CN113878119A - 一种高铁用密接车钩磨损的激光直接沉积修复方法 - Google Patents

一种高铁用密接车钩磨损的激光直接沉积修复方法 Download PDF

Info

Publication number
CN113878119A
CN113878119A CN202111101787.7A CN202111101787A CN113878119A CN 113878119 A CN113878119 A CN 113878119A CN 202111101787 A CN202111101787 A CN 202111101787A CN 113878119 A CN113878119 A CN 113878119A
Authority
CN
China
Prior art keywords
coupler
laser
repair
cladding
repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111101787.7A
Other languages
English (en)
Inventor
庞义斌
张峰
丁磊
叶紫阳
孙兵兵
张强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aviation High Quality Materials Zhenjiang Supplementary Manufacturing Co ltd
Original Assignee
Aviation High Quality Materials Zhenjiang Supplementary Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviation High Quality Materials Zhenjiang Supplementary Manufacturing Co ltd filed Critical Aviation High Quality Materials Zhenjiang Supplementary Manufacturing Co ltd
Priority to CN202111101787.7A priority Critical patent/CN113878119A/zh
Publication of CN113878119A publication Critical patent/CN113878119A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及一种高铁用密接车钩磨损的激光直接沉积修复方法,属于激光再制造领域,主要用于高铁密接车钩磨损区域的维修。该方法包括以下步骤:组织与性能评估,验证修复工艺是否满足密接车钩质量要求;车钩磨损面的裂纹清理与表面清洗;车钩装夹与分修复单元激光熔覆修复;修复后尺寸测量验证是否满足尺寸要求;无损检测,要求无裂纹缺陷。本发明提高了铁密接车钩的综合性能,能减小裂纹的生成概率,过程调整方便快捷,工艺简单,适用范围广,提高了密接车钩的使用寿命,降低了再制造成本。

Description

一种高铁用密接车钩磨损的激光直接沉积修复方法
技术领域
本发明涉及激光熔覆修复技术领域,更具体地说,涉及一种高铁用密接车钩磨损的激光直接沉积修复方法。
背景技术
某高铁密接车钩采用成本低、强韧性好和焊接性能优良的ZG18MnNiV钢精密铸造而成,但由于铁路行业向高速重载方向发展,造成高铁密接车钩的局部磨损加剧,磨损缺陷平均深度不超过3mm,待修复区域面积大。为了提高工作表面的耐磨性,通常需要采用氩弧焊的方法修复此类缺陷。然而,由于在氩弧焊较高的热输入下,熔覆层与基材结合界面组织性能差异大,在服役过程中,工作表面容易应力集中,产生裂纹。近年来,激光熔覆技术在耐磨层的制备方面得到了广泛的应用,为零件再制造提供了理论支持。
发明内容
车钩材料牌号为ZG18MnNiV,车钩磨损区域形貌图如图1,磨损区域为矩形端面,面积约为200mm*500mm,厚度3mm(留0.5mm余量)。该车钩其拉伸强度≥600Mpa,屈服强度≥400Mpa,断后伸长率≥23%,硬度HB≤290。
有鉴于此,本发明的目的是提供一种高铁用密接车钩磨损的激光直接沉积修复方法,包括如下步骤:
步骤一、通过金相观察、显微硬度检测、拉伸和侧弯性能测试对修复工艺进行综合性能评估,验证修复工艺是否满足密接车钩质量要求;
步骤二、采用荧光设备对车钩磨损面进行检测,寻找表面裂纹并打磨去除,同时轻微打磨整个修复面,采用丙酮清洗表面;
步骤三、将熔覆材料进行烘干,温度100℃,时间60min,同时采用机床变位机装夹车钩进行激光熔覆修复;
步骤四、采用游标卡尺对修复后局部尺寸进行测量,确保厚度大于3mm。
步骤五、采用荧光探伤方法,对修复位置进行检查,要求无裂纹缺陷;
优选的,所述步骤一中金相、显微硬度、侧弯试样从堆焊层取样(图2),拉伸试样采用对接接头且熔覆坡口的方式,以获得熔覆层与母材的结合力(图3)。
优选的,所述步骤三中熔覆材料为一种镍基合金粉末,粉末粒度为53μm~150μm,其成分的重量百分数分别为:Cr为16.5%~19.0%,Nb为3.15%~4.15%,Mo为8.0%~9.0%,Fe为≤5.0%,W为≤2.5%,Co为6.5%~8.0%,Ti为≤3.5%,余量为Ni。
优选的,所述步骤三中激光熔覆工艺参数为:激光功率1500~2500W,速度6~10mm/s,光斑3mm~5mm,并采用氩气作为保护气,氦气作为送粉气,氩气流量为15L/min~20L/min,氦气流量为4L/min~8L/min,搭接率50%,送粉量6g/min-11g/min,设定所述激光熔覆设备的离焦量的范围为14mm~16mm。
优选的,所述步骤三中激光熔覆修复策略为游标卡尺策略待修复区域尺寸,根据磨损层形状与障碍物将待修复区域分为多个修复单元,确定各单元熔覆的形状,同时结合修复工艺参数进行相应的现场试教规划熔覆轨迹;修复平面区域时,激光头不需要倾斜;修复曲面区域时,激光头倾斜后垂直于曲面切向量,并沿曲面进行试教后激光熔覆修复;修复单元重叠部分在进行后一修复单元修复时需对前一修复单元重叠边界打磨30~45°倾角,各修复单元搭接量为2-3mm,确保各修复单元连接处无未熔合现象。
相较于现有技术,本发明提供的一种高铁用密接车钩磨损的激光直接沉积修复方法具备以下优点和有益效果:
1.本发明提供的分区域熔覆方法,能够避免大面积熔覆产生的热变形和应力集中,熔覆过程中热影响区较小,裂纹的生成概率小。
2.本发明熔覆层与基体为冶金结合,综合机械力学性能较好,
3.本发明采用现场试教编程进行激光熔覆处理,过程调整方便快捷,适用范围广,同时所需后处理少且成本较低,便于推广应用。
附图说明
图1是车钩磨损区域形貌图。
图2是堆焊示意图。
图3是拉伸性能试板示意图。
图4是试板堆焊试件宏观照片。
图5是拉伸试板宏观形貌。
图6是堆焊层与基体结合部分的金相组织图。
图7是堆焊层硬度试验测量位置。
图8是堆焊层布氏硬度分布情况。
图9是车钩分单元修复示意图。
具体实施方式
下面将结合具体实施方式和附图对本发明详细阐述,具体工艺步骤为:
(1)选择ZG18MnNiV为基体材料,进行工艺可行性验证。ZG18MnNiV的化学成分的重量百分数如下:Cr为0.101%、Mn为1.06%、Ni为0.444%、V为0.184、Zn为0.123、Cu为0.352、Co为0.527,余量为Fe。熔覆材料为一种镍基合金粉末,粉末粒度为53μm~150μm。熔覆粉末经温度100℃、时间60min烘干后进行激光熔覆试验。
(2)通过金相观察、显微硬度检测、拉伸和侧弯性能测试对修复工艺进行综合性能评估,金相、显微硬度、侧弯试样从堆焊层取样,拉伸试样采用对接接头且熔覆坡口的方式,以获得熔覆层与母材的结合力。
(3)所得堆焊层与对接接头熔覆层(图4、图5)表面成型良好,呈金属光泽。所得堆焊层组织(图6)可以清晰地显示熔合线、热影响区(HAZ)和堆焊层,不存在裂纹和其它面缺陷,不存在>2mm的单个气孔。对堆焊层表面约3mm处沿着45°进行布氏硬度测量,平均硬度240HB;侧面堆焊层硬度约233HB;侧面沿着15°进行布氏硬度测量(基体),平均硬度值170HB(图7、图8)。侧弯试验弯曲角度应为120°,弯芯直径40mm,试验过程中,试件的任何方向出现单个缺陷小于3mm。填充镍基合金粉末的对接接头抗拉强度、屈服强度与原母材基本相同,断后延伸率低于母材,断裂位置均位于母材一侧。修复工艺满足密接车钩质量要求。
(4)对密接车钩磨损处与整体进行拍照记录,采用荧光设备对车钩磨损面进行检测,寻找表面裂纹并用打磨工具清理去除表面氧化层及磨损处的裂纹,再采用丙酮清洗表面。
(5)将熔覆材料进行烘干,同时采用机床变位机装夹车钩进行激光熔覆修复,修复策略为游标卡尺策略待修复区域尺寸,根据磨损层形状与障碍物将待修复区域分为10个修复单元(图9)。修复平面区域(图9中1~6区域)时,激光头不需要倾斜;修复曲面区域(图9中7~10区域)时,激光头倾斜后垂直于曲面切向量,并沿曲面进行试教后激光熔覆修复。修复单元重叠部分在进行后一修复单元修复时需对前一修复单元重叠边界打磨30~45°倾角,各修复单元搭接量为2-3mm,确保各修复单元连接处无未熔合现象。激光修复的工艺参数为:激光功率1800W,速度8mm/s,光斑3.5mm,送粉量10g/min,氩气流量为18L/min,氦气流量为6L/min,搭接率50%,层厚0.6mm。
(6)修复后表面平整光亮,采用游标卡尺对修复后局部尺寸进行测量,修复厚度大于3mm;
(7)对车钩修复处进行荧光探伤,表面无线性显示。
与现有技术相比,采用本发明技术方案修复的某高铁密接车钩无裂纹缺陷,显微组织致密,显微硬度略高于母材,拉伸性能优于母材,综合机械力学性能较好,且尺寸满足装配要求。同时,工艺简单,降低了车钩的再制造成本。现已实现装机使用。
以上所述只为说明本发明的技术思路,凡是利用本发明内容所作的等效结变换,均包括在本发明的专利保护范围之内。

Claims (5)

1.一种高铁用密接车钩磨损的激光直接沉积修复方法,其特征在于,包括如下步骤:
步骤一、通过金相观察、显微硬度检测、拉伸和侧弯性能测试对修复工艺进行综合性能评估,验证修复工艺是否满足密接车钩质量要求;
步骤二、采用荧光设备对车钩磨损面进行检测,寻找表面裂纹并打磨去除,同时轻微打磨整个修复面,采用丙酮清洗表面;
步骤三、将熔覆材料进行烘干,温度100℃,时间60min,同时采用机床变位机装夹车钩进行激光熔覆修复;
步骤四、采用游标卡尺对修复后局部尺寸进行测量,确保厚度大于3mm;
步骤五、采用荧光探伤方法,对修复位置进行检查,要求无裂纹缺陷。
2.按照权利要求1所述的一种高铁用密接车钩磨损的激光直接沉积修复方法,其特征在于:所述步骤一中金相、显微硬度、侧弯试样从堆焊层取样,拉伸试样采用对接接头且熔覆坡口的方式,以获得熔覆层与母材的结合力。
3.按照权利要求1所述的一种高铁用密接车钩磨损的激光直接沉积修复方法,其特征在于:所述步骤三中熔覆材料为一种镍基合金粉末,粉末粒度为53μm~150μm,其成分的重量百分数分别为:Cr为16.5%~19.0%,Nb为3.15%~4.15%,Mo为8.0%~9.0%,Fe为≤5.0%,W为≤2.5%,Co为6.5%~8.0%,Ti为≤3.5%,余量为Ni。
4.按照权利要求1所述的一种高铁用密接车钩磨损的激光直接沉积修复方法,其特征在于:所述步骤三中激光熔覆工艺参数为:激光功率1500~2500W,速度6~10mm/s,光斑3mm~5mm,并采用氩气作为保护气,氦气作为送粉气,氩气流量为15L/min~20L/min,氦气流量为4L/min~8L/min,搭接率50%,送粉量6g/min-11g/min,设定所述激光熔覆设备的离焦量的范围为14mm~16mm。
5.按照权利要求1所述的一种高铁用密接车钩磨损的激光直接沉积修复方法,其特征在于:所述步骤三中激光熔覆修复策略为游标卡尺策略待修复区域尺寸,根据磨损层形状与障碍物将待修复区域分为多个修复单元,确定各单元熔覆的形状,同时结合修复工艺参数进行相应的现场试教规划熔覆轨迹;修复平面区域时,激光头不需要倾斜;修复曲面区域时,激光头倾斜后垂直于曲面切向量,并沿曲面进行试教后激光熔覆修复;修复单元重叠部分在进行后一修复单元修复时需对前一修复单元重叠边界打磨30~45°倾角,各修复单元搭接量为2-3mm,确保各修复单元连接处无未熔合现象。
CN202111101787.7A 2021-09-18 2021-09-18 一种高铁用密接车钩磨损的激光直接沉积修复方法 Pending CN113878119A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111101787.7A CN113878119A (zh) 2021-09-18 2021-09-18 一种高铁用密接车钩磨损的激光直接沉积修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111101787.7A CN113878119A (zh) 2021-09-18 2021-09-18 一种高铁用密接车钩磨损的激光直接沉积修复方法

Publications (1)

Publication Number Publication Date
CN113878119A true CN113878119A (zh) 2022-01-04

Family

ID=79009959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111101787.7A Pending CN113878119A (zh) 2021-09-18 2021-09-18 一种高铁用密接车钩磨损的激光直接沉积修复方法

Country Status (1)

Country Link
CN (1) CN113878119A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475733A (zh) * 2016-10-11 2017-03-08 吉林大学 一种分区构建仿生耦合表面修复废旧机床导轨及其方法
CN107675167A (zh) * 2017-09-04 2018-02-09 中国航发北京航空材料研究院 一种超高强度钢构件超声冲击辅助激光熔覆修复方法
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN108559997A (zh) * 2018-03-14 2018-09-21 江苏大学 一种基于平面分区空间分层的动态梯度熔覆工艺和装置
CN109536955A (zh) * 2019-01-23 2019-03-29 南京工业大学 采用激光同轴同步送粉法熔覆模具修复工艺
CN109735843A (zh) * 2019-03-21 2019-05-10 株洲辉锐增材制造技术有限公司 一种增加激光熔覆高硬度合金层厚度的工艺方法及其激光熔覆修复的产品
CN109746453A (zh) * 2019-01-21 2019-05-14 沈阳精合数控科技开发有限公司 一种激光修复方法及装置
CN110819981A (zh) * 2019-10-21 2020-02-21 西北工业大学 镍基单晶涡轮叶片叶冠的修复方法
CN111593343A (zh) * 2020-06-10 2020-08-28 中国航发北京航空材料研究院 采用激光熔覆修复襟翼滑轨镀铬表面掉块缺陷的工艺方法
CN112195468A (zh) * 2020-10-23 2021-01-08 广东镭奔激光科技有限公司 基于双激光束的整体叶盘的损伤叶片修复方法及装置
CN112877689A (zh) * 2021-02-08 2021-06-01 浙江工业大学 一种激光熔覆头全角度姿态修复金属零件表面缺陷的工艺
EP3852959A1 (en) * 2018-09-20 2021-07-28 Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources Canada Process and composition for formation of hybrid aluminum composite coating

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475733A (zh) * 2016-10-11 2017-03-08 吉林大学 一种分区构建仿生耦合表面修复废旧机床导轨及其方法
CN107675167A (zh) * 2017-09-04 2018-02-09 中国航发北京航空材料研究院 一种超高强度钢构件超声冲击辅助激光熔覆修复方法
CN107723701A (zh) * 2017-09-04 2018-02-23 中国航发北京航空材料研究院 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法
CN108559997A (zh) * 2018-03-14 2018-09-21 江苏大学 一种基于平面分区空间分层的动态梯度熔覆工艺和装置
EP3852959A1 (en) * 2018-09-20 2021-07-28 Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources Canada Process and composition for formation of hybrid aluminum composite coating
CN109746453A (zh) * 2019-01-21 2019-05-14 沈阳精合数控科技开发有限公司 一种激光修复方法及装置
CN109536955A (zh) * 2019-01-23 2019-03-29 南京工业大学 采用激光同轴同步送粉法熔覆模具修复工艺
CN109735843A (zh) * 2019-03-21 2019-05-10 株洲辉锐增材制造技术有限公司 一种增加激光熔覆高硬度合金层厚度的工艺方法及其激光熔覆修复的产品
CN110819981A (zh) * 2019-10-21 2020-02-21 西北工业大学 镍基单晶涡轮叶片叶冠的修复方法
CN111593343A (zh) * 2020-06-10 2020-08-28 中国航发北京航空材料研究院 采用激光熔覆修复襟翼滑轨镀铬表面掉块缺陷的工艺方法
CN112195468A (zh) * 2020-10-23 2021-01-08 广东镭奔激光科技有限公司 基于双激光束的整体叶盘的损伤叶片修复方法及装置
CN112877689A (zh) * 2021-02-08 2021-06-01 浙江工业大学 一种激光熔覆头全角度姿态修复金属零件表面缺陷的工艺

Similar Documents

Publication Publication Date Title
CN100548562C (zh) 50+120mm厚板的焊接方法
CN111593343B (zh) 采用激光熔覆修复襟翼滑轨镀铬表面掉块缺陷的工艺方法
CN102107314B (zh) 一种涡轮工作叶片叶冠堆焊耐磨层的方法
Webster et al. Joining of thick section steels using hybrid laser welding
CN111195807B (zh) 一种无损探伤教学用内部裂纹缺陷试板的制作方法
CN109454313A (zh) 一种大规格低合金钢管板用拼焊平板制备工艺
CN113172361B (zh) 风力发电机组轮毂焊接修复方法及***
CN109226933A (zh) 一种大厚度低合金高强度钢多层多焊道焊接工艺确定方法
Wang et al. Effect of weld defects on the mechanical properties of stainless-steel weldments on large cruise ship
CN110747462A (zh) 一种高速激光熔覆工艺
CN111323484B (zh) 制作吻接缺陷对比试块的方法及利用该试块检测的方法
CN113305503A (zh) 一种白铜BFe10-1-1-钢复合板未复合区的修补方法
CN113878119A (zh) 一种高铁用密接车钩磨损的激光直接沉积修复方法
Ling et al. Effect of welding sequence of a multi-pass temper bead in gas-shielded flux-cored arc welding process: hardness, microstructure, and impact toughness analysis
CN111215829B (zh) 搅拌摩擦焊辅助激光熔覆泵叶轮叶片的修复方法
JP2006502865A (ja) 靭性最適化溶接継手及びこの溶接継手を生成する方法
Kazasidis et al. Dissimilar welding between conventional and high strength low alloy naval steels with the use of robotic metal cored arc welding
Lah et al. The effect of controlled shot peening on fusion welded joints
Barzegar-Mohammadi et al. Effects of TIG dressing, PWHT and temper bead techniques on microstructure and fatigue strength of fillet welded steel patch repairs: an experimental investigation
Ban et al. Micro-macro properties of stainless-clad bimetallic steel welded connections with different configurations
Wieczorska et al. Analysis of the process of qualifying the welding technology of S355JR structural steel using the submerged arc welding method
Kai et al. A Study of Weld Seams on Low Carbon Steel ABS Grade a Marine Plates Using SMAW Process
Uzonyi Application of additive manufacturing for the repair of forging dies
Behrens et al. Contact Geometry Modification of Friction-Welded Semi-Finished Products to Improve the Bonding of Hybrid Components. Metals 2021, 11, 115
Moore The importance of welding quality in ship construction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220104

WD01 Invention patent application deemed withdrawn after publication