CN113906794B - 用于在nr v2x中发送位置信息的方法和设备 - Google Patents

用于在nr v2x中发送位置信息的方法和设备 Download PDF

Info

Publication number
CN113906794B
CN113906794B CN202080041123.3A CN202080041123A CN113906794B CN 113906794 B CN113906794 B CN 113906794B CN 202080041123 A CN202080041123 A CN 202080041123A CN 113906794 B CN113906794 B CN 113906794B
Authority
CN
China
Prior art keywords
transmitting
receiving
pssch
information
sci
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080041123.3A
Other languages
English (en)
Other versions
CN113906794A (zh
Inventor
李承旻
徐翰瞥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN113906794A publication Critical patent/CN113906794A/zh
Application granted granted Critical
Publication of CN113906794B publication Critical patent/CN113906794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种由第一装置执行无线通信的方法和支持该方法的设备。该方法可以包括以下步骤:通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息;基于所述区域的中心位置和所述第一装置的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二装置发送针对所述PSSCH的HARQ反馈。

Description

用于在NR V2X中发送位置信息的方法和设备
技术领域
本公开涉及无线通信***。
背景技术
副链路(SL)通信是在用户设备(UE)之间建立直接链路并且UE直接彼此交换语音和数据而没有演进节点B(eNB)干预的通信方案。正考虑将SL通信作为因数据流量快速增长而造成的eNB开销的解决方案。
V2X(车辆到一切)是指车辆用于与其他车辆、步行者以及装配有基础设施的对象等交换信息的通信技术。V2X可以被分为诸如V2V(车辆到车辆)、V2I(车辆到基础设施)、V2N(车辆到网络)以及V2P(车辆到步行者)这样的四种类型。V2X通信可以通过PC5接口和/或Uu接口提供。
此外,由于越来越多的通信设备需要较大的通信容量,所以需要相对于传统无线电接入技术(RAT)增强的移动宽带通信。因此,考虑到对可靠性和等待时间敏感的UE或服务的通信***设计也已经在讨论,并且考虑到增强移动宽带通信、大规模MTC以及超可靠低延时通信(URLLC)的下一代无线电接入技术可以被称为新型RAT(无线电接入技术)或NR(新型无线电)。
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。图1的实施方式可以与本公开的各种实施方式组合。
关于V2X通信,在讨论在NR之前使用的RAT时,侧重于基于诸如BSM(基本安全消息)、CAM(合作意识消息)和DENM(分散环境通知消息)这样的V2X消息提供安全服务的方案。V2X消息可以包括位置信息、动态信息、属性信息等。例如,UE可以向另一UE发送周期性消息类型CAM和/或事件触发消息类型DENM。
例如,CAM可以包括诸如方向和速度这样的车辆的动态状态信息、诸如大小这样的车辆的静态数据以及诸如外部照明状态、路线细节等这样的基本车辆信息。例如,UE可以广播CAM,并且CAM的等待时间可以少于100ms。例如,UE可以生成DENM,并且在诸如车辆故障、事故等这样的意外情形下将其发送到另一UE。例如,在UE的发送范围内的所有车辆都能接收CAM和/或DENM。在这种情况下,DENM的优先级可以高于CAM。
此后,关于V2X通信,在NR中提出了各种V2X场景。例如,这各种V2X场景可以包括车辆排队、高级驾驶、扩展传感器、远程驾驶等。
例如,基于车辆排队,车辆可以通过动态地形成组而一起移动。例如,为了基于车辆编队执行排队操作,属于该组的车辆可以从领头车辆接收周期性数据。例如,属于该组的车辆可以通过使用周期性数据来减小或增大车辆之间的间隔。
例如,基于高级驾驶,车辆可以是半自动或全自动的。例如,每个车辆都可以基于从附近车辆和/或附近逻辑实体的本地传感器获得的数据来调节轨迹或操纵。另外,例如,每个车辆可以与附近车辆共享驾驶意图。
例如,基于扩展传感器,可以在车辆、逻辑实体、行人的UE和/或V2X应用服务器之间交换通过本地传感器获得的原始数据、处理后的数据或实时视频数据。因此,例如,与使用自传感器进行检测的环境相比,车辆能识别出进一步改善的环境。
例如,基于远程驾驶,对于危险环境中的不能驾驶的人或远程车辆,远程驾驶员或V2X应用可以操作或控制远程车辆。例如,如果路线是可预测的(例如公共交通),则基于云计算的驾驶可以用于远程车辆的操作或控制。另外,例如,可以考虑对基于云的后端服务平台的访问来进行远程驾驶。
此外,在基于NR的V2X通信中讨论了指定用于诸如车辆排队、高级驾驶、扩展传感器、远程驾驶等这样的各种V2X场景的服务需求的方案。
发明内容
技术目的
此外,接收UE可以基于发送UE的位置信息来计算接收UE与发送UE之间的距离。此后,如果接收UE与发送UE之间的距离小于或等于最小所需通信范围,则接收UE可以发送SLHARQ反馈。出于以上原因,接收UE需要高效地获得发送UE的位置。
技术方案
在一个实施方式中,提供了一种由第一装置执行与组中的一个或更多个第二装置的组播通信的方法。该方法可以包括以下步骤:通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息;基于所述区域的中心位置和所述第一装置的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二装置发送针对所述PSSCH的HARQ反馈。
在一个实施方式中,提供了一种被配置为执行与组中的一个或更多个第二装置的组播通信的第一装置。该第一装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行所述指令,以:通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息;基于所述区域的中心位置和所述第一装置的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二装置发送针对所述PSSCH的HARQ反馈。
本公开的效果
用户设备(UE)可以有效地执行SL通信。
附图说明
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。
图2示出了根据本公开的实施方式的NR***的结构。
图3示出了根据本公开的实施方式的NG-RAN与5GC之间的功能划分。
图4示出了根据本公开的实施方式的无线电协议架构。
图5示出了根据本公开的实施方式的NR***的结构。
图6示出了根据本公开的实施方式的NR帧的时隙的结构。
图7示出了根据本公开的实施方式的BWP的示例。
图8示出了根据本公开的实施方式的SL通信的无线电协议架构。
图9示出了根据本公开的实施方式的执行V2X或SL通信的UE。
图10示出了根据本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。
图11示出了根据本公开的实施方式的三种播放类型。
图12示出了基于本公开的实施方式的接收UE基于通信范围要求来执行SL HARQ反馈操作的方法。
图13示出了基于本公开的实施方式的接收UE基于与发送UE的距离来执行HARQ操作的过程。
图14示出了基于本公开的实施方式的接收UE获得接收UE与发送UE之间的距离的方法。
图15和图16示出了基于本公开的实施方式的在接收UE周围存在具有相同区域ID的多个区域的情况下接收UE获得接收UE与发送UE之间的距离的方法。
图17示出了基于本公开的实施方式的发送UE向接收UE发送位置信息的方法。
图18示出了基于本公开的实施方式的接收UE从发送UE接收位置信息的方法。
图19示出了基于本公开的实施方式的第一装置执行无线通信的方法。
图20示出了基于本公开的实施方式的第二装置执行无线通信的方法。
图21示出了基于本公开的实施方式的通信***1。
图22示出了基于本公开的实施方式的无线装置。
图23示出了基于本公开的实施方式的用于发送信号的信号处理电路。
图24示出了基于本公开的实施方式的无线装置的另一示例。
图25示出了基于本公开的实施方式的手持装置。
图26示出了基于本公开的实施方式的汽车或自主车辆。
具体实施方式
在本说明书中,“A或B”可以意指“仅A”、“仅B”或“A和B二者”。换句话说,在本说明书中,“A或B”可以被解释为“A和/或B”。例如,在本说明书中,“A、B或C”可以意指“仅A”、“仅B”、“仅C”或“A、B、C的任何组合”。
在本说明书中使用的斜杠(/)或逗号可以意指“和/或”。例如,“A/B”可以意指“A和/或B”。因此,“A/B”可以意指“仅A”、“仅B”或“A和B二者”。例如,“A、B、C”可以意指“A、B或C”。
在本说明书中,“A和B中的至少一个”可以意指“仅A”、“仅B”或“A和B二者”。另外,在本说明书中,表述“A或B中的至少一个”或“A和/或B中的至少一个”可以被解释为“A和B中的至少一个”。
另外,在本说明书中,“A、B和C中的至少一个”可以意指“仅A”、“仅B”、“仅C”或“A、B和C的任何组合”。另外,“A、B或C中的至少一个”或“A、B和/或C中的至少一个”可以意指“A、B和C中的至少一个”。
另外,在本说明书中使用的括号可以意指“例如”。具体地,当被指示为“控制信息(PDCCH)”时,这可以意指提出“PDCCH”作为“控制信息”的示例。换句话说,本说明书的“控制信息”不限于“PDCCH”,并且可以提出“PDDCH”作为“控制信息”的示例。具体地,当被指示为“控制信息(即,PDCCH)”时,这也可以意指提出“PDCCH”作为“控制信息”的示例。
本说明书中的一副附图中分别描述的技术特征可以被分别实现,或者可以被同时实现。
下面描述的技术可以用在诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等这样的各种无线通信***中。CDMA可以利用诸如通用陆地无线电接入(UTRA)或CDMA-2000这样的无线电技术实现。TDMA可以利用诸如全球移动通信***(GSM)/通用分组无线服务(GPRS)/增强数据速率GSM演进(EDGE)这样的无线电技术实现。OFDMA可以利用诸如电子电气工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、演进UTRA(E-UTRA)等这样的无线电技术实现。IEEE802.16m是IEEE 802.16e的演进版本,并且提供对于基于IEEE 802.16e的***的后向兼容性。UTRA是通用移动电信***(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中使用OFDMA,在上行链路中使用SC-FDMA。LTE-高级(LTE-A)是LTE的演进。
5G NR是与具有高性能、低延时、高可用性等特性的新型全新式移动通信***相对应的LTE-A后续技术。5G NR可以使用包括小于1GHz的低频带、从1GHz到10GHz的中间频带以及24GHz以上的高频(毫米波)等的所有可用频谱的资源。
为了清楚描述,以下的描述将主要侧重于LTE-A或5G NR。然而,根据本公开的实施方式的技术特征将不仅限于此。
图2示出了按照本公开的实施方式的NR***的结构。图2的实施方式可以与本公开的各种实施方式组合。
参照图2,下一代无线电接入网络(NG-RAN)可以包括向UE 10提供用户平面和控制平面协议终止的BS 20。例如,BS 20可以包括下一代节点B(gNB)和/或演进型节点B(eNB)。例如,UE 10可以是固定的或移动的,并且可以被称为诸如移动站(MS)、用户终端(UT)、订户站(SS)、移动终端(MT)、无线装置等这样的其他术语。例如,BS可以被称为与UE 10通信的固定站并且可以被称为诸如基站收发器***(BTS)、接入点(AP)等这样的其它术语。
图2的实施方式例示了仅包括gNB的情况。BS 20可以经由Xn接口相互连接。BS 20可以经由第五代(5G)核心网络(5GC)和NG接口相互连接。更具体地,BS20可以经由NG-C接口连接到接入和移动性管理功能(AMF)30,并且可以经由NG-U接口连接到用户平面功能(UPF)30。
图3示出了按照本公开的实施方式的NG-RAN与5GC之间的功能划分。
参照图3,gNB可以提供诸如小区间无线电资源管理(小区间RRM)、无线电承载(RB)控制、连接移动性控制、无线电准入控制、测量配置和规定、动态资源分配等这样的功能。AMF可以提供诸如非接入层(NAS)安全性、空闲状态移动性处理等这样的功能。UPF可以提供诸如移动性锚定、协议数据单元(PDU)处理等这样的功能。会话管理功能(SMF)可以提供诸如用户设备(UE)互联网协议(IP)地址分配、PDU会话控制等这样的功能。
UE与网络之间的无线电接口协议层可以基于通信***中公知的开放***互联(OSI)模型的下三层被分类为第一层(L1)、第二层(L2)以及第三层(L3)。这里,属于第一层的物理(PHY)层使用物理信道提供信息传输服务,并且位于第三层的无线电资源控制(RRC)层控制UE与网络之间的无线电资源。为此,RRC层在UE与BS层之间交换RRC消息。
图4示出了按照本公开的实施方式的无线电协议架构。图4的实施方式可以与本公开的各种实施方式组合。具体地,图4中的(a)示出了用于用户平面的无线电协议架构,并且图4中的(b)示出了用于控制平面的无线电协议架构。用户平面对应于用于用户数据发送的协议栈,并且控制平面对应于用于控制信号发送的协议栈。
参照图4,物理层通过物理信道向上层提供信息传送服务。物理层通过传输信道连接到作为物理层的上层的介质访问控制(MAC)层。数据通过传输信道在MAC层和物理层之间传送。传输信道根据通过无线电接口如何传输数据及其传输什么特性的数据来分类。
在不同的PHY层(即,发送器的PHY层和接收器的PHY层)之间,通过物理信道传送数据。可以使用正交频分复用(OFDM)方案对物理信道进行调制,并且物理信道使用时间和频率作为无线电资源。
MAC层经由逻辑信道向无线电链路控制(RLC)层提供服务,该RLC层是MAC层的高层。MAC层提供将多个逻辑信道映射到多个传输信道的功能。MAC层还通过将多个逻辑信道映射到单个传输信道提供逻辑信道复用的功能。MAC层通过逻辑信道提供数据传输服务。
RLC层执行无线电链路控制服务数据单元(RLC SDU)的串联、分割和重组。为了确保无线电承载(RB)所需要的不同服务质量(QoS),RLC层提供三个类型的操作模式,即,透明模式(TM)、非确认模式(UM)以及确认模式(AM)。AM RLC通过自动重传请求(ARQ)提供错误纠正。
无线电资源控制(RRC)层仅定义在控制平面中。并且,RRC层执行与无线电承载的配置、重配置以及释放有关的物理信道、传输信道以及逻辑信道的控制的功能。RB是指由第一层(即,PHY层)和第二层(即,MAC层、RLC层以及PDCP层)提供以在UE与网络之间传输数据的逻辑路径。
用户平面中的分组数据汇聚协议(PDCP)层的功能包括用户数据的传输、报头压缩和加密。控制平面中的分组数据汇聚协议(PDCP)层的功能包括控制平面数据的传输和加密/完整性保护。
仅在用户平面中定义了服务数据适配协议(SDAP)层。SDAP层执行服务质量(QoS)流与数据无线承载(DRB)之间的映射以及DL分组和UL分组二者中的QoS流ID(QFI)标记。
RB的配置是指用于指定无线电协议层和信道属性以提供特定服务以及用于确定相应的详细参数和操作方法的处理。RB随后可以被分类为两个类型,即,信令无线电承载(SRB)和数据无线电承载(DRB)。SRB被用作用于在控制平面中发送RRC消息的路径,DRB被用作用于在用户平面中发送用户数据的路径。
当RRC连接在UE的RRC层和E-UTRAN的RRC层之间建立时,UE处于RRC连接(RRC_CONNECTED)状态,否则UE可以处于RRC空闲(RRC_IDLE)状态。在NR的情况下,另外定义了RRC不活动(RRC_INACTIVE)状态,并且处于RRC_INACTIVE状态的UE可以保持与核心网的连接而释放其与BS的连接。
从网络向UE发送(或传输)数据的下行链路传输信道包括发送***信息的广播信道(BCH)和发送其他用户业务或控制消息的下行链路共享信道(SCH)。下行链路多播或广播服务的业务或控制消息可以经由下行链路SCH发送或者可以经由单独的下行链路多播信道(MCH)发送。此外,从UE向网络发送(或传输)数据的上行链路传输信道包括发送初始控制消息的随机接入信道(RACH)和发送其他用户业务或控制消息的上行链路共享信道(SCH)。
属于传输信道的更高层且映射到传输信道的逻辑信道的示例可以包括广播控制信道(BCCH)、寻呼控制信道(PCCH)、公共控制信道(CCCH)、多播控制信道(MCCH)、多播业务信道(MTCH)等。
物理信道由时域中的多个OFDM符号和频域中的多个子载波配置而成。一个子帧由时域中的多个OFDM符号配置而成。资源块由资源分配单元中的多个子载波和多个OFDM符号配置而成。另外,每个子帧可以使用物理下行链路控制信道(PDCCH)即L1/L2控制信道的相应子帧的特定OFDM符号(例如,第一OFDM符号)的特定子载波。传输时间间隔(TTI)是指子帧发送的单位时间。
图5示出了按照本公开的实施方式的NR***的结构。图5的实施方式可以与本公开的各种实施方式组合。
参照图5,在NR中,无线电帧可以被用于执行上行链路和下行链路传输。无线电帧的长度为10ms,并且可以定义为由两个半帧(HF)构成。半帧可以包括五个1ms子帧(SF)。子帧(SF)可以被分成一个或更多个时隙,并且子帧内的时隙数目可以按照子载波间隔(SCS)来确定。每个时隙根据循环前缀(CP)可以包括12或14个OFDM(A)符号。
在使用正常CP的情况下,每个时隙可以包括14个符号。在使用扩展CP的情况下,每个时隙可以包括12个符号。本文中,符号可以包括OFDM符号(或CP-OFDM符号)和单载波-FDMA(SC-FDMA)符号(或离散傅里叶变换扩展OFDM(DFT-s-OFDM)符号)。
例示下表1表示在采用正常CP的情况下,根据SCS设置(μ)的每个符号的时隙个数(Nslot symb)、每帧的时隙个数(Nframe,μ slot)和每子帧的时隙个数(Nsubframe,μ slot)。
[表1]
表2示出了在使用扩展CP的情况下,根据SCS,每个时隙的符号数目、每帧的时隙数目以及每个子帧的时隙数目的示例。
[表2]
SCS(15*2μ) Nslot symb Nframe,μ slot Nsubframe,μ slot
60KHz(μ=2) 12 40 4
在NR***中,被整合到一个UE的多个小区之间的OFDM(A)参数集(例如,SCS、CP长度等)可以被不同地配置。因此,由相同数目的符号构成的时间资源(例如,子帧、时隙或TTI)(为了简单,统称为时间单元(TU))的(绝对时间)持续时间(或区间)在所整合的小区中可以被不同地配置。
在NR中,可以支持用于支持各种5G服务的多个参数集或SCS。例如,在SCS为15kHz的情况下,可以支持传统蜂窝频带的宽范围,并且在SCS为30kHz/60kHz的情况下,可以支持密集的城市、更低的延时、更宽的载波带宽。在SCS为60kHz或更高的情况下,为了克服相位噪声,可以使用大于24.25GHz的带宽。
NR频带可以被定义为两种不同类型的频率范围。两种不同类型的频率范围可以是FR1和FR2。频率范围的值可以改变(或变化),例如,两种不同类型的频率范围可以如在下表3中所示。在NR***中使用的频率范围当中,FR1可以意指“低于6GHz的范围”,并且FR2可以意指“高于6GHz的范围”,并且也可以被称为毫米波(mmW)。
[表3]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 450MHz–6000MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
如上所述,NR***中的频率范围的值可以改变(或变化)。例如,如下表4中所示,FR1可以包括410MHz至7125MHz范围内的带宽。更具体地,FR1可以包括6GHz(或5850、5900、5925MHz等)及更高的频带。例如,FR1中所包括的6GHz(或5850、5900、5925MHz等)及更高的频带可以包括未许可频带。未许可频带可以用于各种目的,例如,未许可频带用于车辆特定通信(例如,自动驾驶)。
[表4]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 410MHz–7125MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
图6示出了按照本公开的实施方式的NR帧的时隙的结构。
参照图6,时隙在时域中包括多个符号。例如,在正常CP的情况下,一个时隙可以包括14个符号。例如,在扩展CP的情况下,一个时隙可以包括12个符号。另选地,在正常CP的情况下,一个时隙可以包括7个符号。然而,在扩展CP的情况下,一个时隙可以包括6个符号。
载波包括频域中的多个子载波。资源块(RB)可以被定义为频域中的多个连续子载波(例如,12个子载波)。带宽部分(BWP)可以被定义为频域中的多个连续(物理)资源块((P)RB),并且BWP可以对应于一个参数集(例如,SCS、CP长度等)。载波可以包括最多N个BWP(例如,5个BWP)。数据通信可以经由激活的BWP执行。每个元素可以被称为资源网格中的资源元素(RE),并且一个复数符号可以被映射到每个元素。
此外,UE与另一UE之间的无线电接口或UE与网络之间的无线电接口可以包括L1层、L2层和L3层。在本公开的各种实施方式中,L1层可以意指物理层。另外,例如,L2层可以意指MAC层、RLC层、PDCP层和SDAP层中的至少之一。另外,例如,L3层可以意指RRC层。
下文中,将详细描述带宽部分(BWP)和载波。
BWP可以是给定参数集内的物理资源块(PRB)的连续集合。PRB可以选自针对给定载波上的给定参数集的公共资源块(CRB)的连续部分集合。
当使用带宽适应(BA)时,不需要用户设备(UE)的接收带宽和发送带宽与小区的带宽一样宽(或大),并且可以控制(或调节)UE的接收带宽和发送带宽。例如,UE可以从网络/基站接收用于带宽控制(或调节)的信息/配置。在这种情况下,可以基于接收到的信息/配置来执行带宽控制(或调节)。例如,带宽控制(或调节)可以包括带宽的减小/扩大、带宽的位置改变或带宽的子载波间隔的改变。
例如,可以在活动很少的持续时间内减小带宽,以便节省功率。例如,可以从频域重新定位(或移动)带宽的位置。例如,可以从频域重新定位(或移动)带宽的位置,以便增强调度灵活性。例如,带宽的子载波间隔可以改变。例如,带宽的子载波间隔可以改变,以便授权进行不同的服务。小区的总小区带宽的子集可以被称为带宽部分(BWP)。当基站/网络为UE配置BWP时以及当基站/网络将BWP当中的当前处于激活状态的BWP通知给UE时,可以执行BA。
例如,BWP可以是激活BWP、初始BWP和/或默认BWP中的一个。例如,UE不能监视除了在主小区(PCell)内的激活DL BWP之外的DL BWP中的下行链路无线电链路质量。例如,UE不能从激活DL BWP的外部接收PDCCH、PDSCH或CSI-RS(RRM除外)。例如,UE不能触发针对未激活DL BWP的信道状态信息(CSI)报告。例如,UE不能从非激活DL BWP的外部发送PUCCH或PUSCH。例如,在下行链路的情况下,初始BWP可以被作为针对(由PBCH配置的)RMSI CORESET的连续RB集给出。例如,在上行链路的情况下,可以由SIB针对随机接入过程给出初始BWP。例如,可以由较高层配置默认BWP。例如,默认BWP的初始值可以是初始DL BWP。为了节能,如果UE在预定时间段内无法检测DCI,则UE可以将UE的激活BWP切换成默认BWP。
此外,可以针对SL定义BWP。对于发送和接收,可以使用相同的SL BWP。例如,发送UE可以在特定BWP内发送SL信道或SL信号,并且接收UE可以在同一特定BWP内接收SL信道或SL信号。在许可载波中,SL BWP可以与Uu BWP被分开定义,并且SL BWP可以具有与Uu BWP分开的配置信令。例如,UE可以从基站/网络接收针对SL BWP的配置。可以(预先)针对覆盖范围外的NR V2X UE和RRC_IDLE UE配置SL BWP。对于在RRC_CONNECTED模式下操作的UE,可以在载波内激活至少一个SL BWP。
图7示出了按照本公开的实施方式的BWP的示例。图7的实施方式可以与本公开的各种实施方式组合。假定在图7的实施方式中,BWP的数目为3。
参照图7,公共资源块(CRB)可以是从载波频带的一端到其另一端地进行编号的载波资源块。另外,PRB可以是在每个BWP内被编号的资源块。点A可以指示资源块网格的公共参考点。
可以由点A、相对于点A的偏移(Nstart BWP)和带宽(Nsize BWP)来配置BWP。例如,点A可以是载波的PRB的外部参考点,所有参数集(例如,由网络在对应载波上支持的所有参数集)的子载波0在点A中对齐。例如,偏移可以是给定参数集内的最低子载波与点A之间的PRB距离。例如,带宽可以是给定参数集内的PRB的数目。
下文中,将描述V2X或SL通信。
图8示出了按照本公开的实施方式的S L通信的无线电协议架构。图8的实施方式可以与本公开的各种实施方式组合。更具体地,图8中的(a)示出了用户平面协议栈,并且图8中的(b)示出了控制平面协议栈。
下面,将详细描述副链路同步信号(SLSS)和同步信息。
SLSS可以包括主副链路同步信号(PSSS)和辅助副链路同步信号(SSSS)作为SL特定序列。PSSS可以被称为副链路主同步信号(S-PSS),并且SSSS可以被称为副链路辅同步信号(S-SSS)。例如,长度为127的M序列可以用于S-PSS,并且长度为127的戈尔德(Gold)序列可以用于S-SSS。例如,UE可以将S-PSS用于初始信号检测和同步获取。例如,UE可以将S-PSS和S-SSS用于获取详细的同步并且用于检测同步信号ID。
物理副链路广播信道(PSBCH)可以是用于发送默认(***)信息的(广播)信道,该默认(***)信息是在SL信号发送/接收之前由UE必须首先知道的。例如,默认信息可以是与SLSS、双工模式(DM)、时分双工(TDD)上行链路/下行链路(UL/DL)配置相关的信息、与资源池相关的信息、与SLSS相关的应用的类型、子帧偏移、广播信息等。例如,为了评估PSBCH性能,在NR V2X中,PSBCH的有效载荷大小可以为56位,包括24位CRC。
S-PSS、S-SSS和PSBCH可以以支持周期性发送的块格式(例如,SL同步信号(SS)/PSBCH块,下文中,副链路同步信号块(S-SSB))被包括。S-SSB可以具有与载波中的物理副链路控制信道(PSCCH)/物理副链路共享信道(PSSCH)相同的参数集(即,SCS和CP长度),并且传输带宽可以存在于(预先)配置的副链路(SL)BWP内。例如,S-SSB可以具有11个资源块(SB)的带宽。例如,PSBCH可以跨11个RB存在。另外,可以(预先)配置S-SSB的频率位置。因此,UE不必在频率处执行假设检测以发现载波中的S-SSB。
图9示出了按照本公开的实施方式的执行V2X或SL通信的UE。图9的实施方式可以与本公开的各种实施方式组合。
参照图9,在V2X或SL通信中,术语“UE”可以通常是指用户的UE。然而,如果诸如BS这样的网络设备根据UE之间的通信方案来发送/接收信号,则BS也可以被视为一种UE。例如,UE 1可以是第一设备100,并且UE 2可以是第二设备200。
例如,UE 1可以在意指一组资源系列的资源池中选择与特定资源对应的资源单元。另外,UE 1可以通过使用资源单元来发送SL信号。例如,UE 1能够在其中发送信号的资源池可以被配置到作为接收UE的UE 2,并且可以在该资源池中检测UE1的信号。
本文中,如果UE 1在BS的连接范围内,则BS可以将资源池告知UE1。否则,如果UE 1在BS的连接范围外,则另一UE可以将资源池告知UE 1,或者UE 1可以使用预先配置的资源池。
通常,可以以多个资源为单元配置资源池,并且每个UE可以选择一个或多个资源的单元,以在其SL信号发送中使用它。
下文中,将描述SL中的资源分配。
图10示出了按照本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。图10的实施方式可以与本公开的各种实施方式组合。在本公开的各种实施方式中,发送模式可以被称为模式或资源分配模式。下文中,为了便于说明,在LTE中,发送模式可以被称为LTE发送模式。在NR中,发送模式可以被称为NR资源分配模式。
例如,图10中的(a)示出了与LTE发送模式1或LTE发送模式3相关的UE操作。另选地,例如,图10中的(a)示出了与NR资源分配模式1相关的UE操作。例如,可以将LTE发送模式1应用于常规SL通信,并且可以将LTE发送模式3应用于V2X通信。
例如,图10中的(b)示出了与LTE发送模式2或LTE发送模式4相关的UE操作。另选地,例如,图10中的(b)示出了与NR资源分配模式2相关的UE操作。
参照图10中的(a),在LTE发送模式1、LTE发送模式3或NR资源分配模式1下,BS可以调度将供UE用来SL发送的SL资源。例如,BS可以通过PDCCH(更具体地,下行链路控制信息(DCI))对UE 1执行资源调度,并且UE 1可以根据资源调度针对UE 2执行V2X或SL通信。例如,UE 1可以通过物理副链路控制信道(PSCCH)向UE 2发送副链路控制信息(SCI),此后通过物理副链路共享信道(PSSCH)向UE 2发送基于SCI的数据。
参照图10中的(b),在LTE发送模式2、LTE发送模式4或NR资源分配模式2下,UE可以确定由BS/网络配置的SL资源或预先配置的SL资源内的SL发送资源。例如,所配置的SL资源或预先配置的SL资源可以是资源池。例如,UE可以自主地选择或调度用于SL发送的资源。例如,UE可以通过自主地选择所配置的资源池中的资源来执行SL通信。例如,UE可以通过执行感测和资源(重新)选择过程来自主地选择选择窗口内的资源。例如,可以以子信道为单元执行感测。另外,已在资源池中自主选择资源的UE 1可以通过PSCCH将SCI发送到UE 2,此后可以通过PSSCH将基于SCI的数据发送到UE 2。
图11示出了按照本公开的实施方式的三种播放类型。图11的实施方式可以与本公开的各种实施方式组合。具体地,图11中的(a)示出了广播型SL通信,图11中的(b)示出了单播型SL通信,并且图11中的(c)示出了组播型SL通信。在单播型SL通信的情况下,UE可以针对另一UE执行一对一通信。在组播型SL发送的情况下,UE可以针对UE所属的组中的一个或更多个UE执行SL通信。在本公开的各种实施方式中,SL组播通信可以被SL多播通信、SL一对多通信等替换。
下文中,将描述副链路控制信息(SCI)。
BS通过PDCCH发送到UE的控制信息可以被称为下行链路控制信息(DCI),而UE通过PSCCH发送到另一UE的控制信息可以被称为SCI。例如,UE可以在对PSCCH进行解码之前预先知道PSCCH的起始符号和/或PSCCH的符号数目。例如,SCI可以包括SL调度信息。例如,UE可以将至少一个SCI发送到另一UE,以调度PSSCH。例如,可以定义一种或更多种SCI格式。
例如,发送UE可以在PSCCH上将SCI发送到接收UE。接收UE可以对一个SCI进行解码,以从发送UE接收PSSCH。
例如,发送UE可以在PSCCH和/或PSSCH上将两个连续的SCI(例如,2级SCI)发送到接收UE。接收UE可以对两个连续的SCI(例如,2级SCI)进行解码,以从发送UE接收PSSCH。例如,如果考虑到(相对)高的SCI有效载荷大小而将SCI配置字段划分为两个组,则包括第一SCI配置字段组的SCI可以被称为第一SCI或者第一个SCI,并且包括第二SCI配置字段组的SCI可以被称为第二SCI或第二个SCI。例如,发送UE可以通过PSCCH将第一SCI发送到接收UE。例如,发送UE可以在PSCCH和/或PSSCH上将第二SCI发送到接收UE。例如,第二SCI可以通过(独立的)PSCCH发送到接收UE,或者可以通过PSSCH与数据一起以捎带方式发送。例如,两个连续的SCI也可以被应用于不同的发送(例如,单播、广播或组播)。
例如,发送UE可以通过SCI将下面描述的全部或部分信息发送到接收UE。本文中,例如,发送UE可以通过第一SCI和/或第二SCI将下面描述的全部或部分信息发送到接收UE。
-PSSCH和/或PSCCH相关资源分配信息,例如,时间/频率资源的数目/位置、资源保留信息(例如,时段),和/或
-SL CSI报告请求指示符或SL(L1)RSRP(和/或SL(L1)RSRQ和/或SL(L1)RSSI)报告请求指示符,和/或
-(PSSCH上的)SL CSI发送指示符(或SL(L1)RSRP(和/或SL(L1)RSRQ和/或SL(L1)RSSI)信息发送指示符),和/或
-调制编码方案(MCS)信息,和/或
-发送功率信息,和/或
-L1目的地ID信息和/或L1源ID信息,和/或
-SLHARQ进程ID信息,和/或
-新数据指示符(NDI)信息,和/或
-冗余版本(RV)信息,和/或
-(发送业务/分组相关的)QoS信息,例如,优先级信息,和/或
-SLCSI-RS发送指示符或关于(待发送的)SL CSI-RS天线端口的数目的信息
-发送UE的位置信息或(被请求SL HARQ反馈的)目标接收UE的位置(或距离区域)信息,和/或
-与将通过PSSCH发送的数据的信道估计和/或解码相关的参考信号(例如,DMRS等),例如,与DMRS的(时间-频率)映射资源的模式相关的信息、秩信息、天线端口索引信息。
例如,第一SCI可以包括与信道侦听相关的信息。例如,接收UE可以通过使用PSSCHDMRS对第二SCI进行解码。用在PDCCH中的极化码可以被应用于第二SCI。例如,在资源池中,对于单播、组播和广播,第一SCI的有效载荷大小可以相等。在对第一SCI进行解码之后,接收UE不必对第二SCI执行盲解码。例如,第一SCI可以包括第二SCI的调度信息。
此外,在本公开的各种实施方式中,由于发送UE可以通过PSCCH向接收UE发送SCI、第一SCI和/或第二SCI中的至少一个,因此PSCCH可以被SCI、第一SCI和/或第二SCI中的至少一个更换/替换。另外地/另选地,例如,SCI可以被PSCCH、第一SCI或第二SCI中的至少一个更换/替换。另外地/另选地,例如,由于发送UE可以通过PSSCH向接收UE发送第二SCI,因此PSSCH可以被第二SCI更换/替换。
下文中,将描述混合自动重传请求(HARQ)过程。
使用错误补偿方案来确保通信可靠性。错误补偿方案的示例可以包括前向纠错(FEC)方案和自动重传请求(ARQ)方案。在FEC方案中,可以通过将额外的纠错码附加到信息位来校正接收端中的错误。FEC方案具有时间延迟小并且在发送端和接收端之间没有另外地交换信息的优点,但同时具有在良好信道环境中***效率下降的缺点。ARQ方案具有可以提高发送可靠性的优点,但同时具有在不良信道环境中出现时间延迟并且***效率下降的缺点。
混合自动重传请求(HARQ)方案是FEC方案与ARQ方案的组合。在HARQ方案中,确定物理层所接收的数据中是否包括不可恢复的错误,并且在检测到该错误后请求重传,由此提高性能。
在SL单播和SL组播的情况下,可以支持物理层中的HARQ反馈和HARQ组合。例如,在接收UE在资源分配模式1或2下操作的情况下,接收UE可以从发送UE接收PSSCH,并且接收UE可以通过物理副链路反馈信道(PSFCH)使用副链路反馈控制信息(SFCI)格式将对应于PSSCH的HARQ反馈发送到发送UE。
例如,可以针对单播启用SL HARQ反馈。在这种情况下,在非代码块组(非CBG)中,接收UE可以对以接收UE为目标的PSCCH进行解码,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE可以生成HARQ-ACK。此后,接收UE可以将HARQ-ACK发送到发送UE。相反,在接收UE对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行成功解码,则接收UE可以生成HARQ-NACK,并且接收UE可以向发送UE发送HARQ-NACK。
例如,可以针对组播启用SL HARQ反馈。例如,在非CBG期间,可以针对组播支持两种不同类型的HARQ反馈选项。
(1)组播选项1:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。相反,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE不会向发送UE发送HARQ-ACK。
(2)组播选项2:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传送块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。并且,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传送块进行解码时,接收UE可以经由PSFCH向发送UE发送HARQ-ACK。
例如,如果在SL HARQ反馈中使用组播选项1,则执行组播通信的所有UE都可以共享PSFCH资源。例如,属于同一组的UE可以通过使用相同的PSFCH资源来发送HARQ反馈。
例如,如果在SL HARQ反馈中使用组播选项2,则执行组播通信的每个UE都可以将不同的PSFCH资源用于HARQ反馈发送。例如,属于同一组的UE可以通过使用不同的PSFCH资源来发送HARQ反馈。
例如,当针对组播启用SL HARQ反馈时,接收UE可以基于发送-接收(TX-RX)距离和/或RSRP来确定是否向发送UE发送HARQ反馈。
例如,在组播选项1中,在基于TX-RX距离的HARQ反馈的情况下,如果TX-RX距离小于或等于通信范围要求,则接收UE可以将响应于PSSCH的HARQ反馈发送到发送UE。否则,如果TX-RX距离大于通信范围要求,则接收UE可以不将响应于PSSCH的HARQ反馈发送到发送UE。例如,发送UE可以通过与PSSCH相关的SCI将发送UE的位置告知接收UE。例如,与PSSCH相关的SCI可以是第二SCI。例如,接收UE可以基于接收UE的位置和发送UE的位置来估计或获得TX-RX距离。例如,接收UE可以对与PSSCH相关的SCI进行解码,因此可以知道用于PSSCH的通信范围要求。
例如,在资源分配模式1的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。在单播和组播的情况下,如果在SL上必须进行重传,则可以由使用PUCCH的覆盖范围内的UE将其向BS指示。发送UE可以以调度请求(SR)/缓冲状态报告(BSR)的形式而非HARQACK/NACK的形式向发送UE的服务BS发送指示。另外,即使BS未接收到该指示,BS也可以为UE调度SL重传资源。例如,在资源分配模式2的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。
例如,从载波中的UE发送的角度来看,对于用于时隙中SL的PSFCH格式,可以允许PSCCH/PSSCH与PSFCH之间的TDM。例如,可以支持具有单个符号的基于序列的PSFCH格式。本文中,该单个符号可以不是AGC持续时间。例如,基于序列的PSFCH格式可以应用于单播和组播。
例如,在与资源池相关的时隙中,PSFCH资源可以被周期性配置为N个时隙持续时间,或者可以被预先配置。例如,N可以被配置为大于或等于1的一个或更多个值。例如,N可以为1、2或4。例如,可以仅在特定资源池上通过PSFCH发送针对特定资源池中的发送的HARQ反馈。
例如,如果发送UE跨时隙#x至时隙#n向接收UE发送PSSCH,则接收UE可以在时隙#(N+A)中将响应于PSSCH的HARQ反馈发送到发送UE。例如,时隙#(N+A)可以包括PSFCH资源。本文中,例如,A可以是大于或等于K的最小整数。例如,K可以是逻辑时隙的数目。在这种情况下,K可以是资源池中时隙的数目。另选地,例如,K可以是物理时隙的数目。在这种情况下,K可以是资源池内部或外部时隙的数目。
例如,如果接收UE响应于发送UE向接收UE发送的一个PSSCH而在PSFCH资源上发送HARQ反馈,则接收UE可以基于所配置的资源池中的隐式机制来确定PSFCH资源的频域和/或码域。例如,接收UE可以基于与PSCCH/PSSCH/PSFCH相关的时隙索引、与PSCCH/PSSCH相关的子信道或用于标识基于组播选项2的HARQ反馈的组中的每个接收UE的标识符中的至少一个来确定PSFCH资源的频域和/或码域。另外地/另选地,例如,接收UE可以基于SL RSRP、SINR、L1源ID和/或位置信息中的至少一个来确定PSFCH资源的频域和/或码域。
例如,如果通过UE的PSFCH进行的HARQ反馈发送与通过PSFCH进行的HARQ反馈接收交叠,则UE可以基于优先级规则来选择通过PSFCH进行的HARQ反馈发送和通过PSFCH进行的HARQ反馈接收中的任一个。例如,优先级规则至少可以基于相关PSCCH/PSSCH的优先级指示。
例如,如果针对多个UE,UE通过PSFCH进行的HARQ反馈发送交叠,则UE可以基于优先级规则来选择特定的HARQ反馈发送。例如,优先级规则可以基于相关PSCCH/PSSCH的最低优先级指示。
在本公开中,发送UE可以是发送数据或控制信息的UE。例如,发送UE可以是向(目标)接收UE发送数据或控制信息的UE。例如,发送UE可以是发送PSCCH和/或PSSCH的UE。发送UE可以是发送用于副链路的CSI-RS和/或副链路CSI报告请求指示符的UE。例如,发送UE可以是向(目标)接收UE发送CSI-RS和/或CSI报告请求指示符的UE。发送UE可以是发送将用于副链路(L1)RSRP测量的副链路(L1)RSRP报告请求指示符和/或(预定义的)参考信号的UE。例如,发送UE可以是向(目标)接收UE发送将用于副链路(L1)RSRP测量的(预定义的)参考信号和/或副链路(L1)RSRP报告请求指示符的UE。例如,将用于副链路(L1)RSRP测量的(预定义的)参考信号可以是PSSCH DM-RS。发送UE可以是发送将用于((目标)接收UE的)副链路无线电链路监视(RLM)操作和/或副链路无线电链路故障(RLF)操作的信道的UE。例如,将用于副链路RLM操作和/或副链路RLF操作的信道可以是PSCCH或PSSCH。发送UE可以是在将用于副链路RLM操作和/或副链路RLF操作的信道上发送参考信号(例如,DM-RS或CSI-RS)的UE。
在本公开中,接收UE可以是基于从发送UE接收的数据的解码是否成功来(向发送UE)发送副链路HARQ反馈的UE。接收UE可以是基于由发送UE发送的(与PSSCH调度相关的)PSCCH的检测/解码是否成功来(向发送UE)发送副链路HARQ反馈的UE。接收UE可以是基于从发送UE接收的CSI-RS和/或CSI报告请求指示符来(向发送UE)发送副链路CSI的UE。接收UE可以是基于(预定义的)参考信号和/或从发送UE接收的副链路(L1)RSRP报告请求指示符来(向发送UE)发送副链路(L1)RSRP测量值的UE。接收UE可以是(向发送UE)发送其自身的数据或控制信息的UE。接收UE可以是基于从发送UE接收的(预先配置的)信道(例如,PSCCH或PSSCH)来执行RLM操作和/或RLF操作的UE。接收UE可以是基于从发送UE接收的(预先配置的)信道上的参考信号来执行RLM操作和/或RLF操作的UE。
在本公开中,术语PSCCH可以被解释为或扩展到SCI。例如,发送UE向接收UE发送PSCCH可以包括发送UE通过PSCCH向接收UE发送SCI。在本公开中,术语PSCCH可以被解释为或扩展到第一SCI(或第二SCI)。例如,发送UE向接收UE发送PSCCH可以包括发送UE通过PSCCH向接收UE发送第一SCI(或第二SCI)。在本公开中,术语SCI可以被解释为或扩展到PSCCH(和/或第一SCI(或第二SCI))。例如,发送UE向接收UE发送SCI可以包括发送UE向接收UE发送PSCCH(和/或第一SCI(或第二SCI))。在本公开中,术语PSSCH可以被解释为或扩展到第二SCI。例如,发送UE向接收UE发送PSSCH可以包括发送UE向接收UE发送第二SCI。
本文中,例如,当考虑到(相对)高的SCI有效载荷的大小将SCI配置字段分为两组时,第一SCI和第二SCI可以分别是指一个组的SCI和另一组的SCI。另外,第一SCI和第二SCI可以通过不同的信道发送。例如,发送UE可以通过PSCCH发送第一SCI,并可以通过在PSSCH上捎带第二SCI来将第二SCI与数据一起发送。另选地,例如,发送UE可以通过PSCCH发送第一SCI,并可以通过(独立的)PSCCH发送第二SCI。
在本公开中,术语“配置或定义”可以被解释为(通过预定义的信令(例如,SIB、MAC信令、RRC信令))从基站或网络(预先)配置。例如,“A可以被配置为”可以包括“基站或网络可以向UE(预先)配置/定义或者告知A”。另选地,术语“配置或定义”可以被解释为由***事先配置或定义。例如,“A可以被配置为”可以包括“A可以由***事先配置/定义”。另外,在本公开中,可以基于(OUT-OF-SYNCH)不同步和(IN-SYNCH)同步中的至少一者来确定RLF。在本公开中,资源块(RB)可以被解释为或扩展到子载波。
在本公开中,接收UE可以(向发送UE)发送副链路HARQ反馈、副链路CSI或副链路(L1)RSRP中的至少一个。在本公开中,接收UE用来(向发送UE)发送副链路HARQ反馈、副链路CSI或副链路(L1)RSRP中的至少一个的(物理)信道可以被称为物理副链路反馈信道(PSFCH)或副链路反馈信道。
此外,例如,在组播的情况下,接收UE可以基于发送UE的位置信息来计算接收UE与发送UE之间的距离。例如,组播可以是无连接组播。为此目的,发送UE可以通过预先配置的信道将发送UE的位置信息发送给接收UE。例如,预先配置的信道可以是PSCCH。例如,预先配置的信道可以是PSSCH。此后,如果接收UE与发送UE之间的距离小于或等于最小所需通信范围(下文中,MIN_RANGE),则接收UE可以发送SL HARQ反馈。例如,SL HARQ反馈可以是由发送UE发送的针对PSSCH和/或PSCCH的HARQ反馈。例如,MIN_RANGE可以是服务/分组相关要求。例如,MIN_RANGE可以是与由发送UE发送的服务/分组相关的通信范围要求。
图12示出了基于本公开的实施方式的接收UE基于通信范围要求来执行SL HARQ反馈操作的方法。图12的实施方式可以与本公开的各种实施方式组合。
参照图12,在步骤S1210中,发送UE可以发送PSCCH和/或PSSCH。例如,发送UE可以通过PSCCH和/或PSSCH向接收UE#1和UE#2发送服务/分组。另外,发送UE可以通过PSCCH和/或PSSCH将发送UE的位置信息发送给接收UE#1和接收UE#2。例如,发送UE的位置信息可以被包括在通过PSSCH发送的第二SCI中。在图12的实施方式中,假定接收UE#1位于与发送UE的服务/分组相关的通信范围要求内,并且接收UE#2位于与发送UE的服务/分组相关的通信范围要求外。
在这种情况下,接收UE#1可以基于接收UE#1的位置信息和发送UE的位置信息来获得接收UE#1与发送UE之间的距离。另外,如果该距离小于或等于与服务/分组相关的通信范围要求,则在步骤S1220中,接收UE#1可以执行SL HARQ反馈操作。
类似地,接收UE#2可以基于接收UE#2的位置信息和发送UE的位置信息来获得接收UE#2与发送UE之间的距离。另外,如果该距离大于与服务/分组相关的通信范围要求,则在步骤S1230中,接收UE#2可以不执行SL HARQ反馈操作。即,接收UE#2可以不向发送UE发送针对服务/分组的SL HARQ反馈。
出于以上原因,接收UE需要高效地获得发送UE的位置。下文中,基于本公开的各种实施方式,将描述发送UE高效地发送发送UE的位置信息的方法和支持该方法的设备。
基于本公开的实施方式,发送UE可以发送发送UE的位置信息。在这种情况下,从接收UE的观点来看,如果确定其自身(即,发送UE)的位置的歧义/不准确度将较大(比预先配置的阈值误差值大),则发送UE可以使用相对大的预先配置的有效载荷大小(或位数)来发送发送UE的位置信息。例如,如果发送位置信息的发送UE确定接收UE将不能够准确地确定发送UE的位置,则发送UE可以通过使用相对大的预先配置的有效载荷大小(或位数)来发送发送UE的位置信息。本文中,例如,为了实现以上操作,发送UE用于发送发送UE的位置信息的SCI字段可以(预先)配置为两种类型或两种大小。
例如,即使发送UE通过有效载荷大小(或位数)相对小的字段(下文中,SHORT_FIELD)向接收UE发送发送UE的位置信息,发送UE也可以确定接收UE可以准确地确定发送UE的位置(高于预先配置的阈值水平)。在这种情况下,发送UE可以选择用于发送位置信息的SHORT_FIELD。另外,发送UE可以通过SHORT_FIELD发送发送UE的位置信息。
另一方面,例如,如果发送UE通过SHORT_FIELD向接收UE发送发送UE的位置信息,则发送UE可以确定接收UE不能准确地确定发送UE的位置(高于预先配置的阈值水平)。在这种情况下,发送UE可以选择有效载荷大小(或位数)相对大的字段(下文中,LONG_FIELD)来发送位置信息。例如,发送UE可以选择LONG_FIELD来发送发送UE所属的区域中的位置信息。另外,发送UE可以通过LONG_FIELD发送发送UE的位置信息。
本文中,例如,在如果发送UE通过SHORT_FIELD向接收UE发送发送UE的位置信息则可以被认为是发送UE所属的区域的区域的数目较大(比预先配置的阈值大)的情况下,发送UE可以基于SHORT_FIELD来确定接收UE不能准确地确定发送UE的位置(高于预先配置的阈值水平)。例如,如果发送UE通过SHORT_FIELD向接收UE发送发送UE的位置信息,则由于相对小的有效载荷大小(或位数),发送UE的位置信息可以被量化,并且据此,发送UE的位置信息的不准确度可能较大(比预先配置的可允许阈值水平大)。在这种情况下,发送UE可以基于SHORT_FIELD来确定接收UE不能准确地确定发送UE的位置(高于预先配置的阈值水平)。
本文中,作为实现该操作的另一示例,发送UE可以通过第一SCI上的(预先配置的)字段(下文中,F_DFIELD)基于(总是)固定的(相对小的)有效载荷大小(或位数)来发送发送UE的位置信息(例如,最高有效位(MSB))。另外,发送UE可以通过第二SCI上的(预先配置的)字段(下文中,S_DFIELD)发送可以提高(与发送UE的位置信息相关的)准确性的(附加)信息(例如,最低有效位(LSB))。本文中,例如,只有在发送UE确定不能仅通过发送第一SCI上的F_DFIELD来确保发送UE的位置准确性(高于预先配置的阈值水平)的情况下,发送UE才可以包括第二SCI中的S_DFIELD。例如,只有在发送UE确定不能仅通过发送第一SCI上的F_DFIELD来确保发送UE的位置准确性(高于预先配置的阈值水平)的情况下,发送UE才可以发送包括S_DFIELD的第二SCI。另外,发送UE可以指示/告知在第二SCI中是否存在S_DFIELD和/或是否通过第一SCI上的字段将S_DFIELD包括在第二SCI中来发送它。例如,第一SCI上的字段可以是预先配置的字段。例如,第一SCI上的字段可以是预先配置的新字段。例如,发送UE可以指示/告知在第二SCI中是否存在S_DFIELD和/或是否通过第一SCI中的1位字段将S_DFIELD包括在第二SCI中来发送它。
基于本公开的实施方式,为了防止SCI有效载荷大小过度增加,发送UE可以通过PSSCH发送与位置信息相关的(预先配置的)部分位(例如,MSB)(下文中,DIS_MSB)。例如,发送UE可以基于预先配置的时段和/或预先配置的频率通过PSSCH发送DIS_MSB。另外,发送UE可以通过PSCCH(或SCI)发送剩余位(例如,LSB)(下文中,DIS_LSB)。本文中,在这种情况下,例如,如果接收UE(在预先配置的时间内)未接收到DIS_MSB而仅接收到DIS_LSB,则接收UE可以通过假定/使用在先前最近的时间点(成功地)接收到的DIS_MSB来计算/推导发送UE的位置。例如,如果接收UE(在预先配置的时间内)未接收到DIS_MSB而仅接收到DIS_LSB,则接收UE可以通过假定/使用与从接收UE的角度最近的区域或最近的范围相关的DIS_MSB来计算/推导发送UE的位置。例如,如果接收UE(在预先配置的时间内)未接收到DIS_MSB而仅接收到DIS_LSB,则接收UE可以通过假定/使用与发送UE所属的区域或范围相关的DIS_MSB来计算/推导发送UE的位置,该区域或范围是基于在先前最近的时间点(成功地)接收到的DIS_MSB/DIS_LSB推导出的。例如,如果接收UE(在预先配置的时间内)未接收到DIS_MSB而仅接收到DIS_LSB,则接收UE可以通过假定/使用与在先前推导出的发送UE的位置当中的与接收UE的位置最近的区域或最近的范围相关的DIS_MSB来计算/推导发送UE的位置。
基于本公开的实施方式,可以存在以下情况。在下面的情况下,接收UE可以基于下面提出的方法/规则来推导/假定发送UE的位置。
1)情况#A:例如,发送UE可以(基于预先配置的大小)将发送UE的位置表示/指示为与区域或范围相关的索引/参数。
2)情况#B:例如,由发送UE发送的位置信息可以由于有限的有效载荷大小(或位数)等而被量化。例如,在由发送UE估计的发送UE的位置信息中可以包括误差。例如,在GNSS(同步)质量低于预先配置的阈值水平的情况下,在由发送UE估计的发送UE的位置信息中可以包括误差。
例如,在情况#A的情况下,接收UE可以基于发送UE所属的区域或范围中的点来推导/假定发送UE与其本身(即,接收UE)之间的距离。例如,该点是标称点。例如,该点可以是预先配置的点。本文中,例如,该点可被定义为该区域或范围中的中心点。例如,该点可以被定义为该区域或范围中的预先配置的(参考)点。例如,该点可以被定义为在该区域或范围中的多个点当中的离接收UE最远的点。例如,该点可以被定义为在该区域或范围中的多个点当中的离接收UE最近的点。例如,该点可以被定义为在该区域或范围中的离接收UE最近的区域或最近的范围中的点。
下文中,将参考图13至图16详细地描述接收UE获得接收UE与发送UE之间的距离的方法。
图13示出了基于本公开的实施方式的接收UE基于与发送UE的距离来执行HARQ操作的过程。图13的实施方式可以与本公开的各种实施方式组合。
参照图13,在步骤S1310中,发送UE可以发送PSCCH。在步骤S1320中,发送UE可以发送与PSCCH相关的PSSCH。例如,发送UE可以通过PSCCH发送第一SCI,并且发送UE可以通过PSSCH发送第二SCI。另外,发送UE可以通过PSSCH发送服务/分组。例如,第二SCI可以包括区域相关信息和通信范围要求(即,MIN_RANGE)。例如,区域相关信息可以是区域ID。例如,接收第二SCI的接收UE可以获得与和服务/分组相关的通信范围要求相关的信息以及与发送UE所属的区域相关的信息。
在步骤S1330中,接收UE可以基于其位置(即,接收UE的位置)和与发送UE所属的区域相关的信息来获得接收UE与发送UE之间的距离。例如,接收UE可以获得接收UE的位置与发送UE所属区域的中心点之间的距离。例如,接收UE可以获得(i)接收UE的位置与(ii)与区域相关的信息相对应的多个区域的中心点当中的与接收UE的位置最接近的中心点之间的距离。即,无论发送UE的实际位置如何,接收UE都可以通过使用接收UE的位置和发送UE所属的区域的中心点来获得接收UE与发送UE之间的距离。将参考图14至图16更详细地描述接收UE获得接收UE与发送UE之间的距离的方法。
图14示出了基于本公开的实施方式的接收UE获得接收UE与发送UE之间的距离的方法。图14的实施方式可以与本公开的各种实施方式组合。
参照图14,假定发送UE通过第二SCI将区域ID=14告知接收UE。在这种情况下,接收UE可以获得接收UE的位置与对应于区域ID=14的区域的中心点之间的距离。即,无论发送UE的实际位置如何,接收UE都可以将接收UE的位置与对应于区域ID=14的区域的中心点之间的距离假定或确定为接收UE与发送UE之间的距离。
图15和图16示出了基于本公开的实施方式的在接收UE周围存在具有相同区域ID的多个区域的情况下接收UE获得接收UE与发送UE之间的距离的方法。图15和图16可以与本公开的各种实施方式组合。
参照图15和图16,假定发送UE通过第二SCI将区域ID=0告知接收UE。在这种情况下,接收UE可以获得(i)接收UE的位置与(ii)对应于区域ID=0的多个区域的中心点当中的最近中心点之间的距离。即,无论发送UE的实际位置如何,接收UE都可以将(i)接收UE的位置与(ii)对应于区域ID=0的多个区域的中心点当中的最近中心点之间的距离假定或确定为接收UE与发送UE之间的距离。
另选地,接收UE可以获得(i)接收UE的位置与(ii)对应于区域ID=0的多个区域当中的最近区域的中心点之间的距离。即,无论发送UE的实际位置如何,接收UE都可以将(i)接收UE的位置与(ii)对应于区域ID=0的多个区域当中的最近区域的中心点之间的距离假定或确定为接收UE与发送UE之间的距离。
返回参照图13,在步骤S1340中,接收UE可以将在步骤S1330中获得的距离与和服务/分组相关的通信范围要求进行比较。例如,接收UE可以基于距离和通信范围要求来确定是否执行HARQ反馈操作。
例如,如果该距离小于或等于通信范围要求,则接收UE可以执行HARQ反馈操作。本文中,例如,在接收UE基于组播选项1被配置有HARQ反馈操作的情况下,在步骤S1350中,对PSSCH解码失败的接收UE可以通过PSFCH向发送UE发送NACK信息。例如,在接收UE基于组播选项1配置有HARQ反馈操作的情况下,成功对PSSCH解码的接收UE可以不通过PSFCH向发送UE发送ACK信息。例如,PSFCH可以是与PSCCH和/或PSSCH相关的反馈信道。
例如,如果该距离大于通信范围要求,则接收UE可以不执行HARQ反馈操作。在这种情况下,无论PSSCH是否被解码,接收UE都可以不向发送UE发送HARQ反馈。
例如,在情况#B的情况下,接收UE可以基于发送UE所属的区域或范围中的点来推导/假定发送UE与其本身(即,接收UE)之间的距离。例如,该点可以是标称点。例如,该点可以是预先配置的点。本文中,例如,该点可被定义为该区域或范围中的中心点。例如,该点可以被定义为该区域或范围中的预先配置的(参考)点。例如,该点可以被定义为在该区域或范围中的多个点当中的离接收UE最远的点。例如,该点可以被定义为在该区域或范围中的多个点当中的离接收UE最近的点。
例如,在情况#B的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的误差值来推导发送UE的可能位置。例如,在情况#B的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的误差范围来推导发送UE的可能位置。例如,在情况#B的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的量化水平来推导发送UE的可能位置。例如,在情况#B的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的量化误差来推导发送UE的可能位置。此后,如果接收UE的位置与发送UE的可能位置之间的距离当中的至少一个距离小于或等于MIN_RANGE,则接收UE可以发送SL HARQ反馈。
例如,在情况#A的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的误差值来推导发送UE的可能位置。例如,在情况#A的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的误差范围来推导发送UE的可能位置。例如,在情况#A的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的量化水平来推导发送UE的可能位置。例如,在情况#A的情况下,(从发送UE接收位置信息的)接收UE可以(再次)基于预先配置的量化误差来推导发送UE的可能位置。此后,如果接收UE的位置与发送UE的可能位置之间的距离当中的至少一个距离小于或等于MIN_RANGE,则接收UE可以发送SL HARQ反馈。
基于本公开的实施方式,UE的上层(例如,应用层和/或V2X层)可以向下层(例如,AS层、PHY层、MAC层、RRC层)提供作为服务/分组相关要求的MIN_RANGE信息。在这种情况下,考虑到所建议的量化水平/误差和/或位置信息(估计的)误差,UE的上层可以将(预先配置的)余量/偏移值添加到MIN_RANGE信息,并将其传送到下层。本文中,例如,可以基于(UE已知的UE本身的或另一UE的)位置信息的准确性来针对UE不同地配置余量/偏移值。例如,可以基于服务的类型针对UE不同地配置余量/偏移值。例如,可以基于服务的优先级针对UE不同地配置余量/偏移值。例如,可以基于服务要求(例如,可靠性和/或等待时间)针对UE不同地配置余量/偏移值。例如,如果不准确度大于预先配置的阈值水平,则UE可以将相对大的余量/偏移值添加到MIN_RANGE信息。例如,如果不准确度不大于预先配置的阈值水平,则UE可以将相对小的余量/偏移值(例如,包括0)添加到MIN_RANGE信息。
基于本公开的实施方式,发送UE可以向接收UE高效发送其位置信息。此外,发送UE可以更准确地将其位置告知接收UE。
基于本公开的实施方式,接收UE可以基于TX-RX距离来执行(组播)SL HARQ反馈操作。例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,在接收UE对以接收UE为目标的PSCCH进行解码之后,如果接收UE对与PSCCH相关的PSSCH解码失败,则接收UE可以通过PSFCH向发送UE发送HARQ-NACK。另一方面,在接收UE对以接收UE为目标的PSCCH进行解码之后,如果接收UE对与PSCCH相关的PSSCH成功进行解码,则接收UE可以不向发送UE发送HARQ-ACK。为了便于描述,接收UE的上述反馈操作可以被称为仅NACK反馈操作。
例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,接收UE可以基于接收UE的位置和发送UE的位置来获得或确定与接收UE和发送UE之间的距离相关的信息。另外,接收UE可以基于与该距离相关的信息来执行仅NACK反馈操作。例如,如果接收UE与发送UE之间的距离等于或小于与由发送UE发送的分组或服务相关的最小所需通信范围,则接收UE可以对发送UE执行仅NACK反馈操作。例如,如果接收UE与发送UE之间的距离等于或大于与由发送UE发送的分组或服务相关的最小所需通信范围,则接收UE可以不向发送UE发送HARQ反馈。例如,发送UE可以通过PSCCH和/或PSSCH向接收UE发送分组或服务。
例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,接收UE可能不可以获得其自身的位置信息。另外,在这种情况下,接收UE可以从发送UE接收优先级高于预先配置的阈值(P_THD)的分组或服务。另选地,接收UE可以从发送UE接收优先级高于或等于P_THD的分组或服务。在这种情况下,例如,接收UE可以基于仅NACK反馈操作向发送UE发送针对分组或服务的HARQ反馈。例如,如果接收UE对分组或服务解码失败,则接收UE可以向发送UE发送NACK信息。例如,如果接收UE对分组或服务解码成功,则接收UE可以不向发送UE发送ACK信息。例如,接收UE可以省去针对发送UE的HARQ反馈。
例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,接收UE可能不可以获得其自身的位置信息。另外,在这种情况下,接收UE可以从发送UE接收优先级低于P_THD的分组或服务。另选地,接收UE可以从发送UE接收优先级低于或等于P_THD的分组或服务。在这种情况下,例如,接收UE可以不向发送UE发送针对分组或服务的HARQ反馈。例如,接收UE可以省去针对发送UE的HARQ反馈。
例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,接收UE获得的接收UE的位置信息的准确性可以低于预先配置的阈值准确性值。另外,在这种情况下,接收UE可以从发送UE接收优先级高于P_THD的分组或服务。另选地,接收UE可以从发送UE接收优先级高于或等于P_THD的分组或服务。在这种情况下,例如,接收UE可以基于仅NACK反馈操作向发送UE发送针对分组或服务的HARQ反馈。例如,如果接收UE对分组或服务解码失败,则接收UE可以向发送UE发送NACK信息。例如,如果接收UE对分组或服务解码成功,则接收UE可以不向发送UE发送ACK信息。例如,接收UE可以省去针对发送UE的HARQ反馈。
例如,在基于TX-RX距离的(组播)SL HARQ反馈操作中,接收UE获得的接收UE的位置信息的准确性可能低于预先配置的阈值准确性值。另外,在这种情况下,接收UE可以从发送UE接收优先级低于P_THD的分组或服务。另选地,接收UE可以从发送UE接收优先级低于或等于P_THD的分组或服务。在这种情况下,例如,接收UE可以不向发送UE发送针对分组或服务的HARQ反馈。例如,接收UE可以省去针对发送UE的HARQ反馈。
例如,基于资源池的拥塞水平和/或最小通信范围要求,可以针对UE不同地配置P_THD值。
基于本公开的实施方式,在基于TX-RX距离的SL HARQ反馈操作(例如,仅NACK)的情况下,基于以下规则,发送UE可以指示/告知接收UE在不考虑TX-RX距离的情况下执行SLHARQ反馈操作。例如,在基于TX-RX距离的SL HARQ反馈操作(例如,仅NACK)的情况下,基于以下规则,发送UE可以指示/告知接收UE禁用基于TX-RX距离的SL HARQ反馈操作。
例如,如果发送UE向接收UE发送的第二SCI中定义的与发送UE相关的区域ID字段和/或最小通信范围字段指示预先配置的特定状态和/或值,则接收UE可以确定不考虑TX-RX距离的SL HARQ反馈操作(例如,仅NACK)被触发(例如,发送由UE发送的第二SCI中的发送UE所属的区域ID信息的情形)。例如,如果发送UE向接收UE发送的第二SCI中定义的与发送UE相关的区域ID字段和/或最小通信范围字段指示预先配置的特定状态和/或值,则接收UE可以确定基于TX-RX距离的SL HARQ反馈操作被禁用。具体地,例如,如果第二SCI中所包括的最小通信范围字段指示预先配置的无穷大值(或零值),则如果PSSCH解码已失败,则接收到第二SCI的(目标)接收UE可以在不考虑TX-RX距离的情况下向发送UE发送NACK信息(例如,仅NACK反馈操作)。另外地/另选地,例如,即使接收UE对PSSCH解码失败,接收UE也可以不向发送UE发送SL HARQ反馈(例如,NACK)。
例如,如果发送UE确定其位置信息可用,和/或如果发送UE以大于或等于预先配置的阈值的准确性确定其位置信息,则发送UE可以将第二SCI中定义的与发送UE相关的区域ID字段和/或最小通信范围字段指定或确定为除了(上述的)特定状态或值(例如,无穷大或零)以外的值。另外,发送UE可以向接收UE发送第二SCI。因此,发送UE可以允许/指示接收UE仅使用或应用基于TX-RX距离的SL HARQ反馈操作(例如,仅NACK)。
例如,如果发送UE确定其位置信息不可用,和/或如果发送UE以小于或等于预先配置的阈值的准确性确定其位置信息,则发送UE可以将第二SCI中定义的与发送UE相关的区域ID字段和/或最小通信范围字段指定或确定为(上述的)特定状态或值(例如,无穷大或零)。另外,发送UE可以向接收UE发送第二SCI。因此,发送UE可以允许/指示接收UE仅使用或应用不考虑TX-RX距离的SL HARQ反馈操作(例如,仅NACK)。
图17示出了基于本公开的实施方式的发送UE向接收UE发送位置信息的方法。图17的实施方式可以与本公开的各种实施方式组合。
参照图17,在步骤S1710中,发送UE可以向接收UE发送副链路控制信息。副链路控制信息可以包括发送UE的位置信息。所提议的方法可以应用于下面描述的装置。
图18示出了基于本公开的实施方式的接收UE从发送UE接收位置信息的方法。图18的实施方式可以与本公开的各种实施方式组合。
参照图18,在步骤S1810中,接收UE可以从发送UE接收包括发送UE的位置信息的副链路控制信息。在步骤S1820中,接收UE可以基于发送UE的位置信息来确定发送UE的位置。所提议的方法可以应用于下面描述的装置。
图19示出了基于本公开的实施方式的第一装置执行无线通信的方法。图19的实施方式可以与本公开的各种实施方式组合。
参照图19,在步骤S1910中,第一装置可以通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息。在步骤S1920中,第一装置可以基于区域的中心位置和第一装置的位置来获得与距离相关的信息。在步骤S1930中,第一装置可以基于与该距离相关的信息来确定是否向第二装置发送针对PSSCH的HARQ反馈。
例如,与区域相关的信息可以包括第二装置所属的区域的ID。例如,区域的中心位置可以是与区域的ID相关的多个区域的中心位置当中的与第一装置的位置最近的中心位置。例如,多个区域的ID可以是相同的。
例如,该距离可以是区域的中心位置与第一装置的位置之间的距离。
另外,例如,第一装置可以通过PSSCH接收与通信范围要求相关的信息。本文中,例如,可以通过PSSCH上的副链路控制信息(SCI)接收与通信范围要求相关的信息,并且可以通过PSSCH上的SCI接收与区域相关的信息。
例如,基于该距离小于或等于与通过PSSCH接收的数据相关的通信范围要求,第一装置可以确定向第二装置发送针对PSSCH的HARQ反馈。例如,只有在第一装置无法接收到PSSCH的情况下,才可以向第二装置发送针对PSSCH的HARQ反馈,并且HARQ反馈可以是HARQNACK。
例如,第一装置可以基于该距离大于与在PSSCH上接收的数据相关的通信范围要求来确定不发送针对PSSCH的HARQ反馈。
另外,例如,第一装置可以确定第一装置的位置信息的准确性低于第一阈值。例如,第一装置可以基于通过PSSCH接收的数据的优先级高于第二阈值来确定向第二装置发送针对PSSCH的HARQ反馈。
例如,可以基于第二装置对第一装置能够以大于或等于预先配置的阈值水平的准确性识别第二装置的位置的确定,通过小有效载荷大小的字段接收与区域相关的信息。
例如,可以基于被确定为第二装置所属区域的区域的数目超过预先配置的阈值,通过大有效载荷大小的字段接收与区域相关的信息。
所提议的方法可以应用于下面描述的装置。首先,第一装置100的处理器102可以控制收发器106通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息。另外,第一装置100的处理器102可以基于区域的中心位置和第一装置的位置来获得与距离相关的信息。另外,第一装置100的处理器102可以基于与该距离相关的信息来确定是否向第二装置发送针对PSSCH的HARQ反馈。
基于本公开的实施方式,可以提供一种被配置为执行无线通信的第一装置。例如,第一装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。非例如,所述一个或更多个处理器可以执行所述指令以:通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息;基于所述区域的中心位置和所述第一装置的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二装置发送针对所述PSSCH的HARQ反馈。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第一用户设备(UE)的设备。例如,该设备可以包括:一个或更多个处理器;以及一个或更多个存储器,所述一个或更多个存储器可操作地连接到所述一个或更多个处理器并存储指令。例如,所述一个或更多个处理器可以执行所述指令以:通过物理副链路共享信道(PSSCH)从第二UE接收与区域相关的信息;基于所述区域的中心位置和所述第一UE的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二UE发送针对所述PSSCH的HARQ反馈。
基于本公开的实施方式,可以提供一种存储指令的非暂态计算机可读存储介质。例如,所述指令在执行时可以使第一装置:通过物理副链路共享信道(PSSCH)从第二装置接收与区域相关的信息;基于所述区域的中心位置和所述第一装置的位置来获得与距离相关的信息;以及基于与所述距离相关的信息来确定是否向所述第二装置发送针对所述PSSCH的HARQ反馈。
图20示出了基于本公开的实施方式的第二装置执行无线通信的方法。图20的实施方式可以与本公开的各种实施方式组合。
参照图20,在步骤S2010中,第二装置可以通过物理副链路共享信道(PSSCH)向第一装置发送与区域相关的信息和与通信范围要求相关的信息。在步骤S2020中,第二装置可以从第一装置接收针对PSSCH的HARQ反馈。本文中,例如,可以基于区域的中心位置和第一装置的位置来获得第一装置与第二装置之间的距离。例如,该距离可以小于或等于通信范围要求。例如,与区域相关的信息可以包括第二装置所属的区域的ID。例如,区域的中心位置可以是与区域的ID相关的多个区域的中心位置当中的与第一装置的位置最近的中心位置。
所提议的方法可以应用于下面描述的装置。首先,第二装置200的处理器202可以控制收发器206通过物理副链路共享信道(PSSCH)向第一装置发送与区域相关的信息和与通信范围要求相关的信息。另外,第二装置200的处理器202可以控制收发器206从第一装置接收针对PSSCH的HARQ反馈。
基于本公开的实施方式,可以提供一种被配置为执行无线通信的第二装置。例如,第二装置可以包括:一个或更多个存储器,所述一个或更多个存储器存储指令;一个或更多个收发器;以及一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器。例如,所述一个或更多个处理器可以执行所述指令以:通过物理副链路共享信道(PSSCH)向第一装置发送与区域相关的信息和与通信范围要求相关的信息;以及从所述第一装置接收针对所述PSSCH的HARQ反馈。本文中,例如,可以基于区域的中心位置和第一装置的位置来获得第一装置与第二装置之间的距离,并且该距离可以小于或等于通信范围要求。
本公开的各种实施方式可以彼此结合。
下文中,将描述可以应用本公开的各自实施方式的设备。
本文档中描述的本公开的各种描述、功能、过程、提议、方法和/或操作流程可以应用于但不限于需要设备之间的无线通信/连接(例如,5G)的各种领域。
下文中,将参照附图更详细地给出描述。在以下附图/描述中,除非另有描述,否则相同的附图标记可以表示相同或对应的硬件块、软件块或功能块。
图21示出了根据本公开的实施方式的通信***(1)。
参照图21,应用本公开的各种实施方式的通信***(1)包括无线装置、基站(BS)和网络。本文中,无线装置表示使用无线电接入技术(RAT)(例如,5G新RAT(NR)或长期演进(LTE))执行通信的装置,并且可以被称为通信/无线电/5G装置。无线装置可以包括而不限于机器人(100a)、车辆(100b-1、100b-2)、扩展现实(XR)装置(100c)、手持装置(100d)、家用电器(100e)、物联网(IoT)装置(100f)和人工智能(AI)装置/服务器(400)。例如,车辆可以包括具有无线通信功能的车辆、自主车辆以及能够执行车辆间通信的车辆。本文中,车辆可以包括无人驾驶飞行器(UAV)(例如,无人机)。XR装置可以包括增强现实(AR)/虚拟现实(VR)/混合现实(MR)装置并且可以以头戴式装置(HMD)、安装在车辆中的平视显示器(HUD)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、车辆、机器人等形式来实现。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可以包括TV、冰箱和洗衣机。IoT装置可以包括传感器和智能仪表。例如,BS和网络可以被实现为无线装置,并且特定的无线装置(200a)可以相对于其它无线装置作为BS/网络节点进行操作。
无线装置100a至100f可以经由BS 200连接到网络300。AI技术可以应用于无线装置100a至100f,并且无线装置100a至100f可以经由网络300连接到AI服务器400。网络300可以使用3G网络、4G(例如,LTE)网络或5G(例如,NR)网络进行配置。尽管无线装置100a至100f可以通过BS 200/网络300相互通信,但是无线装置100a至100f可以执行相互之间的直接通信(例如,副链路通信)而无需通过BS/网络。例如,车辆100b-1和100b-2可以执行直接通信(例如,车辆到车辆(V2V)/车辆到一切(V2X)通信)。IoT装置(例如,传感器)可以执行与其他IoT装置(例如,传感器)或其他无线装置100a至100f的直接通信。
无线通信/连接150a、150b或150c可以建立在无线装置100a至100f/BS 200或BS200/BS 200之间。这里,无线通信/连接可以通过诸如上行链路/下行链路通信150a、副链路通信150b(或D2D通信)或BS间通信(例如,中继、接入回传一体化(IAB))这样的各种RAT(例如,5G NR)建立。无线装置和BS/无线装置可以通过无线通信/连接150a和150b发送/接收去往/来自彼此的无线电信号。例如,无线通信/连接150a和150b可以通过各种物理信道发送/接收信号。为此,用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调和资源映射/解映射)以及资源分配过程的至少一部分可以基于本公开的各种提议执行。
图22示出了根据本公开的实施方式的无线装置。
参照图22,第一无线装置(100)和第二无线装置(200)可以通过各种RAT(例如,LTE和NR)发送无线电信号。本文中,{第一无线装置(100)和第二无线装置(200)}可以对应于图21中的{无线装置(100x)和BS(200)}和/或{无线装置(100x)和无线装置(100x)}。
第一无线装置100可以包括一个或多个处理器102和一个或多个存储器104,并且可以另外进一步包括一个或多个收发机106和/或一个或多个天线108。(一个或多个)处理器102可以控制(一个或多个)存储器104和/或(一个或多个)收发机106,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器102可以处理(一个或多个)存储器104中的信息以生成第一信息/信号,然后通过(一个或多个)收发机106发送包括第一信息/信号的无线电信号。(一个或多个)处理器102可以通过收发机106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号得到的信息存储在(一个或多个)存储器104中。(一个或多个)存储器104可以连接到(一个或多个)处理器102,并且可以存储与(一个或多个)处理器102的操作有关的各种信息。例如,(一个或多个)存储器104可以存储包括用于执行由(一个或多个)处理器102控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器102和(一个或多个)存储器104可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发机106可以连接到(一个或多个)处理器102,并且通过(一个或多个)天线108发送和/或接收无线电信号。每个收发机106可以包括发送机和/或接收机。(一个或多个)收发机106可以与(一个或多个)射频(RF)单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
第二无线装置200可以包括一个或多个处理器202和一个或多个存储器204,并且可以另外进一步包括一个或多个收发机206和/或一个或多个天线208。(一个或多个)处理器202可以控制(一个或多个)存储器204和/或(一个或多个)收发机206,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器202可以处理(一个或多个)存储器204中的信息以生成第三信息/信号,并且随后通过(一个或多个)收发器206发送包括第三信息/信号的无线电信号。(一个或多个)处理器202可以通过(一个或多个)收发器106接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号得到的信息存储在(一个或多个)存储器204中。(一个或多个)存储器204可以连接到(一个或多个)处理器202,并且可以存储与(一个或多个)处理器202的操作有关的各种信息。例如,(一个或多个)存储器204可以存储包括用于执行由(一个或多个)处理器202控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器202和(一个或多个)存储器204可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发器206可以连接到(一个或多个)处理器202,并且通过(一个或多个)天线208发送和/或接收无线电信号。每个收发器206可以包括发送机和/或接收机。(一个或多个)收发器206可以与(一个或多个)RF单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
下面,将更具体地描述无线装置100和200的硬件元件。一个或多个协议层可以但不限于由一个或多个处理器102和202实现。例如,一个或多个处理器102和202可以实现一个或多个层(例如,诸如PHY、MAC、RLC、PDCP、RRC和SDAP这样的功能层)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成一个或多个协议数据单元(PDU)和/或一个或多个服务数据单元(SDU)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成消息、控制信息、数据或信息。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成包括PDU、SDU、消息、控制信息、数据或信息的信号(例如,基带信号),并将所生成的信号提供给一个或多个收发器106和206。一个或多个处理器102和202可以从一个或多个收发器106和206接收信号(例如,基带信号),并根据本文档公开的描述、功能、过程、提议、方法和/或操作流程获取PDU、SDU、消息、控制信息、数据或信息。
一个或多个处理器102和202可以被称为控制器、微控制器、微处理器或微计算机。一个或多个处理器102和202可以由硬件、固件、软件或它们的组合实现。例如,一个或多个专用集成电路(ASIC)、一个或多个数字信号处理器(DSP)、一个或多个数字信号处理装置(DSPD)、一个或多个可编程逻辑器件(PLD)或一个或多个现场可编程门阵列(FPGA)可以被包括在一个或多个处理器102和202中。本文档中公开的描述、功能、过程、提议、方法和/或操作流程可以使用固件或软件实现,并且该固件或软件可以被配置为包括模块、过程或功能。被配置为执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的固件或软件可以被包括在一个或多个处理器102和202中或者被存储在一个或多个存储器104和204中,从而由一个或多个处理器102和202驱动。本文档公开的描述、功能、过程、提议、方法和/或操作流程可以使用代码、命令和/或命令集形式的软件或固件实现。
一个或多个存储器104和204可以连接到一个或多个处理器102和202,并且可以存储各种类型的数据、信号、消息、信息、程序、代码、指令和/或命令。一个或多个存储器104和204可以由只读存储器(ROM)、随机存取存储器(RAM)、电可擦除可编程只读存储器(EPROM)、闪存、硬驱动器、寄存器、现金存储器、计算机可读存储介质和/或它们的组合构成。一个或多个存储器104和204可以位于一个或多个处理器102和202内部和/或外部。一个或多个存储器104和204可以通过诸如有线或无线连接这样的各种技术连接到一个或多个处理器102和202。
一个或多个收发器106和206可以向一个或多个其他装置发送本文档的方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。一个或多个收发器106和206可以从一个或多个其他装置接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。例如,一个或多个收发器106和206可以连接到一个或多个处理器102和202,并且可以发送和接收无线电信号。例如,一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以向一个或多个其他装置发送用户数据、控制信息或无线电信号。一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以从一个或多个其他装置接收用户数据、控制信息或无线电信号。一个或多个收发器106和206可以连接到一个或多个天线108和208,并且一个或多个收发器106和206可以被配置为通过一个或多个天线108和208发送和接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。在本文档中,一个或多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或多个收发器106和206可以将接收到的无线电信号/信道等从RF频带信号转换为基带信号,以使用一个或多个处理器102和202处理接收到的用户数据、控制信息、无线电信号/信道等。一个或多个收发器106和206可以将使用一个或多个处理器102和202处理后的用户数据、控制信息、无线电信号/信道等从基带信号转换为RF频带信号。为此,一个或多个收发器106和206可以包括(模拟)振荡器和/或滤波器。
图23示出了根据本公开的实施方式的用于发送信号的信号处理电路。
参照图23,信号处理电路(1000)可以包括加扰器(1010)、调制器(1020)、层映射器(1030)、预编码器(1040)、资源映射器(1050)和信号发生器(1060)。可以执行图23的操作/功能,而不限于图22处理器(102、202)和/或收发器(106、206)。可以通过图22的理器(102、202)和/或收发器(106、206)来实现图23的硬件元件。例如,可以通过图22的处理器(102、202)来实现框1010至1060。另选地,可以通过图22的处理器(102、202)来实现框1010至1050,并且可以通过图22的收发器(106、206)来实现框1060。
可以经由图23的信号处理电路(1000)将码字转换成无线电信号。本文中,码字是信息块的编码位序列。信息块可以包括传输块(例如,UL-SCH传输块、DL-SCH传输块)。可以通过各种物理信道(例如,PUSCH和PDSCH)来发送无线电信号。
具体地,码字可以由加扰器1010转换为经过加扰的位序列。用于进行加扰的加扰序列可以基于初始值生成,并且初始值可以包括无线装置的ID信息。经过加扰的位序列可以由调制器1020调制为调制符号序列。调制方案可以包括pi/2-二进制相移键控(pi/2-BPSK)、m-相移键控(m-PSK)以及m-正交幅度调制(m-QAM)。复数调制符号序列可以由层映射器1030映射到一个或多个传输层。每个传输层的调制符号可以由预编码器1040映射(预编码)到(一个或多个)相应的天线端口。预编码器1040的输出z可以通过将层映射器1030的输出y与N*M预编码矩阵W相乘得出。这里,N是天线端口的数目,M是传输层的数目。预编码器1040可以在执行对于复数调制符号的变换预编码(例如,DFT)之后执行预编码。替代地,预编码器1040可以在不执行变换预编码的情况下执行预编码。
资源映射器1050可以将每个天线端口的调制符号映射到时频资源。时频资源可以包括时域中的多个符号(例如,CP-OFDMA符号和DFT-s-OFDMA符号)和频域中的多个子载波。信号发生器1060可以从所映射的调制符号生成无线电信号,并且所生成的无线电信号可以通过每个天线被发送到其他装置。为此,信号发生器1060可以包括逆快速傅里叶变换(IFFT)模块、循环前缀(CP)***器、数模转换器(DAC)以及上变频器。
可以以与图23的信号处理过程(1010~1060)相反的方式来配置用于在无线装置中接收的信号的信号处理过程。例如,无线装置(例如,图22的100、200)可以通过天线端口/收发器从外部接收无线电信号。可以通过信号恢复器将接收到的无线电信号转换成基带信号。为此,信号恢复器可以包括频率下行链路转换器、模数转换器(ADC)、CP去除器和快速傅立叶变换(FFT)模块。接下来,可以通过资源解映射过程、后编码过程、解调处理器和解扰过程将基带信号恢复成码字。可以通过解码将码字恢复成原始信息块。因此,用于接收信号的信号处理电路(未例示)可以包括信号恢复器、资源解映射器、后编码器、解调器、解扰器和解码器。
图24示出了根据本公开的实施方式的无线装置的另一示例。可以根据用例/服务以各种形式实现无线装置(参照图21)。
参照图24,无线装置(100、200)可以对应于图22的无线装置(100,200),并且可以通过各种元件、部件、单元/部分和/或模块来配置。例如,无线装置(100、200)中的每一个可以包括通信单元(110)、控制单元(120)、存储单元(130)和附加部件(140)。通信单元可以包括通信电路(112)和(一个或多个)收发器(114)。例如,通信电路(112)可以包括图22的一个或更多个处理器(102、202)和/或一个或更多个存储器(104、204)。例如,(一个或多个)收发器(114)可以包括图22的一个或更多个收发器(106、206)和/或一个或更多个天线(108、208)。控制单元(120)电连接到通信单元(110)、存储器(130)和附加部件(140),并且控制无线装置的整体操作。例如,控制单元(120)可以基于存储在存储单元(130)中的程序/代码/命令/信息来控制无线装置的电气/机械操作。控制单元(120)可以通过无线/有线接口经由通信单元(110)将存储在存储单元(130)中的信息发送到外部(例如,其它通信装置),或者将经由通信单元(110)通过无线/有线接口从外部(例如,其它通信装置)接收的信息存储在存储单元(130)中。
可以根据无线装置的类型对附加部件(140)进行各种配置。例如,附加部件(140)可以包括电力单元/电池、输入/输出(I/O)单元、驱动单元和计算单元中的至少一个。无线装置可以采用而不限于以下的形式来实现:机器人(图21的100a)、车辆(图21的100b-1和100b-2)、XR装置(图21的100c)、手持装置(图21的100d)、家用电器(图21的100e)、IoT装置(图21的100f)、数字广播终端、全息图装置、公共安全装置、MTC装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、AI服务器/装置(图21的400)、BS(图21的200)、网络节点等。根据用例/服务,无线装置可以在移动或固定的地方使用。
在图24中,无线装置(100、200)中的各种元件、部件、单元/部分和/或模块全部都可以通过有线接口彼此连接,或者其至少部分可以通过通信单元(110)无线地连接。例如,在无线装置(100、200)中的每一个中,控制单元(120)和通信单元(110)可以通过有线连接,并且控制单元(120)和第一单元(例如,130、140)可以通过通信单元(110)无线连接。无线装置(100、200)内的每个元件、部件、单元/部分和/或模块还可以包括一个或更多个元件。例如,可以通过一个或更多个处理器的集合来构造控制单元(120)。作为示例,可以通过通信控制处理器、应用处理器、电子控制单元(ECU)、图形处理单元和存储器控制处理器的集合来构造控制单元(120)。作为另一示例,可以通过随机存取存储器(RAM)、动态RAM(DRAM)、只读存储器(ROM)、闪存、易失性存储器、非易失性存储器和/或其组合来构造存储器(130)。
下文中,将参照附图详细地描述实现图24的示例。
图25示出了根据本公开的实施方式的手持装置。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)或便携式计算机(例如,笔记本)。手持式装置可以被称为移动站(MS)、用户终端(UT)、移动订户站(MSS)、订户站(SS)、高级移动站(AMS)或无线终端(WT)。
参照图25,手持装置(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、存储单元(130)、电源单元(140a)、接口单元(140b)和I/O单元(140c)。天线单元(108)可以被配置为通信单元(110)的一部分。框110至130/140a至140c分别对应于图24的框110至130/140。
通信单元110可以发送和接收去往和来自其他无线装置或BS的信号(例如,数据信号和控制信号)。控制单元120可以通过控制手持装置100的构成元件来执行各种操作。控制单元120可以包括应用处理器(AP)。存储单元130可以存储驱动手持装置100所需要的数据/参数/程序/代码/命令。存储单元130可以存储输入/输出数据/信息。电源单元140a可以向手持装置100供应功率,并且包括有线/无线充电电路、电池等。接口单元140b可以支持手持装置100到其他外部装置的连接。接口单元140b可以包括用于与外部装置连接的各种端口(例如,音频I/O端口和视频I/O端口)。I/O单元140c可以输入或输出用户输入的视频信息/信号、音频信息/信号、数据和/或信息。I/O单元140c可以包括相机、麦克风、用户输入单元、显示单元140d、扬声器和/或触觉模块。
例如,在数据通信的情况下,I/O单元140c可以获取用户输入的信息/信号(例如,触摸、文本、语音、图像或视频),并且所获取的信息/信号可以被存储在存储单元130中。通信单元110可以将存储器中存储的信息/信号转换为无线电信号,并将所转换的无线电信号直接发送给其他无线装置或发送给BS。通信单元110可以从其他无线装置或BS接收无线电信号,然后将所接收的无线电信号恢复为原始信息/信号。恢复出的信息/信号可以被存储在存储单元130中,并且可以通过I/O单元140输出为各种类型(例如,文本、语音、图像、视频或触觉)。
图26示出了根据本公开的实施方式的车辆或自主车辆。可以通过移动机器人、汽车、火车、有人/无人驾驶飞行器(AV)、轮船等来实现车辆或自主车辆。
参照图26,车辆或自主车辆(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、驱动单元(140a)、电源单元(140b)、传感器单元(140c)和自主驾驶单元(140d)。天线单元(108)可以被配置为通信单元(110)的一部分。框110/130/140a至140d分别对应于图24的框110/130/140。
通信单元110可以发送和接收去往和来自诸如其他车辆、BS(例如,gNB和路侧单元)和服务器这样的外部装置的信号(例如,数据信号和控制信号)。控制单元120可以通过控制车辆或自主驾驶车辆100的元件执行各种操作。控制单元120可以包括电子控制单元(ECU)。驱动单元140a可以促使车辆或自主驾驶车辆100在路上行驶。驱动单元140a可以包括引擎、马达、传动***、车轮、刹车、转向装置等。电源单元140b可以向车辆或自主驾驶车辆100供应电力,并且可以包括有线/无线充电电路、电池等。传感器单元140c可以获取车辆状态、外部环境信息、用户信息等。传感器单元140c可以包括惯性测量单元(IMU)传感器、碰撞传感器、车轮传感器、速度传感器、坡度传感器、重量传感器、航向传感器、位置模块、车辆前进/后退传感器、电池传感器、燃油传感器、轮胎传感器、转向传感器、温度传感器、湿度传感器、超声波传感器、照明传感器、踏板位置传感器等。自主驾驶单元140d可以实现用于保持车辆行驶的车道的技术、用于自动调节速度的技术(例如,自适应巡航控制)、用于自主沿着确定路径驾驶的技术、用于在设置了目的地的情况下通过自动设置路径驾驶的技术等。
例如,通信单元110可以从外部服务器接收地图数据、交通信息数据等。自主驾驶单元140d可以从所获取的数据生成自主驾驶路径和驾驶计划。控制单元120可以控制驱动单元140a,使得车辆或自主驾驶车辆100可以根据驾驶计划(例如,速度/方向控制)沿着自主驾驶路径移动。在自主驾驶中间,通信单元110可以非周期性/周期性地从外部服务器获取最近的交通信息数据,并且从相邻车辆获取周围的交通信息数据。在自主驾驶中间,传感器单元140c可以获取车辆状态和/或周围环境信息。自主驾驶单元140d可以基于新获取的数据/信息更新自主驾驶路径和驾驶计划。通信单元110可以向外部服务器传输有关车辆位置、自主驾驶路径和/或驾驶计划的信息。外部服务器可以基于从车辆或自主驾驶车辆收集的信息使用AI技术等预测交通信息数据,并将所预测的交通信息数据提供给车辆或自主驾驶车辆。
可以以各种方式组合本说明书中的权利要求。例如,本说明书的方法权利要求中的技术特征可以被组合以在设备中实现或执行,并且设备权利要求中的技术特征可以被组合以在方法中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在设备中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在方法中实现或执行。

Claims (13)

1.一种由第一装置执行无线通信的方法,该方法包括以下步骤:
通过物理副链路共享信道PSSCH从第二装置接收包括与区域标识ID相关的信息的与组播、单播和广播中的至少一个相关的第二级副链路控制信息SCI;
获得与所述第一装置的位置和基于所述区域标识ID计算出的一个或更多个区域中最接近所述第一装置的区域的中心位置之间的距离相关的信息;以及
基于与所述距离相关的所述信息来确定是否向所述第二装置发送针对所述PSSCH的混合自动重传请求HARQ反馈。
2.根据权利要求1所述的方法,其中,与所述区域标识ID相关的信息包括所述第二装置所属的区域的ID。
3.根据权利要求1所述的方法,其中,所述多个区域的标识ID相同。
4.根据权利要求1所述的方法,所述方法还包括以下步骤:
通过所述PSSCH接收与通信范围要求相关的信息,
其中,通过所述PSSCH上的副链路控制信息SCI接收与所述通信范围要求相关的所述信息,并且
其中,通过所述PSSCH上的所述SCI接收与所述区域标识ID相关的所述信息。
5.根据权利要求1所述的方法,其中,基于所述距离小于或等于与通过所述PSSCH接收的数据相关的通信范围要求,所述第一装置确定向所述第二装置发送针对所述PSSCH的所述HARQ反馈。
6.根据权利要求5所述的方法,其中,只有在所述第一装置无法接收所述PSSCH的情况下,才向所述第二装置发送针对所述PSSCH的所述HARQ反馈,并且
其中,所述HARQ反馈是HARQ NACK。
7.根据权利要求1所述的方法,其中,基于所述距离大于与在所述PSSCH上接收的数据相关的通信范围要求,所述第一装置确定不发送针对所述PSSCH的所述HARQ反馈。
8.根据权利要求1所述的方法,所述方法还包括以下步骤:
确定所述第一装置的位置信息的准确性低于第一阈值。
9.根据权利要求8所述的方法,其中,基于通过所述PSSCH接收的数据的优先级高于第二阈值,所述第一装置确定向所述第二装置发送针对所述PSSCH的所述HARQ反馈。
10.根据权利要求1所述的方法,其中,基于所述第二装置确定所述第一装置能够以大于或等于预先配置的阈值水平的准确性识别所述第二装置的位置,通过小有效载荷大小的字段接收与所述区域标识ID相关的所述信息。
11.根据权利要求1所述的方法,其中,基于被确定为所述第二装置所属的区域的区域的数目超过预先配置的阈值,通过大有效载荷大小的字段接收与所述区域标识ID相关的所述信息。
12.一种被配置为执行无线通信的第一装置,该第一装置包括:
一个或更多个处理器;
一个或更多个收发器;以及
一个或更多个存储器,所述一个或更多个存储器连接到所述一个或更多个处理器并存储指令,所述指令基于被执行而使得所述一个或更多个处理器执行操作,所述操作包括:
通过物理副链路共享信道PSSCH从第二装置接收包括与区域标识ID相关的信息的与组播、单播和广播中的至少一个相关的第二级副链路控制信息SCI;
获得与所述第一装置的位置和基于所述区域标识ID计算出的一个或更多个区域中最接近所述第一装置的区域的中心位置之间的距离相关的信息;以及
基于与所述距离相关的所述信息来确定是否向所述第二装置发送针对所述PSSCH的混合自动重传请求HARQ反馈。
13.一种被配置为控制执行无线通信的第一用户设备UE的设备,该设备包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上连接到所述一个或更多个处理器并存储指令,所述指令基于被执行而使得所述一个或更多个处理器执行操作,所述操作包括:
通过物理副链路共享信道PSSCH从第二用户设备UE接收包括与区域标识ID相关的信息的与组播、单播和广播中的至少一个相关的第二级副链路控制信息SCI;
获得与所述第一用户设备UE的位置和基于与所述区域标识ID计算出的一个或更多个区域中最接近所述第一用户设备UE的区域的中心位置之间的距离相关的信息;以及
基于与所述距离相关的所述信息来确定是否向所述第二用户设备UE发送针对所述PSSCH的混合自动重传请求HARQ反馈。
CN202080041123.3A 2019-05-03 2020-05-04 用于在nr v2x中发送位置信息的方法和设备 Active CN113906794B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2019-0052619 2019-05-03
KR20190052619 2019-05-03
US202062983561P 2020-02-28 2020-02-28
US62/983,561 2020-02-28
PCT/KR2020/005914 WO2020226404A1 (ko) 2019-05-03 2020-05-04 Nr v2x에서 위치 정보를 전송하는 방법 및 장치

Publications (2)

Publication Number Publication Date
CN113906794A CN113906794A (zh) 2022-01-07
CN113906794B true CN113906794B (zh) 2024-04-19

Family

ID=73051542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080041123.3A Active CN113906794B (zh) 2019-05-03 2020-05-04 用于在nr v2x中发送位置信息的方法和设备

Country Status (5)

Country Link
US (1) US20220217698A1 (zh)
EP (1) EP3955660A4 (zh)
JP (1) JP7412441B2 (zh)
CN (1) CN113906794B (zh)
WO (1) WO2020226404A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210037503A1 (en) * 2019-08-02 2021-02-04 Qualcomm Incorporated Sidelink assisted multi-link communication
US11968697B2 (en) * 2020-08-14 2024-04-23 Qualcomm Incorporated Spatial reuse for sidelink communications
US20220167345A1 (en) * 2020-11-23 2022-05-26 Samsung Electronics Co., Ltd. Method and apparatus for enhanced resource allocation in sl communication
US11930498B2 (en) * 2021-09-07 2024-03-12 Qualcomm Incorporated Techniques for scheduling sidelink communications in multiple time periods
CN116419155A (zh) * 2021-12-31 2023-07-11 索尼集团公司 用于无线通信***的电子设备、方法和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0409518D0 (en) * 2004-04-29 2004-06-02 Motorola Inc Mobile communication methods,systems and apparatus for use therein
CN106941718A (zh) * 2017-04-07 2017-07-11 南京邮电大学 一种基于信号子空间指纹库的混合室内定位方法
CN107439036A (zh) * 2015-04-01 2017-12-05 Lg电子株式会社 V2x终端在无线通信***中发送和接收信号的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512051B2 (ja) * 2015-09-28 2019-05-15 株式会社Jvcケンウッド 端末装置、通信システム、通信方法、プログラム
KR102451687B1 (ko) * 2016-02-19 2022-10-07 삼성전자주식회사 디바이스 대 디바이스 방식을 지원하는 통신 시스템에서 위치 검출 장치 및 방법
US10863474B2 (en) * 2016-10-21 2020-12-08 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure
KR20200114220A (ko) * 2019-03-28 2020-10-07 삼성전자주식회사 무선 통신 시스템에서 피드백 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0409518D0 (en) * 2004-04-29 2004-06-02 Motorola Inc Mobile communication methods,systems and apparatus for use therein
CN107439036A (zh) * 2015-04-01 2017-12-05 Lg电子株式会社 V2x终端在无线通信***中发送和接收信号的方法和装置
CN106941718A (zh) * 2017-04-07 2017-07-11 南京邮电大学 一种基于信号子空间指纹库的混合室内定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Samsung."Feature lead summary#3 for 7.2.4.1 Physical layer structure for sidelink".《3GPP TSG RAN WG1 #96bis Meeting Draft R1-190xxxx》.2019,参考第10-12页. *
vivo."Physical layer procedure for NR sidelink".《3GPP TSG RAN WG1 Meeting #96bis R1-1904077》.2019,(第tsgr1_96b期),全文. *

Also Published As

Publication number Publication date
JP2022528161A (ja) 2022-06-08
EP3955660A4 (en) 2022-06-08
JP7412441B2 (ja) 2024-01-12
KR20210113403A (ko) 2021-09-15
EP3955660A1 (en) 2022-02-16
WO2020226404A1 (ko) 2020-11-12
CN113906794A (zh) 2022-01-07
US20220217698A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
CN111727575B (zh) Nr v2x的副链路控制信息的发送
CN111727651B (zh) Nr v2x的2步sci发送
CN113853761B (zh) 在nr v2x中发送副链路参考信号的方法和装置
CN113994755B (zh) 在nr v2x中调度多个资源的方法和设备
CN114747167B (zh) 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置
CN113678493B (zh) 用于在无线通信***中测量副链路信道的方法和装置
CN114762278B (zh) 在nr v2x中向基站报告harq反馈的方法和装置
CN113661729B (zh) 在nr v2x中发送与副链路信道相关的信息的方法和装置
CN113574926B (zh) Sl csi报告
CN113906794B (zh) 用于在nr v2x中发送位置信息的方法和设备
CN114747166B (zh) 在nr v2x中向基站报告harq反馈信息的方法和装置
CN113475147B (zh) 基于dci执行lte sl通信的方法和装置
CN113785518B (zh) 用于在nr v2x中确定harq反馈选项的方法及装置
CN113544991B (zh) 用于在nr v2x中发送psfch的方法和设备
CN113994611B (zh) 用于在nr v2x中确定rsrp的方法及装置
CN114830577B (zh) 基于nr v2x中的cr来执行副链路重新发送的方法和设备
CN114762279B (zh) 在nr v2x中用于向基站报告harq反馈的方法和装置
CN114080770B (zh) 用于在nr v2x中确定反馈资源的方法和设备
CN114556979A (zh) 用于在nr v2x中向基站发送harq反馈的方法和设备
CN115553053A (zh) 在nr v2x中执行基于dtx的rlf操作的方法和设备
CN113475148B (zh) 用于控制lte副链路通信的dci
EP3890223B1 (en) Method and apparatus for data link-based sidelink communication in nr v2x
CN114342291B (zh) 用于在nr v2x中管理控制信息的方法和设备
CN114365434B (zh) 在nr v2x中发送/接收s-ssb的方法和装置
US11818687B2 (en) Method and apparatus for requesting retransmission resource in NR V2X

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant