CN113817797A - 一种研究乳酸影响肺癌细胞转移侵袭能力的方法 - Google Patents

一种研究乳酸影响肺癌细胞转移侵袭能力的方法 Download PDF

Info

Publication number
CN113817797A
CN113817797A CN202111014748.3A CN202111014748A CN113817797A CN 113817797 A CN113817797 A CN 113817797A CN 202111014748 A CN202111014748 A CN 202111014748A CN 113817797 A CN113817797 A CN 113817797A
Authority
CN
China
Prior art keywords
lkb1
lactic acid
lung cancer
snail
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111014748.3A
Other languages
English (en)
Inventor
魏慧君
李田
李佳曌
吴志浩
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wannan Medical College
Original Assignee
Wannan Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wannan Medical College filed Critical Wannan Medical College
Priority to CN202111014748.3A priority Critical patent/CN113817797A/zh
Publication of CN113817797A publication Critical patent/CN113817797A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/30Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving catalase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5029Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility

Abstract

本发明公开了一种研究乳酸影响肺癌细胞转移侵袭能力的方法,包括如下步骤:S1、验证乳酸诱导EMT表型更加明显;S2、验证Snail表达诱导EMT表型更加明显;S3、观察肺癌细胞H1299和A549经乳酸处理的EMT表型;S4、LKB1野生型的H1299的EMT表型明显、LKB1缺失型的A549的EMT表型不明显;S5、验证LKB1诱导了Snail表达;S6、推测过量乳酸影响了细胞内能量代谢的动态平衡;S7、推测LKB1可能通过调控下游激酶AMPK或者Src诱导了Snail表达;S8、验证AMPK磷酸化是因LKB1活性改变导致;S9、同时利用不同信号传导途径抑制剂,观察哪种信号通路抑制剂可影响乳酸对AMPK的磷酸化;S10、利用不同信号转导通路抑制剂筛选出介导LKB1调控Src激酶的信号通路。本方法能够阐明肿瘤转移的分子机制。

Description

一种研究乳酸影响肺癌细胞转移侵袭能力的方法
技术领域
本发明涉及细胞治疗技术领域,具体涉及一种研究乳酸影响肺癌细胞转移侵袭能力的方法。
背景技术
肺癌目前相对的5年生存率仅为18%,造成肺癌病人远期生存率较低的主要原因是肿瘤的侵袭和转移,研究表明,约80-90%的肺癌死亡病例是由肿瘤转移引起的,而转移的分子机制尚不清楚。现有研究中发现肿瘤Warburg效应中其终产物乳酸通过诱导转录因子Snail来促进肺癌细胞EMT的发生,从而诱发侵袭转移,同时,发现能量代谢关键调控基因LKB1的相关通路介导了Warburg效应促进肺癌细胞侵袭转移的过程。
在现有技术中,缺乏一种对LKB1相关通路在介导Warburg效应促进肺癌细胞侵袭转移过程中的作用及机制的研究方法,从而无法筛选在此过程中的关键调控蛋白并明确其功能,为进一步阐明肿瘤转移的分子机制以及为肿瘤治疗提供新的分子靶点和思路。
发明内容
本发明的目的在于提供一种研究乳酸影响肺癌细胞转移侵袭能力的方法,以解决现有技术中因缺乏对LKB1相关通路介导Warburg效应的机制的研究,导致无法筛选LKB1相关通路参与调控的蛋白的技术问题。
为解决上述技术问题,本发明具体提供下述技术方案,
一种研究乳酸影响肺癌细胞转移侵袭能力的方法,包括如下步骤:
S1、通过将肺癌细胞的观察EMT表型是否明显作为判断肺癌细胞的迁移能力和侵袭能力的指标,并将肺癌细胞置于乳酸环境中,以验证乳酸诱导EMT表型更加明显;
S2、推测乳酸能够促进肺癌细胞中Snail表达,而Snail表达诱导EMT表型更加明显,然后通过在肺癌细胞株中转染Snail的siRNA观察EMT表型是否逆转,以验证Snail表达诱导EMT表型更加明显;
S3、取两种体外肺癌细胞H1299和A549,分别将H1299和A549置于相同浓度的乳酸中,并通过抑制体外肺癌细胞H1299和A549自身的乳酸,然后,观察肺癌细胞H1299和A549的EMT表型;
S4、根据步骤S3观察结果,LKB1野生型的H1299的EMT表型明显、LKB1缺失型的A549的EMT表型不明显;
S5、推测乳酸通过控制LKB1诱导了Snail表达,并通过向A549内转入LKB1的cDNA,向H1299中敲除LKB1,再重复步骤S3,以验证LKB1诱导了Snail表达;
S6、推测过量乳酸影响了细胞内能量代谢的动态平衡,以提供LKB1的活性,或者导致LKB1胚系突变;
S7、推测LKB1可能通过调控下游激酶AMPK或者Src诱导了Snail表达;
S8、在H1299细胞中,敲除LKB1,在A549细胞中转入LKB1的cDNA,然后,通过对照试验,验证AMPK磷酸化是因LKB1活性改变导致;
S9、同时利用不同信号传导途径抑制剂,观察哪种信号通路抑制剂可影响乳酸对AMPK的磷酸化;
S10、将在LKB1缺失的A549细胞中,转入LKB1的cDNA,以及在LKB1野生型的H1299细胞中转入LKB1siRNA,检测LKB1与Src激酶间的关系,利用不同信号转导通路抑制剂筛选出介导LKB1调控Src激酶的信号通路。
作为本发明的一种优选方案,在步骤S8中,所述对照试验包括如下步骤,
S801、乳酸或过氧化氢在体外肺癌细胞中,对LKB1磷酸化和AMPK磷酸化的影响;
S802、向A549内转入LKB1的cDNA,按步骤S801处理A549;
S803、将已构建好的SOD2和线粒体过氧化氢酶的cDNA分别转染至肺癌细胞中,观察过表达SOD2和线粒体中过氧化氢酶能否影响乳酸或过氧化氢所诱导的AMPK磷酸化以及Snail的表达;
S804、将在H1299细胞中,敲除LKB1;在A549细胞中转入LKB1的cDNA,之后利用步骤S803中的方法处理细胞,明确此p-AMPK确实来源于LKB1活性改变。
本发明与现有技术相比较具有如下有益效果,
本发明通过分子和细胞水平展开深入研究,揭示了LKB1相关通路在介导Warburg效应促进肺癌细胞侵袭转移过程中的作用及机制,能够筛选相应的关键调控蛋白并明确其功能,为进一步阐明肿瘤转移的分子机制以及为肿瘤治疗提供新的分子靶点和思路。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施方式中的技术路线图;
图2为本发明实施方式中步骤S1的结果图;
图3为本发明实施方式中步骤S2的结果图;
图4为本发明实施方式中步骤S3中H1299的结果图;
图5为本发明实施方式中步骤S3中A549的结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种研究乳酸影响肺癌细胞转移侵袭能力的方法,包括如下步骤:
S1、通过将肺癌细胞的观察EMT表型是否明显作为判断肺癌细胞的迁移能力和侵袭能力的指标,并将肺癌细胞置于乳酸环境中,以验证乳酸诱导EMT表型更加明显;
S2、推测乳酸能够促进肺癌细胞中Snail表达,而Snail表达诱导EMT表型更加明显,然后通过在肺癌细胞株中转染Snail的siRNA观察EMT表型是否逆转,以验证Snail表达诱导EMT表型更加明显;
S3、取两种体外肺癌细胞H1299和A549,分别将H1299和A549置于相同浓度的乳酸中,并通过抑制体外肺癌细胞H1299和A549自身的乳酸,然后,观察肺癌细胞H1299和A549的EMT表型;
S4、根据步骤S3观察结果,LKB1野生型的H1299的EMT表型明显、LKB1缺失型的A549的EMT表型不明显;
S5、推测乳酸通过控制LKB1诱导了Snail表达,并通过向A549内转入LKB1的cDNA,向H1299中敲除LKB1,再重复步骤S3,以验证LKB1诱导了Snail表达;
S6、推测过量乳酸影响了细胞内能量代谢的动态平衡,以提供LKB1的活性,或者导致LKB1胚系突变;
S7、推测LKB1可能通过调控下游激酶AMPK或者Src诱导了Snail表达;
S8、在H1299细胞中,敲除LKB1,在A549细胞中转入LKB1的cDNA,然后,通过对照试验,验证AMPK磷酸化是因LKB1活性改变导致;
S9、同时利用不同信号传导途径抑制剂,观察哪种信号通路抑制剂可影响乳酸对AMPK的磷酸化;
S10、将在LKB1缺失的A549细胞中,转入LKB1的cDNA,以及在LKB1野生型的H1299细胞中转入LKB1siRNA,检测LKB1与Src激酶间的关系,利用不同信号转导通路抑制剂筛选出介导LKB1调控Src激酶的信号通路。
用外源乳酸(不同浓度)处理肺癌细胞株,细胞的迁移速率增快,侵袭能力增强,证实乳酸对肺癌细胞株的侵袭转移能力有着明显的影响。我们同时发现,在高糖培养条件下诱导的Snail表达及EMT表型同样均可被乳酸脱氢酶的两种siRNA可逆转。由此推断,有氧糖酵解中代谢产物乳酸在促进肺癌细胞产生EMT过程中起到关键作用,且很有可能通过诱导转录因子Snail来发挥作用。随后在肺癌细胞株中转染SnailsiRNA,发现乳酸对肺癌细胞EMT表型的诱导可被部分逆转,证实了乳酸是通过诱导Snail来促进肺癌细胞EMT的发生。
用不同浓度的乳酸分别处理A549,H1299细胞株,发现在LKB1野生型的H1299细胞系中,乳酸促进了Snail的表达以及EMT表型,但在LKB1缺失型的A549中,乳酸诱导的EMT表型并不明显。细胞外乳酸可通过MCT1转运蛋白进入细胞,我们利用MCT1抑制剂CHC以及MCT1的siRNA发现,两者均可部分逆转乳酸诱导肺癌细胞中Snail的表达及EMT的表型。由此可见,重新进入细胞内的乳酸促进了肺癌细胞EMT的产生。
我们在LKB1缺失的A549细胞及NCI-H460细胞中转入LKB1cDNA以及在LKB1野生型H1299细胞中转入LKB1shRNA发现LKB1诱导Src抑制位点527磷酸化,同时在高糖条件下LKB1siRNA促进H1299细胞的迁移可被Src抑制剂PP2所逆转。结果提示LKB1可能通过调控Src活性抑制细胞迁移。
本发明通过分子和细胞水平展开深入研究,揭示了LKB1相关通路在介导Warburg效应促进肺癌细胞侵袭转移过程中的作用及机制,能够筛选相应的关键调控蛋白并明确其功能,为进一步阐明肿瘤转移的分子机制以及为肿瘤治疗提供新的分子靶点和思路。
在步骤S8中,所述对照试验包括如下步骤,
S801、乳酸或过氧化氢在体外肺癌细胞中,对LKB1磷酸化和AMPK磷酸化的影响;
S802、向A549内转入LKB1的cDNA,按步骤S801处理A549;
S803、将已构建好的SOD2和线粒体过氧化氢酶的cDNA分别转染至肺癌细胞中,观察过表达SOD2和线粒体中过氧化氢酶能否影响乳酸或过氧化氢所诱导的AMPK磷酸化以及Snail的表达;
S804、将在H1299细胞中,敲除LKB1;在A549细胞中转入LKB1的cDNA,之后利用步骤S803中的方法处理细胞,明确此p-AMPK确实来源于LKB1活性改变。
以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。

Claims (2)

1.一种研究乳酸影响肺癌细胞转移侵袭能力的方法,其特征在于,包括如下步骤:
S1、通过将肺癌细胞的观察EMT表型是否明显作为判断肺癌细胞的迁移能力和侵袭能力的指标,并将肺癌细胞置于乳酸环境中,以验证乳酸诱导EMT表型更加明显;
S2、推测乳酸能够促进肺癌细胞中Snail表达,而Snail表达诱导EMT表型更加明显,然后通过在肺癌细胞株中转染Snail的siRNA观察EMT表型是否逆转,以验证Snail表达诱导EMT表型更加明显;
S3、取两种体外肺癌细胞H1299和A549,分别将H1299和A549置于相同浓度的乳酸中,并通过抑制体外肺癌细胞H1299和A549自身的乳酸,然后,观察肺癌细胞H1299和A549的EMT表型;
S4、根据步骤S3观察结果,LKB1野生型的H1299的EMT表型明显、LKB1缺失型的A549的EMT表型不明显;
S5、推测乳酸通过控制LKB1诱导了Snail表达,并通过向A549内转入LKB1的cDNA,向H1299中敲除LKB1,再重复步骤S3,以验证LKB1诱导了Snail表达;
S6、推测过量乳酸影响了细胞内能量代谢的动态平衡,以提供LKB1的活性,或者导致LKB1胚系突变;
S7、推测LKB1可能通过调控下游激酶AMPK或者Src诱导了Snail表达;
S8、在H1299细胞中,敲除LKB1,在A549细胞中转入LKB1的cDNA,然后,通过对照试验,验证AMPK磷酸化是因LKB1活性改变导致;
S9、同时利用不同信号传导途径抑制剂,观察哪种信号通路抑制剂可影响乳酸对AMPK的磷酸化;
S10、将在LKB1缺失的A549细胞中,转入LKB1的cDNA,以及在LKB1野生型的H1299细胞中转入LKB1siRNA,检测LKB1与Src激酶间的关系,利用不同信号转导通路抑制剂筛选出介导LKB1调控Src激酶的信号通路。
2.根据权利要求1所述的一种研究乳酸影响肺癌细胞转移侵袭能力的方法,其特征在于,在步骤S8中,所述对照试验包括如下步骤,
S801、乳酸或过氧化氢在体外肺癌细胞中,对LKB1磷酸化和AMPK磷酸化的影响;
S802、向A549内转入LKB1的cDNA,按步骤S801处理A549;
S803、将已构建好的SOD2和线粒体过氧化氢酶的cDNA分别转染至肺癌细胞中,观察过表达SOD2和线粒体中过氧化氢酶能否影响乳酸或过氧化氢所诱导的AMPK磷酸化以及Snail的表达;
S804、将在H1299细胞中,敲除LKB1;在A549细胞中转入LKB1的cDNA,之后利用步骤S803中的方法处理细胞,明确此p-AMPK确实来源于LKB1活性改变。
CN202111014748.3A 2021-08-31 2021-08-31 一种研究乳酸影响肺癌细胞转移侵袭能力的方法 Pending CN113817797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111014748.3A CN113817797A (zh) 2021-08-31 2021-08-31 一种研究乳酸影响肺癌细胞转移侵袭能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111014748.3A CN113817797A (zh) 2021-08-31 2021-08-31 一种研究乳酸影响肺癌细胞转移侵袭能力的方法

Publications (1)

Publication Number Publication Date
CN113817797A true CN113817797A (zh) 2021-12-21

Family

ID=78913925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111014748.3A Pending CN113817797A (zh) 2021-08-31 2021-08-31 一种研究乳酸影响肺癌细胞转移侵袭能力的方法

Country Status (1)

Country Link
CN (1) CN113817797A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226396A1 (en) * 2008-03-07 2009-09-10 Haley John D Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2016011065A1 (en) * 2014-07-15 2016-01-21 Salk Institute For Biolofical Studies Detecting dixdc1 (dix domain-containing protein 1) expression to determine if a tumor will respond to fak and src kinase inhibitors
CN108251526A (zh) * 2017-11-29 2018-07-06 南京医科大学 细胞因子信号转导抑制因子2的应用
CN112083171A (zh) * 2020-09-07 2020-12-15 中国人民解放军总医院第八医学中心 Ku70蛋白T455位点磷酸化抑制剂及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226396A1 (en) * 2008-03-07 2009-09-10 Haley John D Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2016011065A1 (en) * 2014-07-15 2016-01-21 Salk Institute For Biolofical Studies Detecting dixdc1 (dix domain-containing protein 1) expression to determine if a tumor will respond to fak and src kinase inhibitors
CN108251526A (zh) * 2017-11-29 2018-07-06 南京医科大学 细胞因子信号转导抑制因子2的应用
CN112083171A (zh) * 2020-09-07 2020-12-15 中国人民解放军总医院第八医学中心 Ku70蛋白T455位点磷酸化抑制剂及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUIJUN WEI ET AL.: "Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16INK4a inactivation", JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 26 February 2018 (2018-02-26) *
魏慧君: "乳酸诱导肺腺癌细胞上皮间质转化的机制研究", 中国优秀硕士学位论文全文数据库 医药卫生科技辑, 15 April 2016 (2016-04-15), pages 23 *

Similar Documents

Publication Publication Date Title
Laurent et al. Nox1 is over‐expressed in human colon cancers and correlates with activating mutations in K‐Ras
Lin et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1
Yang et al. Pro‐apoptotic effect of endogenous H2S on human aorta smooth muscle cells
Reddy et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions
Mor et al. Control of glycolysis through regulation of PFK1: old friends and recent additions
Scheele et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function
Zaugg et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
Yu et al. MicroRNA-204 suppresses trophoblast-like cell invasion by targeting matrix metalloproteinase-9
Li et al. miR‐219‐5p inhibits tau phosphorylation by targeting TTBK1 and GSK‐3β in Alzheimer's disease
Lu et al. miRNA-221 promotes proliferation, migration and invasion by targeting TIMP2 in renal cell carcinoma
Stepp et al. Genetic and small molecule inhibition of arylamine N‐acetyltransferase 1 reduces anchorage‐independent growth in human breast cancer cell line MDA‐MB‐231
Yang et al. RAS promotes tumorigenesis through genomic instability induced by imbalanced expression of Aurora‐A and BRCA2 in midbody during cytokinesis
Yang et al. Circular RNA circRGNEF promotes bladder cancer progression via miR-548/KIF2C axis regulation
Zhao et al. LncRNA BDNF‐AS inhibits proliferation, migration, invasion and EMT in oesophageal cancer cells by targeting miR‐214
Zhang et al. MicroRNA-338-3p inhibits the progression of bladder cancer through regulating ETS1 expression.
Zhong et al. p38 and JNK pathways control E-selectin-dependent extravasation of colon cancer cells by modulating miR-31 transcription
Bechard et al. Pancreatic cancers suppress negative feedback of glucose transport to reprogram chromatin for metastasis
Ernst et al. Knockdown of L1CAM significantly reduces metastasis in a xenograft model of human melanoma: L1CAM is a potential target for anti-melanoma therapy
Li et al. miR-34a-5p functions as a tumor suppressor in head and neck squamous cell cancer progression by targeting Flotillin-2
Orlandi et al. Altered expression of mitochondrial NAD+ carriers influences yeast chronological lifespan by modulating cytosolic and mitochondrial metabolism
Li et al. PRMT5 prevents dilated cardiomyopathy via suppression of protein O-GlcNAcylation
Lv et al. MicroRNA‐520e targets AEG‐1 to suppress the proliferation and invasion of colorectal cancer cells through Wnt/GSK‐3β/β‐catenin signalling
Zhang et al. Effect of p53 and its N‐terminally truncated isoform, Δ40p53, on breast cancer migration and invasion
Cheng et al. Long non-coding RNA LINC00511 promotes proliferation, invasion, and migration of non-small cell lung cancer cells by targeting miR-625-5p/GSPT1
Sang et al. Downregulation of microRNA-637 increases risk of hypoxia-induced pulmonary hypertension by modulating expression of cyclin dependent kinase 6 (CDK6) in pulmonary smooth muscle cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination