CN113846342A - 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用 - Google Patents

以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用 Download PDF

Info

Publication number
CN113846342A
CN113846342A CN202111191179.XA CN202111191179A CN113846342A CN 113846342 A CN113846342 A CN 113846342A CN 202111191179 A CN202111191179 A CN 202111191179A CN 113846342 A CN113846342 A CN 113846342A
Authority
CN
China
Prior art keywords
inorganic
noble metal
metal palladium
electrocatalytic
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111191179.XA
Other languages
English (en)
Other versions
CN113846342B (zh
Inventor
赵浙菲
俞丽
郑华均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202111191179.XA priority Critical patent/CN113846342B/zh
Publication of CN113846342A publication Critical patent/CN113846342A/zh
Application granted granted Critical
Publication of CN113846342B publication Critical patent/CN113846342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种以无机‑有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用;本发明利用多巴胺的原位自聚合作用,将多巴胺聚合在垂直生长在FTO表面上具有阵列结构的TiO2一维纳米棒的周围,形成由聚多巴胺包裹TiO2纳米棒的无机‑有机核壳结构;采用化学浸渍法将极低量的钯纳米颗粒均匀分散负载在核壳骨架上,得到电极材料;该电极材料中贵金属钯的载量仅为0.29%,以此为阴极应用于电催化氯代有机化合物脱氯反应,质量活度高达44.39min‑1g‑1,氯代有机化合物脱氯的转化率最高可达94%,表现出很高的电催化反应活性,在电催化加氢脱氯中具有较大的应用前景。

Description

以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与 在电催化脱氯加氢反应中的应用
技术领域
本发明涉及一种以无机-有机核壳骨架负载低剂量贵金属电极材料及其制备方法与应用,特别涉及到一种以TiO2@PDA为载体负载低剂量金属钯电极材料及其制备方法,以及在电催化脱氯加氢反应中的应用。
背景技术
氯代有机化合物(氯苯酚、多氯吡啶酸、多氯联苯等),广泛应用于化工、医药、农药等领域,氯代有机物具有高毒性、持久性、生物富集性等特点,在自然界极难通过生物降解的方式进行转化,处置不当容易导致水体、土壤和地下水***的污染。因此,如何对氯代有机污染物进行有效处置,是事关人类长远发展亟待解决的问题。
在现有技术中,电催化还原法具有脱氯效果好,条件温和等优点。在催化脱氯中常用贵金属基(包括铂、铑、钯等)材料作为催化剂,其中钯基催化剂可在钯的晶格中嵌入氢原子,产生充足的吸附氢,有利于C-Cl键的断裂,因而是最有效的脱氯催化剂。因此,在电催化脱氯反应中常以贵金属钯基复合材料作为催化剂。如发明专利CN112657507A公开了一种具有核壳结构的包裹型双金属催化剂,核心为活性金属(钯、铂、铱、镍)纳米颗粒,壳层则用铜、锡、银、锌作为第二金属载体,这样的催化剂用于加氢脱氯反应,具有高活性、稳定性和反应选择性。但由于活性金属颗粒尺寸一般在50~60nm,易于团聚导致分散性较差,活性金属的单位质量所暴露的催化面积较小,其质量活度不高。发明专利CN108097249A也公开了一种加氢脱氯催化剂的制备方法,以硅藻土与柠檬酸混合焙烧物为载体,浸泡于含钯盐溶液后再次烘干焙烧,可以用于氯乙酸的加氢脱氯。由于催化剂的制备过程涉及多次焙烧,温度高达400~500℃,钯金属颗粒粗大,单位负载金属钯量大,导致催化剂的成本较高。
由于贵金属的资源稀缺,价格昂贵,高剂量的贵金属催化剂的成本高,无法应用在大规模生产。解决这一困境的有效办法就是制备低剂量贵金属纳米颗粒高分散在具有纳米阵列结构的载体上。但由于贵金属纳米颗粒热力学不稳定,在制备的过程中易于团聚成大颗粒,减少有效反应活性位点,降低反应效能,造成单位质量的活性不高,目前催化剂的最高质量活度在8.5min-1g-1左右,因此,发明一种高度分散低剂量贵金属催化剂,是实现电催化还原法脱氯工业化的关键。
发明内容
负载高分散性低剂量的贵金属钯纳米颗粒需要有一种高比表面积的材料作为载体。本发明采用比较常见的在FTO导电玻璃上生长一维纳米棒阵列结构的TiO2,其具有较大表面积,且具有合成成本低,化学稳定好等优点。
作为负载型电催化电极材料,活性物质与载体间应有较强的结合力,才能保证电极材料在电解过程中的稳定性;同时,导电性也是考察电极材料性能的一个重要因素。本发明选择采用聚多巴胺作为粘结剂,将多巴胺聚合在二氧化钛一维纳米棒的周围,构成无机-有机核壳骨架作为负载贵金属钯纳米颗粒的载体。一方面聚多巴胺具有还原作用,能将贵金属钯从离子态还原成金属钯颗粒,无需添加其他还原剂,另一方面聚多巴胺本身是一种高导电性有机聚合物,且能与TiO2形成强结合力。
因此,本发明提供一种由无机-有机核壳骨架负载高分散性低剂量的Pd纳米颗粒材料及其制备方法,并以此为电极应用于电催化脱氯加氢反应,表现出较高的电催化脱氯能力和稳定性。
本发明的技术方案如下:
一种以无机-有机核壳骨架为载体负载低剂量贵金属钯材料的制备方法,包括如下步骤:
(1)采用水热法在FTO导电基底上生长TiO2纳米棒阵列
将FTO导电基体浸没于钛酸四丁酯的盐酸水溶液中,水热反应后,再经煅烧,得到具有纳米棒阵列结构的TiO2材料(记作FTO/TiO2);
所述钛酸四丁酯的盐酸水溶液中,钛酸四丁酯的质量分数为2~3wt%,溶剂为15~37wt%盐酸水溶液;
具有纳米棒阵列结构的TiO2垂直生长在FTO导电基底上作为载体材料;
(2)利用原位自聚合作用将聚多巴胺包裹在TiO2纳米棒周围
将步骤(1)所得材料置于多巴胺溶液中,在10~80℃(优选15℃)下浸渍1~30h(优选12h,让多巴胺自聚合在具有阵列结构的TiO2纳米棒的周围),之后经洗涤,干燥,形成由聚多巴胺包裹TiO2纳米棒的无机-有机核壳骨架材料(记作FTO/TiO2@PDA);
所述多巴胺溶液的浓度为0.1~1.5g/L,优选1g/L;多巴胺溶液的溶剂为Tris-HCl缓冲液、甲醇或乙醇;
(3)采用原位还原法将金属钯纳米颗粒均匀分散负载在聚多巴胺壳层上
将步骤(2)所得材料置于钯盐溶液中,在0~30℃(优选15℃)下浸渍5~20h(优选12h),之后经洗涤,干燥,得到所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料(记作FTO/TiO2@PDA/Pd);
所述钯盐溶液中金属Pd浓度为0.01~1g/L,优选0.05g/L;钯盐溶液的溶剂为0.1~0.2wt%盐酸水溶液或0.1~0.3wt%NaCl水溶液;钯盐可以是氯化钯等。
本发明制备的以无机-有机核壳骨架为载体负载低剂量贵金属钯材料,可作为阴极材料应用于氯代有机化合物的电催化加氢脱氯反应。具体应用的方法为:
采用H型电极反应槽为反应装置,阴阳两极反应槽间采用N117阳离子膜来分隔电解液(只允许阳离子通过隔膜,见附图1);阳极采用石墨棒材料,阴极采用本发明FTO/TiO2@PDA/Pd材料;阳极反应槽中的电解液为无机酸或无机碱水溶液,阴极反应槽中的电解液是氯代有机化合物水溶液;在搅拌下采用恒电流电解方式进行电催化反应;
所述电催化反应的条件为:15~40℃恒温,恒电流密度为1~10mA cm-2,电解时间2~8h。
与现有技术相比,本发明的优点在于:
本发明采用的TiO2@PDA无机-有机核壳骨架作为载体,能提供较大表面积,将金属钯纳米颗粒的粒径控制在1.2~2.0nm范围,并高度分散在载体上且不团聚,能提供更多参与电催化反应的活性位点。同时,通过控制多巴胺聚合层的厚度,可以调节贵金属钯纳米颗粒的大小。
该制备方法极大减少贵金属钯的使用量,工艺简单,绿色环保,原子经济。在对氯苯酚、3,6-二氯吡啶甲酸等氯代有机化合物的电催化加氢脱氯中表现出较高的单位质量活性,质量活度最高可达44.39min-1g-1
附图说明
图1为本发明实施例中的电解槽装置示意图。
图2为本发明实施例一制备的FTO/TiO2垂直纳米棒的SEM图。
图3为本发明实施例一制备的FTO/TiO2@PDA的SEM图。
图4为本发明实施例一制备的FTO/TiO2@PDA/Pd的TEM图。
图5为本发明实施例一的对氯苯酚电催化脱氯性能图。
图6为本发明实施例一的对氯苯酚电催化脱氯后的液相谱图。
图7为本发明实施例三的3,6-二氯吡啶甲酸电催化脱氯后的液相谱图。
具体实施方式
为了便于理解本发明,结合具体的实施例来进一步阐述本发明的具体内容,这些实施例仅用于说明本发明而不限制本发明的范围。所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。下面结合附图和实施例对发明的制备方法进行详细说明。
实施例一
1.制备具有纳米阵列结构的TiO2垂直纳米棒。将FTO导电玻璃浸入钛酸四丁酯的盐酸水溶液(钛酸四丁酯含量2.8%,溶剂为37wt%盐酸水溶液),在恒温150℃下水热反应5小时,然后经洗涤,恒定450℃下空气煅烧3h,制备得到FTO/TiO2材料。图2为FTO/TiO2的SEM图,可以看到,TiO2具有一维纳米棒阵列结构,且垂直生长在FTO表面上,纳米棒平均直径约为160nm。
2.FTO/TiO2@PDA的制备。将上述FTO/TiO2垂直放在含有1.21g L-1Tris-HCl和0.5gL-1多巴胺溶液中,恒温15℃搅拌12小时,然后去离子水洗涤,干燥后得到FTO/TiO2@PDA。图3为制备得到材料的SEM图,可以看到,多巴胺已经在每一个TiO2纳米棒表面上自聚合成薄层,制备得到FTO/TiO2@PDA,每个纳米棒的直径仍保持在165nm左右,说明PDA薄层在5~10nm范围内。
3.FTO/TiO2@PDA/Pd的制备。将上述FTO/TiO2@PDA垂直放在含有0.05g L-1PdCl2溶液中,恒温15℃搅拌12小时,然后去离子水洗涤,干燥后得到FTO/TiO2@PDA/Pd。图4是所得材料的TEM图,可以看到,自聚合在TiO2垂直纳米棒表面的PDA薄层的平均厚度为5.23nm,Pd纳米颗粒的粒径约为1.5nm,且均匀分散在PDA薄膜层中。Pd纳米颗粒在PDA薄层中的含量极低,经计算,Pd的载量为0.29%。
4.以FTO/TiO2@PDA/Pd材料为阴极,对对氯苯酚进行电催化脱氯加氢。采用H型电极反应槽,采用N117阳离子膜来分隔阴阳极电解液,阳极采用石墨棒电极,阴极则采用上述制备得到的FTO/TiO2@PDA/Pd材料。阳极反应槽中的电解液为磷酸缓冲溶液(pH=3);阴极电解液则是1mmol L-1对氯苯酚溶液,采用磷酸缓冲液调节其pH至3.0。电解液采用水浴恒定在30℃,电解电流控制在6mA cm-2,在恒速搅拌下电解4小时。
采用高效液相色谱进行检测,结果测定对氯苯酚的转换率为94.04%,FTO/TiO2@PDA/Pd电极的脱氯质量活度可达44.39min-1g-1,说明该电极材料具有优异的原子经济性。
图5是对氯苯酚电解脱氯性能的结果。
图6是电解后对氯苯酚、苯酚的液相色谱检测结果。
实施例二
1.FTO/TiO2垂直纳米棒的制备。制备方法和过程同实施例一,得到在FTO表面上垂直生长具有阵列结构的TiO2一维纳米棒。
2.FTO/TiO2@PDA的制备。制备方法和过程同实施例一,所不同的是多巴胺浓度为1.0g L-1,由此得到的FTO/TiO2一维纳米棒的聚多巴胺薄层厚度为12.15nm,高于实施例一中的5.23nm。
3.FTO/TiO2@PDA/Pd的制备。制备方法和过程同实施例一,所不同的是载体采用了聚多巴胺层的厚度为12.15nm的FTO/TiO2@PDA,由此得到的FTO/TiO2@PDA/Pd上钯纳米颗粒的粒径约为2.0nm,经计算,Pd的载量为0.60%。
4.以FTO/TiO2@PDA/Pd材料为阴极对对氯苯酚进行电催化脱氯加氢。电解过程中同实施例一,所不同的是阴极采用聚多巴胺层的厚度为12.15nm、Pd的载量为0.60%的FTO/TiO2@PDA/Pd材料。经测定并计算,其对氯苯酚的转换率为74.49%,脱氯质量活度可达9.17min-1g-1
实施例三
1.阴极材料制备。制备方法和过程同实施例一,得到的结果同实施例一。
2.以FTO/TiO2@PDA/Pd材料为阴极,对3,6-二氯吡啶甲酸进行电催化脱氯加氢。采用H型电极反应槽,采用N117阳离子膜来分隔阴阳极电解液,阳极采用石墨棒材料,阴极则采用上述制备得到的FTO/TiO2@PDA/Pd材料。阳极反应槽中的电解液为氢氧化钠缓冲溶液(pH=10);阴极电解液则是1mmol L-1 3,6-二氯吡啶甲酸溶液,采用氢氧化钠缓冲液调节其pH至10.0。电解液采用水浴恒定30℃,电解电流控制在5.0mA cm-2,在恒速搅拌下电解4小时。
采用高效液相色谱进行检测,通过测定和计算,3,6-二氯吡啶甲酸的转换率为72.85%。
图7是电解后3,6-二氯吡啶甲酸脱氯的液相色谱检测结果。

Claims (7)

1.一种以无机-有机核壳骨架为载体负载低剂量贵金属钯材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将FTO导电基体浸没于钛酸四丁酯的盐酸水溶液中,水热反应后,再经煅烧,得到具有纳米棒阵列结构的TiO2材料;
(2)将步骤(1)所得材料置于多巴胺溶液中,在10~80℃下浸渍1~30h,之后经洗涤,干燥,原位自聚合形成由聚多巴胺包裹TiO2纳米棒的无机-有机核壳骨架材料;
(3)将步骤(2)所得材料置于钯盐溶液中,在0~30℃下浸渍5~20h,之后经洗涤,干燥,得到所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料。
2.如权利要求1所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料的制备方法,其特征在于,步骤(2)中,所述多巴胺溶液的浓度为0.1~1.5g/L,多巴胺溶液的溶剂为Tris-HCl缓冲液、甲醇或乙醇。
3.如权利要求1所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料的制备方法,其特征在于,步骤(3)中,所述钯盐溶液中金属Pd浓度为0.01~1g/L,钯盐溶液的溶剂为0.1~0.2wt%盐酸水溶液或0.1~0.3wt%NaCl水溶液。
4.如权利要求1所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料的制备方法,其特征在于,步骤(3)中,所述钯盐为氯化钯。
5.如权利要求1所述制备方法制得的以无机-有机核壳骨架为载体负载低剂量贵金属钯材料。
6.如权利要求5所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料作为阴极材料在氯代有机化合物的电催化加氢脱氯反应中的应用。
7.如权利要求6所述的应用,其特征在于,所述应用的方法为:
采用H型电极反应槽为反应装置,阴阳两极反应槽间采用N117阳离子膜来分隔电解液;阳极采用石墨棒材料,阴极采用所述以无机-有机核壳骨架为载体负载低剂量贵金属钯材料;阳极反应槽中的电解液为无机酸或无机碱水溶液,阴极反应槽中的电解液是氯代有机化合物水溶液;在搅拌下采用恒电流电解方式进行电催化反应;
所述电催化反应的条件为:15~40℃恒温,恒电流密度为1~10mA cm-2,电解时间2~8h。
CN202111191179.XA 2021-10-13 2021-10-13 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用 Active CN113846342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111191179.XA CN113846342B (zh) 2021-10-13 2021-10-13 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111191179.XA CN113846342B (zh) 2021-10-13 2021-10-13 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用

Publications (2)

Publication Number Publication Date
CN113846342A true CN113846342A (zh) 2021-12-28
CN113846342B CN113846342B (zh) 2023-09-05

Family

ID=78978245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111191179.XA Active CN113846342B (zh) 2021-10-13 2021-10-13 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用

Country Status (1)

Country Link
CN (1) CN113846342B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645814A (zh) * 2022-10-27 2023-01-31 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080728A (zh) * 2011-09-28 2014-10-01 康涅狄格大学 整体式基材上的金属氧化物纳米棒阵列
US20150255802A1 (en) * 2014-03-10 2015-09-10 Industry-Academi Cooperation Foundation, Yonsei University Preparing method of alloy catalyst using polydopamine coating and alloy catalyst thereby
CN104988531A (zh) * 2015-07-07 2015-10-21 浙江工业大学 一种氯代吡啶甲酸电催化选择性脱氯制备吡啶甲酸的方法
CN105018962A (zh) * 2015-07-07 2015-11-04 浙江工业大学 一种氯代有机污染物电化学氢化脱氯的方法
US20160172683A1 (en) * 2014-12-10 2016-06-16 West Virginia University Impregnation Process Using a Bio-Templating Method for Nano-Catalyst Incorporation into the Electrodes of Solid-State Electrochemical Cells
CN106167912A (zh) * 2016-06-23 2016-11-30 苏州蓝锐纳米科技有限公司 铂纳米颗粒/二氧化钛纳米管阵列的制备方法、电极、非酶葡萄糖传感器和复合材料
CN109821559A (zh) * 2019-03-27 2019-05-31 泉州师范学院 一种核壳结构复合光电材料的制备方法及其应用
CN109939674A (zh) * 2019-04-25 2019-06-28 重庆工商大学 一种具有肖特基异质结的Pd/TiO2电催化剂及其制备和应用
CN113046770A (zh) * 2021-03-25 2021-06-29 海南聚能科技创新研究院有限公司 原位合成的全固态z型异质结构光催化剂及其制备方法、光电催化合成h2o2中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080728A (zh) * 2011-09-28 2014-10-01 康涅狄格大学 整体式基材上的金属氧化物纳米棒阵列
US20150255802A1 (en) * 2014-03-10 2015-09-10 Industry-Academi Cooperation Foundation, Yonsei University Preparing method of alloy catalyst using polydopamine coating and alloy catalyst thereby
US20160172683A1 (en) * 2014-12-10 2016-06-16 West Virginia University Impregnation Process Using a Bio-Templating Method for Nano-Catalyst Incorporation into the Electrodes of Solid-State Electrochemical Cells
CN104988531A (zh) * 2015-07-07 2015-10-21 浙江工业大学 一种氯代吡啶甲酸电催化选择性脱氯制备吡啶甲酸的方法
CN105018962A (zh) * 2015-07-07 2015-11-04 浙江工业大学 一种氯代有机污染物电化学氢化脱氯的方法
CN106167912A (zh) * 2016-06-23 2016-11-30 苏州蓝锐纳米科技有限公司 铂纳米颗粒/二氧化钛纳米管阵列的制备方法、电极、非酶葡萄糖传感器和复合材料
CN109821559A (zh) * 2019-03-27 2019-05-31 泉州师范学院 一种核壳结构复合光电材料的制备方法及其应用
CN109939674A (zh) * 2019-04-25 2019-06-28 重庆工商大学 一种具有肖特基异质结的Pd/TiO2电催化剂及其制备和应用
CN113046770A (zh) * 2021-03-25 2021-06-29 海南聚能科技创新研究院有限公司 原位合成的全固态z型异质结构光催化剂及其制备方法、光电催化合成h2o2中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645814A (zh) * 2022-10-27 2023-01-31 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用
CN115645814B (zh) * 2022-10-27 2024-04-05 浙江工业大学 一种超低载量钯纳米晶体修饰电极及其制备方法与其在电化学脱氯中的应用

Also Published As

Publication number Publication date
CN113846342B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
Iqbal et al. Chemical design of palladium‐based nanoarchitectures for catalytic applications
Guan et al. Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst
Abdelkader-Fernandez et al. Noble-metal-free MOF-74-derived nanocarbons: insights on metal composition and doping effects on the electrocatalytic activity toward oxygen reactions
Wu et al. La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy
KR101132074B1 (ko) 인?시튜 형성된 백금 이산화물을 환원하여 수득되는 백금촉매
Bai et al. Tunable hollow Pt@ Ru dodecahedra via galvanic replacement for efficient methanol oxidation
Liu et al. One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids
Wang et al. Pt/C/Ni (OH) 2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions
Wang et al. Metal–nonmetal one-dimensional electrocatalyst: AuPdP nanowires for ambient nitrogen reduction to ammonia
Du et al. Facile fabrication of Pt–Ni alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment
Ding et al. Pt–Ni bimetallic composite nanocatalysts prepared by using multi-walled carbon nanotubes as reductants for ethanol oxidation reaction
Zhang et al. Cu3P/RGO promoted Pd catalysts for alcohol electro-oxidation
Estudillo-Wong et al. TiO2/C composite as a support for Pd-nanoparticles toward the electrocatalytic oxidation of methanol in alkaline media
Iqbal et al. Single-atom catalysts for electrochemical N2 reduction to NH3
Silva et al. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation
CN108191009B (zh) 聚吡咯修饰的Ag-Pd双金属复合电催化阴极及制备方法和应用
Padayachee et al. The effect of MnO2 loading on the glycerol electrooxidation activity of Au/MnO2/C catalysts
Bhowmik et al. Highly active and durable Pd nanoparticles-porous graphitic carbon nitride composite for electrocatalytic oxygen reduction reaction
Fang et al. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route
Lou et al. Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review
Melchionna et al. The electrifying effects of carbon-CeO2 interfaces in (electro) catalysis
JP2005508450A (ja) 改良されたロジウム電極触媒及び製造方法
Davi et al. Electrochemical oxidation of methanol and ethanol on two-dimensional self-assembled palladium nanocrystal arrays
Feng et al. Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media
CN113846342B (zh) 以无机-有机核壳骨架负载低剂量贵金属钯材料及其制备与在电催化脱氯加氢反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant