CN113831053A - 一种受弯变形小的梯度混凝土材料及其制备方法 - Google Patents

一种受弯变形小的梯度混凝土材料及其制备方法 Download PDF

Info

Publication number
CN113831053A
CN113831053A CN202110972609.5A CN202110972609A CN113831053A CN 113831053 A CN113831053 A CN 113831053A CN 202110972609 A CN202110972609 A CN 202110972609A CN 113831053 A CN113831053 A CN 113831053A
Authority
CN
China
Prior art keywords
concrete
pouring
mixture
layer
uniformly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110972609.5A
Other languages
English (en)
Other versions
CN113831053B (zh
Inventor
李悦
刘运泽
金彩云
李洪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110972609.5A priority Critical patent/CN113831053B/zh
Publication of CN113831053A publication Critical patent/CN113831053A/zh
Application granted granted Critical
Publication of CN113831053B publication Critical patent/CN113831053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • C04B14/4681Titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/045Esters, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/124Amides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2623Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2682Halogen containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/20Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种受弯变形小的梯度混凝土材料及其制备方法。在制备时除所需的常规水泥混凝土原料外,还包括二氧化钛纳米管、纳米二氧化硅、钴/碳纳米纤维复合材料、纳米碳纤维、氯丁橡胶、聚酰亚胺树脂、二甲基乙酰胺、聚丙烯酸钠、聚乙烯醇、甲基丙烯酸十八烷基酯、甲基纤维素等性能调节材料。采用梯度分层制备的形式,即受拉层、过渡层和受压层分层制备。通过在各层混凝土材料中加入不同的性能调节材料,可以极大限度的减小长期荷载作用时材料的受弯变形,降低受弯变形对工程的危害,具有重要的实际应用价值。

Description

一种受弯变形小的梯度混凝土材料及其制备方法
技术领域
本发明涉及水泥基材料领域,具体涉及一种受弯变形小的梯度混凝土材料及其制备方法。
背景技术
混凝土梁是最常用受弯构件,在持续压应力作用下会产生受弯变形、出现挠度连续增加的现象,影响工程结构耐久性能和安全性能。为此,《混凝土结构设计规范》GB50010-2010对混凝土挠度限值进行了相应规定。由于受弯挠度受水泥基材料组成、微观结构等的影响显著,因此从纳微米层面提升混凝土材料抵抗受弯变形的能力具有重要意义。
当前,在大跨度结构上广泛应用的混凝土材料的受弯变形能力的改善方式主要为增大构件截面积、提升混凝土强度等级等。但是上述方法存在以下问题:1)随着梁构件横截面积的增加,其自重会显著提升,很大程度上增加了结构的承重压力,特别是对于一些限重的大跨结构影响巨大;2)目前提升混凝土材料强度的技术手段主要是使用较低的水胶比或者添加大量的活性胶凝材料,但是这会显著增加收缩开裂风险、提高工程造价,同时胶凝材料的增加也会显著增加碳排放量;3)没有对水泥基材料宏观性能起决定作用的微观层面进行解决,没有针对材料在受弯变形时不同部位所起的作用充分发挥各部位的性能。
为解决上述问题,本发明提供了一种受弯变形小的梯度混凝土材料及其制备方法。经此法制备的混凝土梁在具有优异的力学性能的同时,可以显著降低梁的受弯变形,提高混凝土材料的耐久性能和安全性能,且该方法实施简便、成本较低,具有重要的工程实际推广价值。
发明内容
本发明旨在提供一种可以在实际工程应用中显著降低混凝土梁受弯变形的材料设计和制备方法。为实现上述目的,本发明采用的技术方案如下:
一种受弯变形小的梯度混凝土材料及其制备方法。材料组成包括常规水泥混凝土材料和性能调节材料,性能调节材料的组成及掺量(按每m3常规水泥混凝土材料和性能调节材料混合物中的含量计算)为:二氧化钛纳米管0.8~1.4kg/m3,钴/碳纳米纤维复合材料0.5~0.8kg/m3,纳米碳纤维0.4~0.8kg/m3,纳米二氧化硅2~4kg/m3,氯丁橡胶2~5kg/m3,聚丙烯酸钠6~9kg/m3,聚酰亚胺树脂4~6kg/m3,聚乙烯醇5~7kg/m3,二甲基乙酰胺0.4~0.6kg/m3,甲基丙烯酸十八烷基酯0.2~0.4kg/m3,甲基纤维素0.3~0.5kg/m3
二氧化钛纳米管直径为10nm~30nm,长度为0.8~2μm;纳米二氧化硅粒径为20~40nm,含量≥99.5%;钴/碳纳米纤维复合材料中的碳纳米纤维直径为25~50nm,长度为10~20μm,是以细菌纤维素为碳源,利用其表面丰富的含氧官能团吸附Co2+,再经冷冻干燥与一步碳热还原制备而成;纳米碳纤维直径为150~200nm,长度为10~20μm。
所述氯丁橡胶和聚丙烯酸钠为二氧化钛纳米管、纳米二氧化硅与水泥基材料的粘结剂;所述聚酰亚胺树脂和二甲基乙酰胺为钴/碳纳米纤维复合材料与水泥基材料的粘结剂;所述聚乙烯醇和甲基丙烯酸十八烷基酯为纳米碳纤维与水泥基材料的粘结剂。所述甲基纤维素用于分散钴/碳纳米纤维复合材料和纳米碳纤维。
受弯变形小的梯度混凝土材料及其制备方法如下:
按照梁的厚度和受力方向由下至上分受拉层、过渡层和受压层三层浇筑,各层厚度比分别为2:1:2。受拉层的制备:根据混凝土用量按比例称取性能调节材料,首先将纳米碳纤维倒入质量浓度为2%~4%的甲基纤维素水溶液中进行分散,随后加入起粘结作用的聚乙烯醇和甲基丙烯酸十八烷基酯混合物,搅拌均匀后水浴加热60min,控制水浴温度40~45℃,冷却至环境温度后静置30min并倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。
过渡层的制备:根据混凝土用量按比例称取性能调节材料,首先将钴/碳纳米纤维复合材料倒入甲基纤维素水溶液进行分散,待分散完全后加入起增强粘结作用的聚酰亚胺树脂与二甲基乙酰胺的基液中,搅拌均匀后40~45℃水浴15min,随即静置20min。最后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。
受压层的制备:根据混凝土用量按比例称取性能调节材料,首先将氯丁橡胶和聚丙烯酸钠混合并搅拌均匀制成粘结剂,加入到制备试样所需的水中,然后将二氧化钛纳米管和纳米二氧化硅倒入粘结剂中并充分搅拌分散均匀并静置15~20min,随后水浴加热45min,控制水浴温度35~40℃,冷却静置30min后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。
与现有技术相比,本发明的优点在于:
1)针对受弯材料在实际工程中的变形主要为压弯变形。将受弯材料按照高度划分为三层,上部2/5记为受压层,中部1/5记为过渡层,下部2/5记为受拉层,创造性的采用梯度式制备方法,既保证了材料的整体稳定性,也充分发挥受压区、过渡区和受拉区的工作性能,最大限度的降低长期变形。
2)在材料的受拉层,使用韧性极大、力学性能极佳的纳米碳纤维作为内部的增强网,从微观结构上将原本只是由凝胶简单粘结的水泥基材料各物相通过纳米碳纤维建立一个更致密的整体。并且使用聚乙烯醇和甲基丙烯酸十八烷基酯制成的粘结剂对纳米碳纤维和骨料等物相进行粘结强化。
显著提升了拉区抵抗拉伸变形的能力。
3)在过渡层的制备时加入钴/碳纳米纤维复合材料,可以使过渡层的水泥基材料的柔韧性增加,充分发挥过渡部位的缓冲作用。同时,加入聚酰亚胺树脂和二甲基乙酰胺,可以使钴/碳纳米纤维复合材料与水泥基材料充分粘结,提升整体性。
4)在受弯材料的受压层,使用粒径小但承压性能较好的二氧化钛纳米管和纳米二氧化硅作为抗挤压变形的填充稳定材料。通过氯丁橡胶和聚丙烯酸钠形成的粘结剂将二氧化钛纳米管和纳米二氧化硅充分粘结于材料的微观孔隙处。随着活性非常高的纳米二氧化硅的持续发生水化反应,会进一步增加二氧化钛纳米管与周围材料的整体粘结程度。
5)本发明提供的一种小变形多梯度水泥基材料及其制备方法,使用的材料经济且绿色环保,制备过程易于操作实现。可以极大限度的提升水泥基材料抵抗受弯变形的能力,具有实际工程广泛推广的价值。
附图说明
图1C30混凝土梁60天挠度变化关系曲线。
图2C50混凝土梁60天挠度变化关系曲线。
具体实施方式
以下结合实施例对本发明作进一步详细说明。
实施例一:
首先,制作长度为1200mm,宽度为120mm,高度为250mm的C30强度的混凝土梁两组,第一组为不含性能调节材料的梁,记为A1组。另一组为按照本发明提出的方法制备的,记为B1组。所需材料的用量为,A1组:依据《普通混凝土配合比设计规程》JGJ552011进行选取;B1组:除常规原材料依据《普通混凝土配合比设计规程》JGJ552011进行选取外,性能调节材料分别取直径范围为10~20nm,长度0.8~2μm的二氧化钛纳米管0.036kg,粒径范围为20~30nm的纳米二氧化硅颗粒0.1kg,直径25~40nm,长度为10~20μm的钴/碳纳米纤维复合材料0.0324kg,直径150~200nm,长度为10~15μm的纳米碳纤维0.019kg,氯丁橡胶0.112kg,聚丙烯酸钠0.24kg,聚酰亚胺树脂0.18kg,甲基纤维素0.0144kg,聚乙烯醇0.216kg,甲基丙烯酸十八烷基酯0.01kg,二甲基乙酰胺0.018kg。
随后进行混凝土受弯梁的制备。A1组混凝土梁按常规方法整体拌制浇筑制备。B1组按照梁的厚度和受力方向由下至上分受拉层、过渡层和受压层三层浇筑,各层厚度比分别为2:1:2。首先是受拉层的制备:根据混凝土用量按比例称取性能调节材料,首先将纳米碳纤维倒入质量浓度为2.4%的甲基纤维素水溶液中进行分散,随后加入起粘结作用的聚乙烯醇和甲基丙烯酸十八烷基酯混合物,搅拌均匀后水浴加热60min,控制水浴温度40℃,冷却至环境温度后静置30min并倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。其次是过渡层的制备:根据混凝土用量按比例称取性能调节材料,首先将钴/碳纳米纤维复合材料倒入甲基纤维素水溶液进行分散,待分散完全后加入起增强粘结作用的聚酰亚胺树脂与二甲基乙酰胺的基液中,搅拌均匀后40℃水浴15min,随即静置20min。最后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。随后是受压层的制备:根据混凝土用量按比例称取性能调节材料,首先将氯丁橡胶和聚丙烯酸钠混合并搅拌均匀制成粘结剂,加入到制备试样所需的水中,然后将二氧化钛纳米管和纳米二氧化硅倒入粘结剂中并充分搅拌分散均匀并静置15min,随后水浴加热45min,控制水浴温度35℃,冷却静置30min后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。最后将标准养护完毕的两组梁进行上部放置同等重量的配重块进行为期60天的挠度测试,以对比两组梁的受弯挠度发展情况,结果如图1所示。可以看到采用本发明制备的混凝土的受弯挠度变化显著小于常规方法制备的混凝土,同时期挠度减小率在36.6%~44.8%之间。
实施例二:
首先,制作长度为1600mm,宽度为150mm,高度为300mm的C50强度的混凝土梁两组,第一组为不含性能调节材料的梁,记为A2组。另一组按照本发明提出的方法制备的,记为B2组。所需材料的用量为,A2组:依据《普通混凝土配合比设计规程》JGJ552011进行选取;B2组:除常规原材料依据《普通混凝土配合比设计规程》JGJ552011进行选取外,取直径范围为10~20nm,长度0.8~2μm的二氧化钛纳米管0.072kg,粒径范围为20~30nm的纳米二氧化硅颗粒0.216kg,直径25~40nm,长度为10~20μm的钴/碳纳米纤维复合材料0.068kg,直径150~200nm,长度为10~15μm的纳米碳纤维0.043kg,氯丁橡胶0.252kg,聚丙烯酸钠0.52kg,聚酰亚胺树脂0.36kg,甲基纤维素0.028kg,聚乙烯醇0.432kg,甲基丙烯酸十八烷基酯0.022kg,二甲基乙酰胺0.0375kg。
随后进行混凝土受弯梁的制备。A2组混凝土梁按常规方法整体拌制浇筑制备。B2组按照梁的厚度和受力方向由下至上分受拉层、过渡层和受压层三层浇筑,各层厚度比分别为2:1:2。首先是受拉层的制备:根据混凝土用量按比例称取性能调节材料,首先将纳米碳纤维倒入质量浓度为3%的甲基纤维素水溶液中进行分散,随后加入起粘结作用的聚乙烯醇和甲基丙烯酸十八烷基酯混合物,搅拌均匀后水浴加热60min,控制水浴温度45℃,冷却至环境温度后静置30min并倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。其次是过渡层的制备:根据混凝土用量按比例称取性能调节材料,首先将钴/碳纳米纤维复合材料倒入甲基纤维素水溶液进行分散,待分散完全后加入起增强粘结作用的聚酰亚胺树脂与二甲基乙酰胺的基液中,搅拌均匀后45℃水浴15min,随即静置20min。最后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。随后是受压层的制备:根据混凝土用量按比例称取性能调节材料,首先将氯丁橡胶和聚丙烯酸钠混合并搅拌均匀制成粘结剂,加入到制备试样所需的水中,然后将二氧化钛纳米管和纳米二氧化硅倒入粘结剂中并充分搅拌分散均匀并静置20min,随后水浴加热45min,控制水浴温度40℃,冷却静置30min后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。最后将标准养护完毕的两组梁进行上部放置同等重量的配重块进行为期60天的挠度测试,以对比两组梁的受弯挠度发展情况,结果如图2所示。可以看到采用本发明制备的混凝土的受弯挠度变化显著小于常规方法制备的混凝土,同时期挠度减小率在31.8%~41.4%之间。
上述实施例充分验证了本发明实用效果的优越性。但是上述实施例仅是为了清楚说明所做的实例,而并非是对试验的限制。对于实际工程操作中,在上述说明的基础上可以做出其他不同形式的变动,这里无需也无法对所有实施形式进行枚举。

Claims (3)

1.一种受弯变形小的梯度混凝土材料,其特征在于:材料组成包括水泥混凝土材料和性能调节材料,按占每m3水泥混凝土材料和性能调节材料的混合物中的含量计算,性能调节材料的组成及掺量为:二氧化钛纳米管0.8~1.4kg/m3,钴/碳纳米纤维复合材料0.5~0.8kg/m3,纳米碳纤维0.4~0.8kg/m3,纳米二氧化硅2~4kg/m3,氯丁橡胶2~5kg/m3,聚丙烯酸钠6~9kg/m3,聚酰亚胺树脂4~6kg/m3,聚乙烯醇5~7kg/m3,二甲基乙酰胺0.4~0.6kg/m3,甲基丙烯酸十八烷基酯0.2~0.4kg/m3,甲基纤维素0.3~0.5kg/m3
2.权利要求1所述的一种受弯变形小的梯度混凝土材料,其特征在于:二氧化钛纳米管直径为10nm~30nm,长度为0.8~2μm;纳米二氧化硅粒径为20~40nm,含量≥99.5%;钴/碳纳米纤维复合材料中的碳纳米纤维直径为25~50nm,长度为10~20μm;纳米碳纤维直径为150~200nm,长度为10~20μm。
3.制备如权利要求1所述的一种受弯变形小的梯度混凝土材料的方法,其特征在于步骤如下:
1)按照梁的厚度和受力方向由下至上分受拉层、过渡层和受压层三层浇筑,各层厚度比分别为2:1:2;
2)受拉层的制备:根据混凝土用量按比例称取性能调节材料,首先将纳米碳纤维倒入质量浓度为2%~4%的甲基纤维素水溶液中进行分散,随后加入起粘结作用的聚乙烯醇和甲基丙烯酸十八烷基酯混合物,搅拌均匀后水浴加热60min,控制水浴温度40~45℃,冷却至环境温度后静置30min并倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀;
3)过渡层的制备:根据混凝土用量按比例称取性能调节材料,首先将钴/碳纳米纤维复合材料倒入甲基纤维素水溶液进行分散,待分散完全后加入起增强粘结作用的聚酰亚胺树脂与二甲基乙酰胺的基液中,搅拌均匀后40~45℃水浴15min,随即静置20min;最后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀;
4)受压层的制备:根据混凝土用量按比例称取性能调节材料,首先将氯丁橡胶和聚丙烯酸钠混合并搅拌均匀制成粘结剂,加入到制备试样所需的水中,然后将二氧化钛纳米管和纳米二氧化硅倒入粘结剂中并充分搅拌分散均匀并静置15~20min,随后水浴加热45min,控制水浴温度35~40℃,冷却静置30min后倒入混凝土中充分搅拌,待搅拌均匀后倒入模具并使用振动棒震荡均匀。
CN202110972609.5A 2021-08-24 2021-08-24 一种受弯变形小的梯度混凝土材料及其制备方法 Active CN113831053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110972609.5A CN113831053B (zh) 2021-08-24 2021-08-24 一种受弯变形小的梯度混凝土材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110972609.5A CN113831053B (zh) 2021-08-24 2021-08-24 一种受弯变形小的梯度混凝土材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113831053A true CN113831053A (zh) 2021-12-24
CN113831053B CN113831053B (zh) 2022-09-09

Family

ID=78961027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110972609.5A Active CN113831053B (zh) 2021-08-24 2021-08-24 一种受弯变形小的梯度混凝土材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113831053B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117846211A (zh) * 2023-12-28 2024-04-09 广东工业大学 一种3d打印低碳优化变形混凝土板及其制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234502A (ja) * 1999-12-13 2001-08-31 Earth Kobo:Kk 化粧性傾斜機能透水組成物及びその製造方法
EP2006259A2 (en) * 2007-05-01 2008-12-24 Owens-Corning Intellectual Capital, LLC Concrete product with enhanced ornamental surface layer
CN103011730A (zh) * 2012-12-31 2013-04-03 东南大学 一种纤维和聚合物复合增韧混凝土及其制备方法
CN104563389A (zh) * 2014-12-22 2015-04-29 扬州大学 高强钢筋功能梯度混凝土梁
CN107129227A (zh) * 2015-10-14 2017-09-05 东南大学 一种道路路面或机场道面铺装结构的制备方法
CN108424035A (zh) * 2018-04-19 2018-08-21 中原工学院 一种聚合物水泥发泡剂及其发泡混凝土的制备方法
CN109485331A (zh) * 2018-11-08 2019-03-19 刘元雪 双梯度高耗能混凝土以及地下工程防护缓冲层填充方法
CN112062516A (zh) * 2020-07-31 2020-12-11 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种新型梯度工程材料及其制备方法
CN113152784A (zh) * 2021-04-08 2021-07-23 扬州大学 叠合梁及其制备方法
CN213979574U (zh) * 2020-10-21 2021-08-17 广州大学 一种梯度功能梁

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234502A (ja) * 1999-12-13 2001-08-31 Earth Kobo:Kk 化粧性傾斜機能透水組成物及びその製造方法
EP2006259A2 (en) * 2007-05-01 2008-12-24 Owens-Corning Intellectual Capital, LLC Concrete product with enhanced ornamental surface layer
CN103011730A (zh) * 2012-12-31 2013-04-03 东南大学 一种纤维和聚合物复合增韧混凝土及其制备方法
CN104563389A (zh) * 2014-12-22 2015-04-29 扬州大学 高强钢筋功能梯度混凝土梁
CN107129227A (zh) * 2015-10-14 2017-09-05 东南大学 一种道路路面或机场道面铺装结构的制备方法
CN108424035A (zh) * 2018-04-19 2018-08-21 中原工学院 一种聚合物水泥发泡剂及其发泡混凝土的制备方法
CN109485331A (zh) * 2018-11-08 2019-03-19 刘元雪 双梯度高耗能混凝土以及地下工程防护缓冲层填充方法
CN112062516A (zh) * 2020-07-31 2020-12-11 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种新型梯度工程材料及其制备方法
CN213979574U (zh) * 2020-10-21 2021-08-17 广州大学 一种梯度功能梁
CN113152784A (zh) * 2021-04-08 2021-07-23 扬州大学 叠合梁及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
沃丁柱: "《复合材料大全》", 31 January 2000 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117846211A (zh) * 2023-12-28 2024-04-09 广东工业大学 一种3d打印低碳优化变形混凝土板及其制备工艺

Also Published As

Publication number Publication date
CN113831053B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Wang et al. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars
CN104030634B (zh) 一种掺碳纳米管的高强高韧活性粉末混凝土及其制备方法
EP2493829B1 (en) Material to be used as a concrete additive
CN111792890A (zh) 一种全尺度纤维增韧超高性能混凝土及其制备方法
CN108529968A (zh) 一种用于3d打印的纤维混凝土材料及其制备方法
CN109836082A (zh) 一种超高性能自密实混凝土及制备方法
JP2014037348A (ja) コンクリート混合物
CN106007553A (zh) 一种碳纳米管/聚乙烯醇高韧性智能水泥砂浆及其制备
CN113831053B (zh) 一种受弯变形小的梯度混凝土材料及其制备方法
CN113072343A (zh) 一种基于纳米尺度加固的钢纤维水泥基复合材料及其制备方法
KR102011377B1 (ko) 점성조절용 혼합물을 이용한 보통강도용 자기충전 콘크리트
Sarika A study on properties of reactive powder concrete
CN111960769A (zh) 一种新型纳米改性高强度混凝土
WO2021056934A1 (zh) 增强型混凝土内养护高吸水微球材料及制备方法
Sun et al. Multiple effects of nano-CaCO3 and modified polyvinyl alcohol fiber on flexure–tension-resistant performance of engineered cementitious composites
CN104496337A (zh) 纳米粘土改性纤维水泥砂浆及其制备方法
CN113896482A (zh) 一种超轻质高强混凝土及其制备方法
CN112830743A (zh) 一种3d打印高延性彩色混凝土
CN114907077A (zh) 一种纤维编织网增强纳米水泥基复合材料及其制备方法
Arbelaiz et al. Natural fiber–reinforced cement mortar composite physicomechanical properties: from cellulose microfibers to nanocellulose
Bai et al. Effect of nanocellulose on early hydration and microstructure of cement paste under low and high water-cement ratios
CN111908860B (zh) 寒区裂缝自愈合超高性能水泥基复合材料及制备方法
Suresha et al. Morphology and physico-mechanical properties of basalt fiber reinforced composites
Meng et al. Study on Splitting Tensile Mechanical Properties of Carbon Fiber/Polymer Latex Powder Composite Modified Concrete
CN101309875A (zh) 用于和耐碱性玻璃纤维一起使用的含水泥合成物以及这种合成物制成的杆状物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant