CN113864750A - 核电厂供热*** - Google Patents

核电厂供热*** Download PDF

Info

Publication number
CN113864750A
CN113864750A CN202111005221.4A CN202111005221A CN113864750A CN 113864750 A CN113864750 A CN 113864750A CN 202111005221 A CN202111005221 A CN 202111005221A CN 113864750 A CN113864750 A CN 113864750A
Authority
CN
China
Prior art keywords
steam
valve
amount
opening
heat supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111005221.4A
Other languages
English (en)
Other versions
CN113864750B (zh
Inventor
安宏
李焕荣
王鹏
林令知
陈宝
张淑侠
王艳萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Nuclear Electric Power Planning Design and Research Institute Co Ltd
Original Assignee
State Nuclear Electric Power Planning Design and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Nuclear Electric Power Planning Design and Research Institute Co Ltd filed Critical State Nuclear Electric Power Planning Design and Research Institute Co Ltd
Priority to CN202111005221.4A priority Critical patent/CN113864750B/zh
Publication of CN113864750A publication Critical patent/CN113864750A/zh
Application granted granted Critical
Publication of CN113864750B publication Critical patent/CN113864750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • F22B1/063Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium for metal cooled nuclear reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/004Control systems for steam generators of nuclear power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/325Schematic arrangements or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本申请公开了一种核电厂供热***,属于核电厂技术领域。该***包括分离器、小汽轮机和低压热网加热器,其中,分离器与小汽轮机通过蒸汽管道连通,小汽轮机与低压热网加热器通过蒸汽管道连通;分离器,用于对第一蒸汽中液态水进行分离,得到不包含液态水的第二蒸汽,第一蒸汽为大汽轮机高压缸排至蒸汽管道的蒸汽;汽轮机,用于排入第二蒸汽,排出第三蒸汽,并向电力设备提供动能,其中,单位体积的第三蒸汽的焓值小于单位体积的第二蒸汽的焓值;低压热网加热器,利用第三蒸汽的热量对热网中的循环水进行一次加热。本申请实施例可以充分利用蒸汽的热量,减少能量的浪费。

Description

核电厂供热***
技术领域
本申请涉及核电厂技术领域,特别涉及一种核电厂供热***。
背景技术
在核电厂压水堆反应时,压水堆会产生大量的热量,可以使用这些热量对二回路水进行加热,进而产生大量的蒸汽,推动汽轮机产生电能。核电厂中的供热抽汽点可以抽取这些蒸汽,并将这些蒸汽排入热网加热器中,进而使得这些蒸汽对热网中的循环水进行加热。
然而,上述方案中的蒸汽包含大量高品位的热量,直接供热会造成能量的浪费。
发明内容
本申请实施例提供了一种核电厂供热***,能够充分利用蒸汽的热量,减少能量的浪费。该技术方案如下:
本申请实施例提供了一种核电厂供热***,该***包括分离器、小汽轮机和低压热网加热器,其中,该分离器与该小汽轮机通过蒸汽管道连通,该小汽轮机与该低压热网加热器通过蒸汽管道连通;
该分离器,用于对第一蒸汽中液态水进行分离,得到不包含液态水的第二蒸汽,该第一蒸汽为大汽轮机高压缸排至蒸汽管道的蒸汽;
该小汽轮机,用于排入该第二蒸汽,排出第三蒸汽,进而将由该第二蒸汽的热量转换而来的动能传递给发电机,其中,单位体积的第三蒸汽的焓值小于单位体积的第二蒸汽的焓值;
该低压热网加热器,用于利用该第三蒸汽的热量对热网中的循环水进行一次加热。
可选的,该小汽轮机包括抽汽口和该抽汽口上设置的第一阀门,该第一阀门的开合角度用于控制该抽汽口排出的第四蒸汽的蒸汽汽量,其中,该单位体积的第四蒸汽的焓值大于单位体积的第三蒸汽的焓值,且小于单位体积的第二蒸汽的焓值;
该***还包括高压热网加热器,该高压热网加热器与该小汽轮机的抽汽口通过蒸汽通道连通;
该第一阀门,用于当该第一阀门接收到第一信号时,确定该第一信号中携带的抽汽量,根据该抽汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定该第一阀门的开合角度,根据该第一阀门的开合角度,对该第一阀门的当前开合角度进行调整,进而在该抽汽口排出该抽汽量的第四蒸汽;
该高压热网加热器,用于利用该抽汽量的第四蒸汽对一次加热的循环水进行二次加热。
可选的,该汽轮机还包括排汽口和该排汽口上设置的第二阀门,该第二阀门的开合角度用于控制该排汽口排出的第三蒸汽的蒸汽汽量;该低压热网加热器与该汽轮机的排汽口通过蒸汽通道连通;
该第二阀门,用于当该第二阀门接收到第二信号时,根据该第二信号中携带的排汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定该第二阀门的开合角度,根据该第二阀门的开合角度,对该第二阀门的当前开合角度进行调整,进而在该排汽口排出排汽量的第三蒸汽;
该低压热网加热器,用于利用该排气量的第三蒸汽对热网中的循环水进行一次加热。
可选的,该汽轮机还包括进汽口和该进汽口上设置的第三阀门,该第三阀门的开合程度用于控制排入该汽轮机的第二蒸汽的蒸汽汽量;
该第三阀门,用于当该第三阀门接收到第三信号时,根据该第三信号中携带的进汽量以及预先存储的汽量和阀门的开合角度的对应关系,确定该第三阀门的开合角度,根据该第三阀门的开合角度,对该第三阀门的当前开合角度进行调整,进而在该进汽口排入进汽量的第二蒸汽,其中,该进汽量等于该排汽量与该抽汽量之和。
可选的,该第一阀门,还用于当该第一阀门检测到该抽汽量等于0时,关闭该第一阀门。
可选的,该***还包括冷凝管,该冷凝管分别与该低压热网加热器和该高压热网加热器通过疏水管道连通;
该冷凝管,用于对该低压热网加热器排出的疏水和该高压热网加热器排出的疏水进行收集,并将收集到的疏水运回二回路。
可选的,该***还包括排污降温池,该排污降温池分别与该低压热网加热器和该高压热网加热器通过疏水管道连通;
该排污降温池,用于对该低压热网加热器排出的疏水和该高压热网加热器排出的疏水进行去污降温处理,得到去污之后的疏水。
可选的,该***还包括控制器,该控制器分别与该第一阀门、该第二阀门和该第三阀门相连;
该控制器,用于获取供热管理***发送的循环水所需的目标温度,基于该目标温度,确定该抽汽量、该排汽量以及该进汽量,并生成携带有抽汽量的第一信号、携带有该排汽量的第二信号以及携带有该进汽量的第三信号,进而将该第一信号发送给该第一阀门、将该第二信号发送给该第二阀门以及将该第三信号发送给该第三阀门。
可选的,该控制器,还用于当该目标温度大于第一预设数值,且小于第二预设数值时,确定该抽汽量等于0,以及该排汽量和该进汽量均等于预设汽量。
可选的,该控制器,还用于当该目标温度大于第二预设数值时,确定该排汽量等于预设汽量,根据该目标温度以及温度和抽汽量之间的对应关系,确定该目标温度对应的抽汽量,将该排汽量与该抽汽量相加,得到该进汽量。
在相关技术中,如果直接使用大汽轮机高压缸排至蒸汽管道的第一蒸汽对热网中的循环水进行加热,由于第一蒸汽的焓值较高,且第一蒸汽中的能量不能完全转移到循环水中,这就使得对循环水加热得到的蒸汽中也包含大量的焓值,进而导致热能的浪费。在本申请实施例中,先通过汽轮机利用第一蒸汽的余压进行发电,再使用发电后的第三蒸汽对热网中的循环水进行加热,这样避免了直接使用第一蒸汽对循环水直接加热而导致的能量浪费的问题,充分利用了蒸汽的焓值,减少了能量的浪费。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种核电厂供热***的示意图;
图2是本申请实施例提供的一种核电厂供热***的示意图。
图例说明
101-分离器;
102-小汽轮机,1021-第一阀门,1022-第二阀门,1023-第三阀门;
103-低压热网加热器,104-高压热网加热器,105-发电机,106-排污降温池/冷凝管。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供了一种核电厂供热***,如图1所示,该***包括分离器101、小汽轮机102和低压热网加热器103,其中,分离器101与该小汽轮机102通过蒸汽管道连通,该小汽轮机102与该低压热网加热器103通过蒸汽管道连通;
该分离器101,用于对第一蒸汽中液态水进行分离,得到不包含液态水的第二蒸汽,该第一蒸汽为大汽轮机高压缸排至蒸汽管道的蒸汽;
该小汽轮机102,用于排入该第二蒸汽,排出第三蒸汽,进而将由该第二蒸汽的热量转换而来的动能传递给发电机,其中,单位体积的第三蒸汽的焓值小于单位体积的第二蒸汽的焓值;
该低压热网加热器103,用于利用该第三蒸汽的热量对热网中的循环水进行一次加热。
其中,由于大汽轮机高压缸排至蒸汽管道的蒸汽为湿蒸汽,如果将其直接排入小汽轮机中,第一蒸汽中液态水会损害小汽轮机,进而影响小汽轮机的运行。因此,需要先将第一蒸汽排入分离器101中,使得分离器101分离出第一蒸汽中液态水,进而避免蒸汽中的液态水对小汽轮机102的影响。
小汽轮机102可以将蒸汽压力势能转换为动能,再通过发电机将动能转换为电能的设备。低压热网加热器103可以采用凝汽器型式加热器,并将其布置于小汽轮机102下方。
在本申请实施例中,在获得一次加热的循环水后,可以将循环水输入到供热回路中,进而通过供热回路对用户进行供热。
在相关技术中,如果直接使用大汽轮机高压缸排至蒸汽管道的第一蒸汽对热网中的循环水进行加热,由于第一蒸汽所包含的压力势能较高,且不能完全转移到循环水中,进而导致压力势能的浪费。在本申请实施例中,先通过小汽轮机利用第一蒸汽的余压进行发电,再使用发电后的第三蒸汽对热网中的循环水进行加热,这样避免了直接使用第一蒸汽对循环水直接加热而导致的能量浪费的问题,充分利用了蒸汽的焓值,减少了能量的浪费。
在供暖季的大部分时间,只需要使用低压热网加热器103将循环水加热至90℃左右,这样便可以满足用户的需求。为了保证低压热网加热器103可以将循环水加热至90℃左右,则压力约为0.12MPa,温度约为104.8℃的第三蒸汽,进而使得这样的第三蒸汽将循环水加热至90℃。
在本申请实施例中,第二蒸汽的压力约为0.29MPa,温度约为142.6℃,为了充分利用蒸汽的能量,可以预先通过汽轮机使用第二蒸汽进行发电,得到第三蒸汽。
可选的,为了保证在环境温度较低时,为用户提供较高温度的循环水,还可以使用高压热网加热器104对一次加热的循环水进行二次加热。具体的,该小汽轮机102包括抽汽口和该抽汽口上设置的第一阀门1021,该第一阀门1021的开合角度用于控制该抽汽口排出的第四蒸汽的蒸汽汽量,其中,单位体积的第四蒸汽的焓值大于单位体积的第三蒸汽的焓值,且小于单位体积的第二蒸汽的焓值;该***还包括高压热网加热器104,该高压热网加热器104与该小汽轮机102的抽汽口通过蒸汽通道连通;该第一阀门1021,用于当该第一阀门1021接收到第一信号时,确定该第一信号中携带的抽汽量,根据该抽汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定该第一阀门1021的开合角度,根据该第一阀门1021的开合角度,对该第一阀门1021的当前开合角度进行调整,进而在该抽汽口排出该抽汽量的第四蒸汽;该高压热网加热器104,用于利用该抽汽量的第四蒸汽对一次加热的循环水进行二次加热。
在实施中,当第一阀门1021接收到第一信号时,第一阀门1021确定第一信号中携带的抽汽量,根据抽汽量和预先存储的汽量和阀门的开合角度之间的对应关系,确定第一阀门1021的开合角度,根据第一阀门1021的开合角度,对第一阀门1021的当前开合角度进行调整,进而在抽汽口排出抽汽量的第四蒸汽。高压热网加热器104利用抽汽量的第四蒸汽对一次加热的循环水进行二次加热。
或者,在根据抽汽量和预先存储的汽量和阀门的开合角度之间的对应关系,确定第一阀门1021的开合角度之前,第一阀门1021还可以对第一信号中携带的抽汽量进行检测。当检测到抽汽量不等于0时,再基于预先存储的汽量和阀门的开合角度之间的对应关系,确定第一阀门1021的开合角度。
需要说明的是,第一阀门1021为电动阀门,电动阀门可以接收控制设备发送的信号,并根据该信号调整阀门的当前开合角度。
在上述方式中,第一信号中携带有抽汽量,进而第一阀门可以根据第一信号中的抽汽量,调整第一阀门的当前开合角度。当然第一信号中还可以不携带抽汽量,而是携带第一阀门的开合角度,进而第一阀门可以直接根据第一信号携带的第一阀门的开合角度,来调整第一阀门的当前开合角度。
小汽轮机102除了包括抽汽口和抽汽口上设置的第一阀门1021外,小汽轮机102还包括排汽口和该排汽口上设置的第二阀门1022,该第二阀门1022的开合角度用于控制该排汽口排出的第三蒸汽的蒸汽汽量;该低压热网加热器103与该小汽轮机(102)的排汽口通过蒸汽通道连通;该第二阀门1022,用于当该第二阀门1022接收到第二信号时,根据该第二信号中携带的排汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定该第二阀门1022的开合角度,根据该第二阀门1022的开合角度,对该第二阀门1022的当前开合角度进行调整,进而在该排汽口排出排汽量的第三蒸汽;该低压热网加热器103,用于利用该排气量的第三蒸汽对热网中的循环水进行一次加热。
其中,第二阀门1022可以为电动阀门,进而在接收到信号后,根据信号中携带的排汽量,来调整第二阀门的当前开合角度。
需要说明的是,本申请实施例中的第二信号可以不携带排汽量,而是携带第二阀门1022的开合角度,进而第二阀门1022可以根据第二信号中携带的第二阀门1022的开合角度,对当前开合角度进行调整。
当然,小汽轮机102还包括进汽口和进汽口上设置的第三阀门1023,第三阀门1023的开合程度用于控制排入汽轮机102的第二蒸汽的蒸汽汽量。第三阀门1023,用于当第三阀门1023接收到第三信号时,根据第三信号中携带的进汽量以及预先存储的汽量和阀门的开合角度的对应关系,确定第三阀门1023的开合角度,根据第三阀门1023的开合角度,对第三阀门1023的当前开合角度进行调整,进而在进汽口排入进汽量的第二蒸汽,其中,进汽量等于抽汽量与排汽量之和。
其中,第三阀门1023也可以为电动阀门,进而在接收到信号后,根据信号中携带的进汽量,来调整第三阀门1023的当前开合角度。
需要说明的是,本申请实施例中的第三信号可以不携带进汽量,而是携带第三阀门1023的开合角度,进而第三阀门1023可以根据第二信号中携带的第三阀门1023的开合角度,对第三阀门1023的当前开合角度进行调整。
在本申请实施例中,第一信号、第二信号以及第三信号是控制器产生的。核电厂供热***中的控制器分别与第一阀门1021、第二阀门1022和第三阀门1023相连;控制器,用于获取供热管理***发送的循环水所需的目标温度,基于目标温度,确定抽汽量、排汽量以及进汽量,并生成携带有抽汽量的第一信号、携带有排汽量的第二信号以及携带有进汽量的第三信号,进而将第一信号发送给第一阀门1021、将第二信号发送给第二阀门1022以及将第三信号发送给第三阀门1023。
其中,控制器可以通过有线的方式分别与第一阀门1021、第二阀门1022和第三阀门1023相连,也可以通过短距离无线通信的方式分别与第一阀门1021、第二阀门1022和第三阀门1023相连。
在实施中,天气服务平台周期性向热网管理中心发送未来时间的天气情况,进而使得热网管理中心获取到循环水所需的目标温度,并将目标温度发送给发电厂中的控制器。控制器基于目标温度,确定抽汽量、排汽量以及进汽量,并生成携带有抽汽量的第一信号、携带有排汽量的第二信号以及携带有进汽量的第三信号,进而将第一信号发送给第一阀门1021、将第二信号发送给第二阀门1022以及将第三信号发送给第三阀门1023。
控制器基于目标温度,确定抽汽量、排汽量以及进汽量的步骤可以为:当目标温度小于第一预设数值时,确定抽汽量等于0,根据目标温度以及预先存储的温度和抽汽量之间的对应关系,确定排汽量,并将排汽量作为进汽量。或者,根据目标温度以及预先存储的温度和进汽量之间的对应关系,确定进汽量,并将该进汽量作为排汽量。
确定预先存储的温度和排汽量之间的对应关系的步骤为:当确定对某一区域进行供热时,技术人员可以使用温度检测装置检测该区域的环境温度,根据该环境温度,确定出在该环境温度下循环水所需的温度。根据循环水所需的温度,确定当循环水达到该温度时所需的第三蒸汽的出汽量,进而建立环境温度和排汽量之间的对应关系,将其作为温度和排汽量之间的对应关系存储在控制器中。或者,基于类似的方式,建立温度和进汽量之间的对应关系。
控制器基于目标温度,确定抽汽量、排汽量以及进汽量的步骤还可以为:当目标温度大于第一预设数值,且小于第二预设数值时,确定抽汽量等于0、以及排汽量与进汽量均等于预设汽量。
其中,当排汽量小于预设汽量时,热网中循环水的温度随着第三蒸汽的汽量的增加而明显增加。当排汽量大于预设汽量时,热网中循环水的温度几乎不发生变化。
在本申请实施例中,当第二蒸汽的排汽量等于预设汽量时,使用低压加热器加热得到的循环水的温度约为90℃。
控制器基于目标温度,确定抽汽量、排汽量以及进汽量的步骤还可以为:当目标温度大于第二预设数值时,确定排汽量等于预设汽量。根据温度以及温度与抽汽量之间的对应关系,确定抽汽量,将抽汽量与排汽量相加,得到进汽量。
需要说明的是,当温度大于第二预设数值时,控制器还可以向高压热网加热器104发送第四信号,该第四信号用于指示高压热网加热器104自动开启。当温度小于第二预设数值时,控制器向高压热网加热器104发送第五信号,该第五信号用于指示高压热网加热器104自动关闭。这样防止高压热网加热器104一直运行,进而导致大量的热量被浪费。
在本申请实施例中,控制器生成的第一信号、第二信号以及第三信号中不携带蒸汽的汽量,而是携带阀门的开合角度。控制器生成第一信号、第二信号以及第三信号的具体过程可以为:获取供热管理***发送的循环水所需的目标温度。当目标温度小于第一预设数值时,控制器确定第一阀门1021的开合角度为0,并根据目标温度和预先存储的温度和开合角度之间的第一对应关系,确定第二阀门1022和第三阀门1023分别对应的开合角度。当温度大于第一预设数值,且小于第二预设数值时,控制器确定第一阀门1021的开合角度为0、以及第二阀门1022的开合角度和第三阀门1023的开合角度均等于预设开合角度。当温度大于第二预设数值时,控制器确定第二阀门1022的开合角度为预设开合角度,并根据温度以及预先存储的温度和开合角度之间的第二对应关系,确定第一阀门1021的开合角度,并将第一阀门1021的开合角度和第二阀门1022的开合角度相加,得到第三阀门1023的开合角度。在得到第一阀门1021、第二阀门1022和第三阀门1023分别对应的开合角度之后,基于第一阀门1021的开合角度生成第一信号,基于第二阀门1022的开合角度,生成第二信号,基于第三阀门1023的开合角度,生成第三信号。
其中,当第二阀门1022的当前开合角度为预设开合角度时,在第二出汽口排出第三蒸汽的汽量为预设汽量。同理,当第三阀门1023的当前开合角度为预设开合角度时,在第三进汽口排入的第二蒸汽的汽量为预设汽量。
当然,在上述过程中,流入小汽轮机102的蒸汽先通过第一阀门1021流出,剩余蒸汽再通过第二阀门1022流出。这样,无论第二阀门1022的开合角度多大,通过第二阀门1022流出的蒸汽只能是小汽轮机102中剩余的蒸汽。因此,可以不将第二阀门1022设置为电动阀门,而将其设置为手动调节阀门,并将第二阀门1022的开合角度设置为固定角度。当需要对第二阀门1022的开合角度进行调节时,技术人员可以对第二阀门1022进行手动微调。例如,第二阀门1022为蝶阀。
可选的,核电厂供热***还包括凝汽管106,凝汽管106分别与低压热网加热器103和高压热网加热器104通过疏水管道连通。凝汽管106,用于对低压热网加热器103排出的疏水和高压热网加热器104排出的疏水进行收集,并将收集到的疏水运回二回路。
在实施中,将低压热网加热器103排出的蒸汽和高压热网加热器104排出的蒸汽直接排入冷凝管中,得到蒸汽冷凝后的疏水。
可选的,核电厂供热***还包括排污降温池106,排污降温池106分别与低压热网加热器103和高压热网加热器104通过蒸汽管道连通。排污降温池106,用于对低压热网加热器103排出的疏水和高压热网加热器104排出的疏水进行去污降温处理,得到去污降温处理后的疏水。
在得到疏水之后,可以通过压水堆产生的热量再将疏水变为蒸汽,进而使用该蒸汽进行供电或者供热,进而实现疏水的重复使用。
可选的,为了将蒸汽与补水完全隔离,避免蒸汽中的放射性物质混入补水中,可以采用表面式除氧器,其中,除氧器用于除去循环水中的氧气。
需要说明的是,除氧器的工作原理是使用蒸汽对水进行加热,使水达到一定压力下的饱和温度,进而使溶解于水的氧气全部逸出。如图2所示,除氧器可以使用第二蒸汽对补水进行加热,进而去除补水中的氧气。
可选的,在检测到汽轮机跳闸时,核电厂供热***可以以自动关闭。
可选的,运行人员可以监控热网加热器水位,以便在需要时采取适当的措施,查明热网加热器水位过高或过低的原因并采取相应措施使水位稳定在适合的水位区间。例如,通过对热网加热器进行补水,进而使得热网加热器中的水位维持在适合的水位区间内。
除需要对热网加热器进行补水外,还需要对热网循环水进行补水。如图2所示,具体的,将获取到的化学软化水输入除氧器后,进而去除化学软化水中的氧气。将去除氧气的化学软化水输入热网补水泵中,由热网补水泵将其输送到滤水器的入口,使得去除氧气的化学软化水和回水进行混合,并使用滤水器对补水之后的回水进行过滤,得到过滤之后的回水。将过滤之后的回水输入热网循环水回水管道,通过低压热网加热器和高压热网加热器对热网循环水回水管道输入的回水进行加热,输出供水。其中,热网循环水回水管道包括多个热网循环水泵,热网补水泵可以起到***定压的作用,回水是指回到供热***中的循环水,供水是指从供热***中出去的循环水。
需要说明的是,热网循环水回水管道中的热网循环水泵采用变频电机,如图2所示补水之后的回水先进入滤水器后进入热网循环水回水管道进口,由热网循环水泵升压后,先后进入低压热网加热器和高压热网加热器进行两级加热后,输出加热后的循环水,即供水。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种核电厂供热***,其特征在于,所述***包括分离器(101)、小汽轮机(102)和低压热网加热器(103),其中,所述分离器(101)与所述小汽轮机(102)通过蒸汽管道连通,所述小汽轮机(102)与所述低压热网加热器(103)通过蒸汽管道连通;
所述分离器(101),用于对第一蒸汽中液态水进行分离,得到不包含液态水的第二蒸汽,所述第一蒸汽为大汽轮机高压缸排至蒸汽管道的蒸汽;
所述小汽轮机(102),用于排入所述第二蒸汽,排出第三蒸汽,进而将由所述第二蒸汽的热量转换而来的动能传递给发电机,其中,单位体积的第三蒸汽的焓值小于单位体积的第二蒸汽的焓值;
所述低压热网加热器(103),用于利用所述第三蒸汽的热量对热网中的循环水进行一次加热。
2.根据权利要求1所述的***,其特征在于,所述小汽轮机(102)包括抽汽口和所述抽汽口上设置的第一阀门(1021),所述第一阀门(1021)的开合角度用于控制所述抽汽口排出的第四蒸汽的蒸汽汽量,其中,单位体积的第四蒸汽的焓值大于单位体积的第三蒸汽的焓值,且小于单位体积的第二蒸汽的焓值;
所述***还包括高压热网加热器(104),所述高压热网加热器(104)与所述小汽轮机(102)的抽汽口通过蒸汽通道连通;
所述第一阀门(1021),用于当所述第一阀门(1021)接收到第一信号时,确定所述第一信号中携带的抽汽量,根据所述抽汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定所述第一阀门(1021)的开合角度,根据所述第一阀门(1021)的开合角度,对所述第一阀门(1021)的当前开合角度进行调整,进而在所述抽汽口排出所述抽汽量的第四蒸汽;
所述高压热网加热器(104),用于利用所述抽汽量的第四蒸汽对一次加热的循环水进行二次加热。
3.根据权利要求2所述的***,其特征在于,所述汽轮机(102)还包括排汽口和所述排汽口上设置的第二阀门(1022),所述第二阀门(1022)的开合角度用于控制所述排汽口排出的第三蒸汽的蒸汽汽量;所述低压热网加热器(103)与所述汽轮机(102)的排汽口通过蒸汽通道连通;
所述第二阀门(1022),用于当所述第二阀门(1022)接收到第二信号时,根据所述第二信号中携带的排汽量以及预先存储的汽量和阀门的开合角度之间的对应关系,确定所述第二阀门(1022)的开合角度,根据所述第二阀门(1022)的开合角度,对所述第二阀门(1022)的当前开合角度进行调整,进而在所述排汽口排出排汽量的第三蒸汽;
所述低压热网加热器(103),用于利用所述排气量的第三蒸汽对热网中的循环水进行一次加热。
4.根据权利要求3所述的***,其特征在于,所述汽轮机(102)还包括进汽口和所述进汽口上设置的第三阀门(1023),所述第三阀门(1023)的开合程度用于控制排入所述汽轮机(102)的第二蒸汽的蒸汽汽量;
所述第三阀门(1023),用于当所述第三阀门(1023)接收到第三信号时,根据所述第三信号中携带的进汽量以及预先存储的汽量和阀门的开合角度的对应关系,确定所述第三阀门(1023)的开合角度,根据所述第三阀门(1023)的开合角度,对所述第三阀门(1023)的当前开合角度进行调整,进而在所述进汽口排入进汽量的第二蒸汽,其中,所述进汽量等于所述排汽量与所述抽汽量之和。
5.根据权利要求2所述的***,其特征在于,
所述第一阀门(1021),还用于当所述第一阀门(1021)检测到所述抽汽量等于0时,关闭所述第一阀门(1021)。
6.根据权利要求5所述的***,其特征在于,所述***还包括冷凝管(106),所述冷凝管(106)分别与所述低压热网加热器(103)和所述高压热网加热器(104)通过疏水管道连通;
所述冷凝管(106),用于对所述低压热网加热器(103)排出的疏水和所述高压热网加热器(104)排出的疏水进行收集,并将收集到的疏水运回二回路。
7.根据权利要求5所述的***,其特征在于,所述***还包括排污降温池(106),所述排污降温池(106)分别与所述低压热网加热器(103)和所述高压热网加热器(104)通过疏水管道连通;
所述排污降温池(106),用于对所述低压热网加热器(103)排出的疏水和所述高压热网加热器(104)排出的疏水进行去污降温处理,得到去污之后的疏水。
8.根据权利要求4所述的***,其特征在于,所述***还包括控制器,所述控制器分别与所述第一阀门(1021)、所述第二阀门(1022)和所述第三阀门(1023)相连;
所述控制器,用于获取供热管理***发送的循环水所需的目标温度,基于所述目标温度,确定所述抽汽量、所述排汽量以及所述进汽量,并生成携带有抽汽量的第一信号、携带有所述排汽量的第二信号以及携带有所述进汽量的第三信号,进而将所述第一信号发送给所述第一阀门(1021)、将所述第二信号发送给所述第二阀门(1022)以及将所述第三信号发送给所述第三阀门(1023)。
9.根据权利要求8所述的***,其特征在于,
所述控制器,还用于当所述目标温度大于第一预设数值,且小于第二预设数值时,确定所述抽汽量等于0,以及所述排汽量和所述进汽量均等于预设汽量。
10.根据权利要求8所述的***,其特征在于,
所述控制器,还用于当所述目标温度大于第二预设数值时,确定所述排汽量等于预设汽量,根据所述目标温度以及温度和抽汽量之间的对应关系,确定所述目标温度对应的抽汽量,将所述排汽量与所述抽汽量相加,得到所述进汽量。
CN202111005221.4A 2021-08-30 2021-08-30 核电厂供热*** Active CN113864750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111005221.4A CN113864750B (zh) 2021-08-30 2021-08-30 核电厂供热***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111005221.4A CN113864750B (zh) 2021-08-30 2021-08-30 核电厂供热***

Publications (2)

Publication Number Publication Date
CN113864750A true CN113864750A (zh) 2021-12-31
CN113864750B CN113864750B (zh) 2024-02-09

Family

ID=78988893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111005221.4A Active CN113864750B (zh) 2021-08-30 2021-08-30 核电厂供热***

Country Status (1)

Country Link
CN (1) CN113864750B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1645757A2 (ru) * 1989-05-24 1991-04-30 Предприятие П/Я А-3903 Способ регулировани уровн в регенеративном подогревателе паровой турбины
JPH07133903A (ja) * 1993-11-10 1995-05-23 Toshiba Corp 給水加熱器制御装置
CN102720551A (zh) * 2012-07-02 2012-10-10 上海汽轮机厂有限公司 双机回热抽汽蒸汽热力***控制方法
JP2012233679A (ja) * 2011-04-20 2012-11-29 Nippon Steel & Sumitomo Metal Corp 蒸気供給システム及び蒸気供給システムの制御方法
CN103939979A (zh) * 2014-04-14 2014-07-23 中北大学 一种散热器及其包括散热器的热电联产***
US20150076831A1 (en) * 2013-09-05 2015-03-19 Echogen Power Systems, L.L.C. Heat Engine System Having a Selectively Configurable Working Fluid Circuit
CN105986849A (zh) * 2015-02-13 2016-10-05 中国电力工程顾问集团华北电力设计院有限公司 中间抽汽采暖加热用后置式汽轮机***及方法
CN106678770A (zh) * 2017-02-27 2017-05-17 西安热工研究院有限公司 一种加热核电机组蒸发器给水的***和方法
CN206681805U (zh) * 2017-03-21 2017-11-28 华北电力大学 一种集成抽汽引射器的高背压热电联产***
CN108895529A (zh) * 2018-09-04 2018-11-27 河北冀研能源科学技术研究院有限公司 一种利用汽轮机排汽供热的***和方法
CN208184801U (zh) * 2018-03-26 2018-12-04 华北电力大学 一种深度利用供热蒸汽余压余热的热电联产***
CN109386325A (zh) * 2017-08-10 2019-02-26 中广核工程有限公司 核电站热力联合循环***和方法
CN109404075A (zh) * 2018-11-30 2019-03-01 上海电气电站设备有限公司 小汽轮机背压控制热力***及其控制方法
CN110986022A (zh) * 2019-11-01 2020-04-10 中国能源建设集团广东省电力设计研究院有限公司 抽汽采暖供热疏水***
CN212296519U (zh) * 2020-07-09 2021-01-05 北京北方三合能源技术有限公司 火电供热机组变参数多元梯级热电解耦***
CN213540516U (zh) * 2020-10-27 2021-06-25 中国神华煤制油化工有限公司 汽轮机给水回热***
CN214007247U (zh) * 2020-12-29 2021-08-20 华电国际电力股份有限公司天津开发区分公司 一种灵活调节中低压供汽的热力***

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1645757A2 (ru) * 1989-05-24 1991-04-30 Предприятие П/Я А-3903 Способ регулировани уровн в регенеративном подогревателе паровой турбины
JPH07133903A (ja) * 1993-11-10 1995-05-23 Toshiba Corp 給水加熱器制御装置
JP2012233679A (ja) * 2011-04-20 2012-11-29 Nippon Steel & Sumitomo Metal Corp 蒸気供給システム及び蒸気供給システムの制御方法
CN102720551A (zh) * 2012-07-02 2012-10-10 上海汽轮机厂有限公司 双机回热抽汽蒸汽热力***控制方法
US20150076831A1 (en) * 2013-09-05 2015-03-19 Echogen Power Systems, L.L.C. Heat Engine System Having a Selectively Configurable Working Fluid Circuit
CN103939979A (zh) * 2014-04-14 2014-07-23 中北大学 一种散热器及其包括散热器的热电联产***
CN105986849A (zh) * 2015-02-13 2016-10-05 中国电力工程顾问集团华北电力设计院有限公司 中间抽汽采暖加热用后置式汽轮机***及方法
CN106678770A (zh) * 2017-02-27 2017-05-17 西安热工研究院有限公司 一种加热核电机组蒸发器给水的***和方法
CN206681805U (zh) * 2017-03-21 2017-11-28 华北电力大学 一种集成抽汽引射器的高背压热电联产***
CN109386325A (zh) * 2017-08-10 2019-02-26 中广核工程有限公司 核电站热力联合循环***和方法
CN208184801U (zh) * 2018-03-26 2018-12-04 华北电力大学 一种深度利用供热蒸汽余压余热的热电联产***
CN108895529A (zh) * 2018-09-04 2018-11-27 河北冀研能源科学技术研究院有限公司 一种利用汽轮机排汽供热的***和方法
CN109404075A (zh) * 2018-11-30 2019-03-01 上海电气电站设备有限公司 小汽轮机背压控制热力***及其控制方法
CN110986022A (zh) * 2019-11-01 2020-04-10 中国能源建设集团广东省电力设计研究院有限公司 抽汽采暖供热疏水***
CN212296519U (zh) * 2020-07-09 2021-01-05 北京北方三合能源技术有限公司 火电供热机组变参数多元梯级热电解耦***
CN213540516U (zh) * 2020-10-27 2021-06-25 中国神华煤制油化工有限公司 汽轮机给水回热***
CN214007247U (zh) * 2020-12-29 2021-08-20 华电国际电力股份有限公司天津开发区分公司 一种灵活调节中低压供汽的热力***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
单建强: "《压水堆核电厂***与设备》", vol. 1, 西安交通大学出版社, pages: 178 - 181 *
陈宝 等: "基于Fluent的凝结水气动主调节阀防空化设计验证", 《仪器仪表用户》, vol. 27, no. 11, pages 178 - 181 *

Also Published As

Publication number Publication date
CN113864750B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN204303367U (zh) 一种低水平放射性废液处理***
CN108167807B (zh) 垃圾焚烧发电厂蒸汽-空气预热器疏水***
CN110454769A (zh) 一种大型发电机组高背压汽动给水泵控制***与控制方法
CN207279601U (zh) 一种高温冷凝水回收***
CN108167036A (zh) 一种核电机组自供汽的***和方法
CN113389606A (zh) 一种核电机组汽轮机中压缸排汽抽汽直接供热***及方法
CN2911191Y (zh) 空冷汽轮机的一体化排汽装置
CN207279602U (zh) 一种封闭式冷凝水回收装置
CN113864750B (zh) 核电厂供热***
CN209876971U (zh) 蒸汽空气预热装置和***
US4637350A (en) System for recovering drain
CN217386682U (zh) 一种高温气冷堆机组启动***
CN212005195U (zh) 一种蒸汽重整装置冷凝液收集再利用***
CN108036301A (zh) 一种高温气冷堆核电机组汽水分离器疏水回收的***和方法
CN111577407B (zh) 一种核电厂二回路停运期间的干保养方法
CN114034032A (zh) 一种高温气冷堆低负荷运行阶段的热量回收***及方法
CN208396754U (zh) 汽轮机启停***及其工作***
CN219473657U (zh) 一种基于余热锅炉的天然气预加热***
CN215174965U (zh) 一种应用于热电联产机组的凝结水与热网疏水的混水***
CN205151969U (zh) 一种小区全地下式污水和固体垃圾的资源循环利用***
CN210718717U (zh) 空冷机组凝结水***
CN101845973B (zh) 汽轮机凝汽器立管疏水***
CN213513837U (zh) 一种新型高温蒸汽发生器
CN112783231B (zh) 一种火电厂循环水温度先进控制***
CN219795350U (zh) 一种采用高效蒸汽洁净器的饱和蒸汽发电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant