CN113835334B - 一种多模块产品内部低精度时钟的校准方法 - Google Patents

一种多模块产品内部低精度时钟的校准方法 Download PDF

Info

Publication number
CN113835334B
CN113835334B CN202111050019.3A CN202111050019A CN113835334B CN 113835334 B CN113835334 B CN 113835334B CN 202111050019 A CN202111050019 A CN 202111050019A CN 113835334 B CN113835334 B CN 113835334B
Authority
CN
China
Prior art keywords
precision clock
internal
clock
low
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111050019.3A
Other languages
English (en)
Other versions
CN113835334A (zh
Inventor
谢尚川
秦熠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ruilang Information Technology Co ltd
Original Assignee
Zhejiang Ruilang Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ruilang Information Technology Co ltd filed Critical Zhejiang Ruilang Information Technology Co ltd
Priority to CN202111050019.3A priority Critical patent/CN113835334B/zh
Publication of CN113835334A publication Critical patent/CN113835334A/zh
Application granted granted Critical
Publication of CN113835334B publication Critical patent/CN113835334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G5/00Setting, i.e. correcting or changing, the time-indication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种多模块产品内部低精度时钟的校准方法,包括以下步骤:构建内部低精度时钟与内部高精度时钟通信;进行内部低精度时钟与内部高精度时钟的主从模块判断;根据内部低精度时钟的主从进行数据传输;采集主从模块频率数据;根据采集频率数据进行校准。上述技术方案通过外部中断功能检测高精度时钟模块发送出数据时的波形变化;低精度时钟模块使用内部高精度时钟对每次波形变化的时间间隔进行计时,通过检测每一次的变化间隔,再配合低精度时钟模块的内部时钟变化范围,从而计算出低精度时钟模块的内部时钟频率,从而修正串口的配置参数,使***满足高度精准通信的目的。

Description

一种多模块产品内部低精度时钟的校准方法
技术领域
本发明涉及电子电路的测试调试技术领域,尤其涉及一种多模块产品内部低精度时钟的校准方法。
背景技术
随着物联网技术的发展,高集成化SOC方案得到了长足的发展,但对于功能较复杂的产品来说,依然存在着单个产品多控制器的情况:业务由主控芯片控制;数据安全由安全模块控制;网络通信由通信模组控制。而物联网产品中,通过串口进行数据交互较为通用,而串口的硬件协议中,是以自然时间为节拍,从而保证设置之间的正常通信。因此,就要求每个核心都需要一个准确的时钟信号以保证整个***的时钟同步,从而达到稳定数据交互的结果。
当***中需要的模块不具备高精度时钟时,***的稳定性也跟着直线下降,特别是在高温或低温的环境下,因为模组时钟的温漂导致***的崩溃。
中国专利文献CN102096372B公开了一种“卫星***时钟基于总线方式的校准方法”。包括:低精度时钟用户通过串行数据总线和高精度时钟源相互连接,按照如下步骤进行校时:1)、低精度时钟用户生成本地的***时钟参数TL,发送到高精度时钟源;2)、高精度时钟源接收时钟参数TL,同时生成时钟源实时时钟参数TH;相减后得到时差数据ΔT;修正固定时延得到时差数据ΔTlast;3)、低精度时钟用户取得时差数据ΔTlast,把时差数据ΔTlast加到低精度时钟用户的***时钟上;4)、按照一定周期间隔重复进行步骤1),2),3)。上述技术方案应用高精度时钟源进行校准,成本高且需要增加额外器件使用不便。
发明内容
本发明主要解决原有的技术方案成本高且需要增加额外器件使用不便的技术问题,提供一种多模块产品内部低精度时钟的校准方法,通过外部中断功能检测高精度时钟模块发送出数据时的波形变化;低精度时钟模块使用内部高精度时钟对每次波形变化的时间间隔进行计时,通过检测每一次的变化间隔,再配合低精度时钟模块的内部时钟变化范围,从而计算出低精度时钟模块的内部时钟频率,从而修正串口的配置参数,使***满足高度精准通信的目的。
本发明的上述技术问题主要是通过下述技术方案得以解决的:本发明包括以下步骤:
S1构建内部低精度时钟与内部高精度时钟通信;
S2进行内部低精度时钟与内部高精度时钟的主从模块判断;
S3根据内部低精度时钟的主从进行数据传输;
S4采集主从模块频率数据;
S5根据采集频率数据进行校准。
作为优选,所述的步骤S3进行内部低精度时钟的主从模块判断后,若内部低精度时钟为主模块,内部高精度时钟为从模块,则内部低精度时钟按不同波特率发送指令至从设备,通过扫频的方式尝试获得从模块的响应,利用从模块的响应波形,对主模块的内部时钟进行校准。当内部低精度时钟作为主模块时,利用从模块支持指令响应以及波特率偏差小于3%时即可正常通信的特性,低精度模块按不同波特率发送指令至从设备,通过扫频的方式尝试获得从模块的响应。
作为优选,所述的步骤S3进行内部低精度时钟的主从模块判断后,若内部低精度时钟为从模块,内部高精度时钟为主模块,则内部低精度时钟等待主模块发送数据,内部低精度时钟利用数据的波形对内部时钟进行校准。内部低精度时钟为从模块时,无需等待主模块反馈,直接利用数据的波形对内部时钟进行校准。
作为优选,所述的步骤S4采集主从模块频率数据包括:外部中断功能检测高精度时钟模块发送出数据时的波形变化,内部低精度时钟使用内部高精度时钟对每次波形变化的时间间隔进行计时。
作为优选,所述的步骤S5通信的波特率均由芯片的***时钟通过分频产生,假设通信波特率为T时,波形变化的间隔时间为1/T秒。
作为优选,所述的步骤S5采用内部高精度时钟作为计时器,通过采集波形的变化计算每次变化花费的计时器时间,假设***时钟为X,内部高精度时钟的分频比为n,若检测到波形变化的间隔部分计时器时间为t,那么内部高精度时钟频率为X/n,若波形变化的间隔部分计时时间为(1/(X/n))*t,此时间与1/T相同,因此得到等式
(1/(X/n))*t=1/T。
作为优选,所述的步骤S5从等式即可计算得出低精度芯片的***时钟实际频率为:
X=(T*t)*n
即可将***时钟根据X=(T*t)*n进行校准。
本发明的有益效果是:通过外部中断功能检测高精度时钟模块发送出数据时的波形变化;低精度时钟模块使用内部高精度时钟对每次波形变化的时间间隔进行计时,通过检测每一次的变化间隔,再配合低精度时钟模块的内部时钟变化范围,从而计算出低精度时钟模块的内部时钟频率,从而修正串口的配置参数,使***满足高度精准通信的目的。
附图说明
图1是本发明的一种流程图。
图2是本发明的一种内部低精度时钟作为主模块的流程图。
图3是本发明的一种内部低精度时钟作为从模块的流程图。
图4是本发明的一种串口通信波形逻辑图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:本实施例的一种多模块产品内部低精度时钟的校准方法,如图1所示,包括以下步骤:
S1构建内部低精度时钟与内部高精度时钟通信。
S2进行内部低精度时钟与内部高精度时钟的主从模块判断。
S3根据内部低精度时钟的主从进行数据传输。
如图2所示,进行内部低精度时钟的主从模块判断后,若内部低精度时钟为主模块,内部高精度时钟为从模块,利用从模块支持指令响应以及波特率偏差小于3%时即可正常通信的特性,则内部低精度时钟按不同波特率发送指令至从设备,通过扫频的方式尝试获得内部高精度时钟的响应,利用内部高精度时钟的响应波形,对主模块的内部时钟进行校准。
如图3所示,进行内部低精度时钟的主从模块判断后,若内部低精度时钟为从模块,内部高精度时钟为主模块,则内部低精度时钟等待内部高精度时钟发送数据,内部低精度时钟利用数据的波形对内部时钟进行校准。内部低精度时钟为从模块时,无需等待内部高精度时钟反馈,直接利用数据的波形对内部时钟进行校准。
S4采集主从模块频率数据。主从模块频率数据包括:外部中断功能检测高精度时钟模块发送出数据时的波形变化,内部低精度时钟使用内部高精度时钟对每次波形变化的时间间隔进行计时。
S5根据采集频率数据进行校准。
通信的波特率均由芯片的***时钟通过分频产生,假设通信波特率为T时,波形变化的间隔时间,即图4波形中箭头部分为1/T秒。
采用内部高精度时钟作为计时器,通过采集波形的变化计算每次变化花费的计时器时间,假设***时钟为X,内部高精度时钟的分频比为n,若检测到波形变化的间隔部分计时器时间为t,那么内部高精度时钟频率为X/n,若波形变化的间隔部分,即图4波形中箭头部分计时时间为(1/(X/n))*t,此时间与1/T相同,因此得到等式
(1/(X/n))*t=1/T。
从等式即可计算得出低精度芯片的***时钟实际频率为:
X=(T*t)*n
即可将***时钟根据X=(T*t)*n进行校准。
当产品包含多个模块,且个别模块均需要高精度时钟时,可以采用本方案减少部模块的高精度时钟,从而达到有效降低硬件成本的目的。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了内部低精度时钟、内部高精度时钟等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (4)

1.一种多模块产品内部低精度时钟的校准方法,其特征在于,包括以下步骤:
S1构建内部低精度时钟与内部高精度时钟通信;
S2进行内部低精度时钟与内部高精度时钟的主从模块判断;
S3根据内部低精度时钟的主从进行数据传输,进行内部低精度时钟的主从模块判断后,若内部低精度时钟为主模块,内部高精度时钟为从模块,则内部低精度时钟按不同波特率发送指令至从设备,通过扫频的方式尝试获得内部高精度时钟的响应,利用内部高精度时钟的响应波形,对主模块的内部时钟进行校准,内部低精度时钟为从模块时,无需等待主模块反馈,直接利用数据的波形对内部时钟进行校准;
S4采集主从模块频率数据;
S5根据采集频率数据进行校准,通信的波特率均由芯片的***时钟通过分频产生,假设通信波特率为T时,波形变化的间隔时间为1/T秒,采用内部高精度时钟作为计时器,通过采集波形的变化计算每次变化花费的计时器时间,假设***时钟为X,内部高精度时钟的分频比为n,若检测到波形变化的间隔部分计时器时间为t,那么内部高精度时钟频率为X/n,若波形变化的间隔部分计时时间为(1/(X/n))*t,此时间与1/T相同,因此得到等式
(1/(X/n))*t=1/T。
2.根据权利要求1所述的一种多模块产品内部低精度时钟的校准方法,其特征在于,所述步骤S3进行内部低精度时钟的主从模块判断后,若内部低精度时钟为从模块,内部高精度时钟为主模块,则内部低精度时钟等待内部高精度时钟发送数据,内部低精度时钟利用数据的波形对内部时钟进行校准。
3.根据权利要求1所述的一种多模块产品内部低精度时钟的校准方法,其特征在于,所述步骤S4采集主从模块频率数据包括:外部中断功能检测高精度时钟模块发送出数据时的波形变化,内部低精度时钟使用内部高精度时钟对每次波形变化的时间间隔进行计时。
4.根据权利要求1所述的一种多模块产品内部低精度时钟的校准方法,其特征在于,所述步骤S5从等式即可计算得出低精度芯片的***时钟实际频率为:
X=(T*t)*n
即可将***时钟根据X=(T*t)*n进行校准。
CN202111050019.3A 2021-09-08 2021-09-08 一种多模块产品内部低精度时钟的校准方法 Active CN113835334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111050019.3A CN113835334B (zh) 2021-09-08 2021-09-08 一种多模块产品内部低精度时钟的校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111050019.3A CN113835334B (zh) 2021-09-08 2021-09-08 一种多模块产品内部低精度时钟的校准方法

Publications (2)

Publication Number Publication Date
CN113835334A CN113835334A (zh) 2021-12-24
CN113835334B true CN113835334B (zh) 2022-09-16

Family

ID=78958721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111050019.3A Active CN113835334B (zh) 2021-09-08 2021-09-08 一种多模块产品内部低精度时钟的校准方法

Country Status (1)

Country Link
CN (1) CN113835334B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392707A (zh) * 2001-06-15 2003-01-22 日本电气株式会社 网络同步技术
US6618455B1 (en) * 1998-08-26 2003-09-09 Fujitsu Limited Clock management method and transmission apparatus for synchronous network system
CN102096372A (zh) * 2009-12-11 2011-06-15 上海卫星工程研究所 卫星***时钟基于总线方式的校准方法
US9996105B1 (en) * 2013-03-14 2018-06-12 Marvell Israel (M.I.S.L) Ltd High precision event timing in network devices
JP2020182198A (ja) * 2019-04-26 2020-11-05 リオン株式会社 時刻同期計測システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221870A1 (en) * 2004-04-06 2005-10-06 Integration Associates Inc. Method and circuit for determining a slow clock calibration factor
JP2017175309A (ja) * 2016-03-23 2017-09-28 キヤノン株式会社 通信システム
CN110568750A (zh) * 2019-09-04 2019-12-13 西安矽力杰半导体技术有限公司 计时电路及计时方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618455B1 (en) * 1998-08-26 2003-09-09 Fujitsu Limited Clock management method and transmission apparatus for synchronous network system
CN1392707A (zh) * 2001-06-15 2003-01-22 日本电气株式会社 网络同步技术
CN102096372A (zh) * 2009-12-11 2011-06-15 上海卫星工程研究所 卫星***时钟基于总线方式的校准方法
US9996105B1 (en) * 2013-03-14 2018-06-12 Marvell Israel (M.I.S.L) Ltd High precision event timing in network devices
JP2020182198A (ja) * 2019-04-26 2020-11-05 リオン株式会社 時刻同期計測システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高精度同步输出多功能发射控制技术;周逢道等;《中南大学学报(自然科学版)》;20161231(第008期);全文 *

Also Published As

Publication number Publication date
CN113835334A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US20120005517A1 (en) Synchronisation and timing method and apparatus
US7769559B2 (en) Instrument with interface for synchronization in automatic test equipment
EP2147361B1 (en) Usb based synchronization and timing system
US7454681B2 (en) Automatic test system with synchronized instruments
US9310832B2 (en) Backplane clock synchronization
CN110166952B (zh) 基于广播同步的无线传感器网络数据采集方法及***
CN109683567B (zh) 基于rs485网络中***时钟同步方法
CN114567926B (zh) 一种用于无线分布式测试***的时钟同步和触发装置
CN111030909B (zh) 一种应用于can总线多主设备通讯间时间同步的方法
CN110995388B (zh) 一种分布式的共享时钟触发调延***
EP3893428A1 (en) Clock synchronization method and device, and storage medium
CN112782640A (zh) 一种智能电能表的检定方法及装置
Carstensen et al. A converter control field bus protocol for power electronic systems with a synchronization accuracy of±5ns
CN113835334B (zh) 一种多模块产品内部低精度时钟的校准方法
Akpınar et al. Drift correction for the software-based clock synchronization on controller area network
CN104717737B (zh) 基于tdma的工业无线网络时间同步校正方法
Ramos IEEE Standard 1451 and a proposed time synchronization approach
CN105530656B (zh) 一种无线传感器网络时间同步性能评估方法及***
CN101795217A (zh) 电子的数据处理***的两个通信网络同步的诊断
Nguyen et al. Development of Factory Automation WLAN System Compatible with Asynchronous Industrial Ethernet
JP2559237Y2 (ja) シリアルデータサンプリング信号発生装置
Heinz et al. A FlexRay parameter calculation methodology based on the electric/electronic architecture of vehicles
JPWO2009147797A1 (ja) 試験装置、伝送回路、試験装置の制御方法および伝送回路の制御方法
AU2013204485A1 (en) Synchronisation and Timing Method and Apparatus
Nguyen et al. Software Defined Radio Development of Accurate Time Synchronization for Industrial WLAN Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant