶液中再生,洗涤得到湿态全纤维素复合膜。将湿膜固定后,放在40℃的真空干燥箱中完全干燥,得到全纤维素复合膜。通过液滴形状分析仪测得全纤维素复合膜的空气中水的瞬时接触角为5°,水下油的接触角为139°。通过万能试验机得到干膜的拉伸强度为28MPa,湿膜的拉伸强度为5MPa。油水混合物分离效率为92.8%;水包油的分离效率为95.7%。

Claims (10)

1.一种用于油水分离的全纤维素复合膜,其特征在于,所述全纤维素复合膜由基底材料与纤维素基质组成,所述基底材料为增强纤维素材料,所述纤维素基质为外界加入的由纤维素相转变得到的再生纤维素。
2.根据权利要求1所述的一种用于油水分离的全纤维素复合膜,其特征在于,所述增强纤维素材料为商业滤纸、棉布、纱布中的一种;所述纤维素为α-微晶纤维素粉、棉浆、棉短绒中的一种或几种按任意比混合的混合物。
3.一种权利要求2所述的用于油水分离的全纤维素复合膜的制备方法,其特征在于,包括以下步骤:
步骤1,将纤维素加入到氯化锌-水体系中,加热搅拌使纤维素溶解,得到纤维素溶液;
步骤2,将增强纤维素材料与步骤1中所得到的纤维素溶液进行复合,复合后随即在反溶剂中再生,干燥后得到全纤维素复合膜。
4.根据权利要求3所述的一种用于油水分离的全纤维素复合膜的制备方法,其特征在于,所述步骤1中氯化锌-水体系的氯化锌与水的质量比2.0~2.5:1,所述纤维素与氯化锌-水体系的质量比为1:25~100。
5.根据权利要求3所述的一种用于油水分离的全纤维素复合膜的制备方法,其特征在于,所述步骤1中加热的温度为60~90℃。
6.根据权利要求3所述的一种用于油水分离的全纤维素复合膜的制备方法,其特征在于,所述步骤2中复合的温度为20~60℃,所述复合的方法为溶液浸渍、表面涂覆。
7.根据权利要求3所述的一种用于油水分离的全纤维素复合膜的制备方法,其特征在于,所述步骤2中反溶剂为去离子水、甲醇、乙醇、质量分数为5~10%的盐酸水溶液、质量分数为5~10%的硫酸水溶液、质量分数为5~10%的磷酸水溶液、质量分数为5~10%的乙酸水溶液中的一种或几种按任意比例混合的混合物。
8.根据权利要求3所述的一种用于油水分离的全纤维素复合膜的制备方法,其特征在于,所述步骤2中干燥的温度为10~100℃。
9.一种权利要求1或2所述的用于油水分离的全纤维素复合膜的应用,其特征在于,应用于油水分离。
10.根据权利要求9所述的一种用于油水分离的全纤维素复合膜的应用,其特征在于,所述油水分离为油水混合物分离、含乳化剂的水包油乳液分离。
CN202111310919.7A 2021-11-05 2021-11-05 一种用于油水分离的全纤维素复合膜及制备方法和应用 Pending CN113908704A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111310919.7A CN113908704A (zh) 2021-11-05 2021-11-05 一种用于油水分离的全纤维素复合膜及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111310919.7A CN113908704A (zh) 2021-11-05 2021-11-05 一种用于油水分离的全纤维素复合膜及制备方法和应用

Publications (1)

Publication Number Publication Date
CN113908704A true CN113908704A (zh) 2022-01-11

Family

ID=79245452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111310919.7A Pending CN113908704A (zh) 2021-11-05 2021-11-05 一种用于油水分离的全纤维素复合膜及制备方法和应用

Country Status (1)

Country Link
CN (1) CN113908704A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597580A (zh) * 2022-03-14 2022-06-07 华南农业大学 钠离子电池用全纤维素复合隔膜及其原位制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858930A (zh) * 2016-04-20 2016-08-17 中国科学院新疆理化技术研究所 一种利用油水分离器处理含油污水的方法
CN110283349A (zh) * 2019-06-27 2019-09-27 贵州大学 一种木质素磺酸盐纤维素复合膜的制备方法
CN110552253A (zh) * 2018-05-30 2019-12-10 华南理工大学 一种高耐折、超平滑、高雾度的透明全纤维素复合薄膜及其制备方法
CN112316734A (zh) * 2020-09-28 2021-02-05 杭州鹿扬科技有限公司 含纳米颗粒的改性纤维素超滤膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858930A (zh) * 2016-04-20 2016-08-17 中国科学院新疆理化技术研究所 一种利用油水分离器处理含油污水的方法
CN110552253A (zh) * 2018-05-30 2019-12-10 华南理工大学 一种高耐折、超平滑、高雾度的透明全纤维素复合薄膜及其制备方法
CN110283349A (zh) * 2019-06-27 2019-09-27 贵州大学 一种木质素磺酸盐纤维素复合膜的制备方法
CN112316734A (zh) * 2020-09-28 2021-02-05 杭州鹿扬科技有限公司 含纳米颗粒的改性纤维素超滤膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597580A (zh) * 2022-03-14 2022-06-07 华南农业大学 钠离子电池用全纤维素复合隔膜及其原位制备方法和应用

Similar Documents

Publication Publication Date Title
Xu et al. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment
Wang et al. Electrospun polyvinylidene fluoride-based fibrous nanocomposite membranes reinforced by cellulose nanocrystals for efficient separation of water-in-oil emulsions
CN107243260B (zh) 一种新型超疏水聚偏氟乙烯油水分离膜及其制备方法
Li et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks
Zhang et al. Electrospun flexible nanofibrous membranes for oil/water separation
Sun et al. Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments
Feng et al. Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation
Zhang et al. An overview of biomass-based Oil/Water separation materials
Zhou et al. Biodegradable, biomimetic, and nanonet-engineered membranes enable high-flux and highly-efficient oil/water separation
Dogan et al. Chitosan coated zeolite filled regenerated cellulose membrane for dehydration of ethylene glycol/water mixtures by pervaporation
Lai et al. One-step solution immersion process for the fabrication of low adhesive underwater superoleophobic copper mesh film toward high-flux oil/water separation
Tang et al. Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration
Wang et al. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation
Wang et al. High-strength corrosion resistant membranes for the separation of oil/water mixtures and immiscible oil mixtures based on PEEK
CN113908704A (zh) 一种用于油水分离的全纤维素复合膜及制备方法和应用
Song et al. Constructing hydrothermal carbonization coatings on carbon fibers with controllable thickness for achieving tunable sorption of dyes and oils via a simple heat-treated route
Shu et al. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil
Li et al. Surface synthesis of a polyethylene glutaraldehyde coating for improving the oil removal from wastewater of microfiltration carbon membranes
Zheng et al. Robust and highly hydrophilic ultrafiltration membrane with multi-branched cellulose nanocrystals for permeability-selectivity anti-trade-off property
Li et al. Further modification of oil–water separation membrane based on chitosan and titanium dioxide
Chingakham et al. Hydrophobic nano-bamboo fiber-reinforced acrylonitrile butadiene styrene electrospun membrane for the filtration of crude biodiesel
Hu et al. Mussel inspired stable underwater superoleophobic cotton fabric combined with carbon nanotubes for efficient oil/water separation and dye adsorption
Wu et al. Solvent-free processing of eco-friendly magnetic and superhydrophobic absorbent from all-plant-based materials for efficient oil and organic solvent sorption
Bai et al. Enhanced superhydrophobicity of electrospun carbon nanofiber membranes by hydrothermal growth of ZnO nanorods for oil–water separation
Gao et al. Preparation and characterization of electrospun PVDF/PVP/SiO2 nanofiber membrane for oil-water separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination