CN113809298B - Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof - Google Patents

Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof Download PDF

Info

Publication number
CN113809298B
CN113809298B CN202111059722.0A CN202111059722A CN113809298B CN 113809298 B CN113809298 B CN 113809298B CN 202111059722 A CN202111059722 A CN 202111059722A CN 113809298 B CN113809298 B CN 113809298B
Authority
CN
China
Prior art keywords
mxene
dimensional
composite material
lithium
graphite alkyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111059722.0A
Other languages
Chinese (zh)
Other versions
CN113809298A (en
Inventor
孙麓
李岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202111059722.0A priority Critical patent/CN113809298B/en
Publication of CN113809298A publication Critical patent/CN113809298A/en
Application granted granted Critical
Publication of CN113809298B publication Critical patent/CN113809298B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The invention discloses a two-dimensional composite material and preparation and application thereof. The two-dimensional graphite alkyne/MXene composite material is prepared by adopting ultrasonic stripping, surface modification and electrostatic adsorption processes and is applied to a metal lithium composite cathode. The alkyne bond structure in the graphdiyne induces the nucleation of the metallic lithium, the nucleation barrier is reduced, the excellent conductivity of MXene promotes the transmission of lithium ions, the formation of lithium dendrite is effectively inhibited by the synergistic effect of the two, and the metallic lithium composite negative electrode with stable circulation is obtained. And the lithium metal full battery can be matched with the anode material, so that the lithium metal full battery with high capacity, long cycle and excellent rate performance can be obtained.

Description

Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof
Technical Field
The invention belongs to the field of new materials, and particularly relates to a two-dimensional graphdiyne/MXene composite material, a preparation method thereof and application of a metal lithium composite cathode.
Background
The metallic lithium has extremely high theoretical specific capacity (3860 mAh g- 1 ) And the lowest redox voltage (-3.04v vs. she), are considered to be ideal anode materials for achieving high energy density lithium metal batteries. However, lithium dendrites that grow uncontrollably are generated in the charging and discharging process of the metal lithium negative electrode, which can reduce the cycle life of the battery and bring about potential safety problems such as battery short circuit, and thus the commercialization process of the lithium metal battery is seriously hindered.
MXenes is a novel two-dimensional transition metal carbon/nitride, the corresponding characteristic of quick charge and rich surface chemical property of the MXenes are in accordance with the construction requirement of a dendritic-free metal lithium cathode, however, the MXenes are easy to collapse and restack between layers in the circulation process, so that the nucleation sites of surface metal lithium are reduced, the diffusion rate of lithium ions is reduced, and the regulation and control effect of the MXenes on the lithium deposition behavior is limited. 2017, professor Yury GogotsiThe graphene/MXene two-dimensional composite material is prepared and used for a super capacitor electrode material, wherein the graphene nanosheets are inserted into MXene layers, self-accumulation of the MXene nanosheets is effectively prevented, the interlayer spacing is remarkably improved, and a super capacitor constructed by the graphene/MXene two-dimensional composite material shows excellent volume specific energy and rate capability (adv. Funct. Mater.2017,27,1701264). However by sp 2 Graphene formed by hybridized carbon is difficult to generate strong interaction with metal atoms theoretically, the adsorption effect of the graphene on lithium atoms is limited, although the lithium affinity performance of the graphene can be improved to a certain extent by introducing heterogeneous atoms and other methods, the heterogeneous atoms are combined with lithium to generate side reaction to form additional lithium salt, and the cycle life of the battery can be further shortened (ACS appl.
The graphyne is a two-dimensional layered material of new carbon and is formed by sp and sp 2 Due to the characteristics of unique acetylene bond structures, large aperture and the like, the carbon atoms in the two hybrid forms have stronger lithium ion adsorption capacity, low lithium ion diffusion energy barrier and ultrahigh in-plane and interlayer ion mobility (chem.Soc.Rev.2019, 48,908), so that the graphite alkyne shows good performance in inhibiting metal lithium dendrites (nat.Energy2016, 1,16010).
Disclosure of Invention
The invention aims to provide a two-dimensional graphyne/MXene composite material and a preparation method and application thereof. The graphite alkyne/MXene metal lithium composite electrode is prepared by electrodeposition and is matched with a positive electrode material to prepare the lithium metal battery, so that the problem of dendritic crystals of the conventional metal lithium negative electrode is solved, and the reversible capacity, the rate capability and the cycling stability of the lithium metal battery are improved.
In a first aspect, the invention provides a two-dimensional graphite alkyne/MXene composite material, which is formed by stacking two-dimensional MXene and graphite alkyne nanosheets layer by layer.
In a second aspect, the invention provides a preparation method of a two-dimensional graphdiyne/MXene composite material, which comprises the following steps: etching the MAX phase by adopting HF or a mixed solution of HCl and LiF, and preparing MXene nanosheet dispersion with the concentration of 0.5-2 mg/mL by combining an ultrasonic-assisted stripping method; carrying out cation-assisted ultrasonic stripping on the graphite alkyne powder to obtain cationized graphite alkyne nanosheet dispersion liquid with the concentration of 0.5-2 mg/mL; and mixing and stirring the two kinds of dispersion liquid to obtain flocculent precipitate, centrifuging, freezing and drying to obtain the two-dimensional graphite alkyne/MXene composite material. Wherein the cation is poly diallyl dimethyl ammonium chloride (PDDA) or polyacrylic acid (PAA).
In a third aspect, the invention provides a metal lithium composite negative electrode, wherein metal lithium is deposited in the two-dimensional graphite alkyne/MXene composite material to prepare the graphite alkyne/MXene metal lithium composite negative electrode, and the negative electrode has good cycle stability and rate capability.
The method for depositing the metal lithium is a melting method or an electrodeposition method; further preferred is an electrodeposition method.
In a fourth aspect, the present invention provides a lithium metal full cell equipped with the above-described lithium metal composite negative electrode.
Advantageous effects
The invention provides a novel two-dimensional graphite alkyne/MXene two-dimensional composite material and a preparation method thereof. The alkyne bond structure in the graphdiyne induces the nucleation of the metallic lithium, the nucleation barrier is reduced, the excellent conductivity of MXene promotes the transmission of lithium ions, the formation of lithium dendrites is effectively inhibited by the synergistic effect of the two, the deposition behavior of the metallic lithium can be effectively controlled, and thus the metallic lithium composite cathode without dendrites and the metallic lithium composite cathode with stable circulation are obtained. And the lithium metal full battery can be matched with the anode material, so that the lithium metal full battery with high capacity, long cycle and excellent rate performance can be obtained. The novel two-dimensional graphite alkyne/MXene two-dimensional composite material and the metal lithium composite electrode thereof have the characteristics of simple preparation process, short time and capability of being prepared massively.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention. In the drawings:
FIG. 1 shows Ti provided in example 1 of the present invention 3 C 2 -TEM image, (b) HRTEM image, (c) AFM image of MXene nanoplatelets
Fig. 2 is a TEM image of a two-dimensional graphdine-PDDA nanosheet provided in example 1 of the present invention;
FIG. 3 is SEM morphology images of lithium metal composite anodes constructed based on different substrates in example 2 and comparative example 1 of the present invention (a) a graphite alkyne/MXene-Li anode, (b) a Cu-Li anode;
FIG. 4 shows the current of 8mA cm for example 3 of the present invention and comparative examples 2 and 3 thereof -2 EIS curves after 50 cycles at density.
Detailed Description
The technical solutions of the present invention will be described clearly and completely with reference to the accompanying drawings, and it should be understood that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be obtained by a person skilled in the art without making any creative effort based on the embodiments of the present invention, belong to the protection scope of the present invention.
Example 1
This example provides a method for preparing a graphdiyne/MXene material, in which Ti is used 3 AlC 2 The preparation process of the invention, which is illustrated by the example of the-MAX phase, comprises the following steps:
(1) Adding 0.99g LiF into 10mL of 10M HCl solution and magnetically stirring for 5min; then 1g of Ti 3 AlC 2 Slowly adding the powder into the mixed solution within 10min, and magnetically stirring for 24 hours at 35 ℃ until the reaction is complete; washing the reaction product with deionized water, and centrifuging to obtain solid precipitate; washing the collected solid precipitate with deionized water, centrifuging at 3500rmp speed until the pH value of supernatant exceeds 6; dispersing the precipitate in deionized water, ultrasonic treating under Ar atmosphere for 30min, and then 3500rCentrifuging for 1h under mp to obtain Ti 3 C 2 A nanosheet aqueous solution; the resulting Ti was prepared as shown in FIG. 1 3 C 2 The MXene nanosheets are thin in thickness and have certain light transmittance, and further AFM (atomic force microscopy) tests show that the thickness distribution of the MXene nanosheets is 0.8-1.6 nm, so that the number of layers of the prepared MXene nanosheets is 1-2;
(2) Dispersing 10mg of graphdine powder in PDDA (polymer dispersed DA), and performing ultrasonic treatment for 12 hours in Ar atmosphere to obtain graphdine-PDDA dispersion liquid with the concentration of 0.5mg mL -1 (ii) a As shown in fig. 2, in order to prepare the graphite alkyne-PDDA nanosheet, fig. 2 shows the morphology of the two-dimensional graphite alkyne-PDDA nanosheet, and it can be seen from the figure that the prepared graphite alkyne nanosheet is thin in thickness and about 200nm in transverse dimension;
(3) Adding the graphite alkyne-PDDA nanosheet dispersion liquid prepared in the step (2) into the Ti prepared in the step (1) 3 C 2 Magnetically stirring the MXene solution for 8 hours to obtain a flocculent product, centrifuging at 2000rmp, and freeze-drying for 24 hours to finally obtain the two-dimensional graphite alkyne/MXene composite material.
Example 2
The embodiment provides a lithium metal composite electrode containing a two-dimensional graphite alkyne/MXene composite material, which comprises the following specific preparation processes: firstly, the graphite alkyne/MXene metal lithium composite material prepared in the embodiment (1) is coated on copper foil to be used as a working electrode, metal lithium is used as a counter electrode, electrolyte is 1M LiTFSI/DOL (volume ratio 1:1), and the electrodeposition current density is 1mA cm -2 The capacity of the electrodeposited metallic lithium is 8mAh cm -2 And preparing the graphite alkyne/MXene metallic lithium composite negative electrode (graphite alkyne/MXene-Li).
Comparative example 1
To further illustrate the inhibition effect of Dan Mogui-MXene material on lithium dendrite, a metallic lithium negative electrode (Cu-Li) prepared by using a negative current collector copper foil commonly used in a lithium ion battery is taken as a comparative example, and compared with example 2, the difference is that a working electrode prepared by using the comparative example 1 is a bare copper foil which is not coated by graphite alkyne/MXene.
FIG. 3 shows that the amount of deposited lithium metal was 8mAh cm -2 In the meantime, graphiteThe surface morphology of the alkyne/MXene-Li electrode and the Cu-Li electrode, namely the deposition morphology of the metal lithium on the surfaces of different substrates (Cu, graphite alkyne/MXene), can be seen from the figure, the metal lithium layer on the surface of the graphite alkyne/MXene-Li electrode is represented by a smooth and uniform deposition morphology, the metal lithium layer on the surface of the copper foil is represented by an uneven small island morphology, the morphology is easy to induce a tip effect, and the growth of dendrites is easy to induce in the battery circulation process.
Example 3
This embodiment provides a full cell containing a graphite alkyne/MXene lithium metal composite electrode, in which a positive electrode material lithium iron phosphate (LiFePO) 4 ) The description is given for the sake of example. The assembly method of the full cell is as follows: using LiFePO 4 The pole piece is a positive electrode, the graphite alkyne/MXene-Li prepared in example 2 is a negative electrode, the diaphragm is Celgard2400, and the electrolyte is 20 mu L of 1mol L -1 Is prepared by the method of (1) LiTFSI-DOL/DME (solvent volume ratio of 1:1). CR-2032 button cells were assembled in Ar gloves. Wherein LiFePO 4 The preparation method of the pole piece comprises the following steps: mixing LiFePO 4 Conductive carbon black (Super C) and a binder (PVDF) according to a mass ratio of 8:1:1 is dispersed in NMP solvent and ground for 1 hour by a mortar to obtain evenly dispersed slurry. Uniformly coating the slurry on a copper foil by using a scraper, drying at 40 ℃, punching into a circular electrode plate with the diameter of 12mm, tabletting under the pressure of 5MPa, and carrying out vacuum drying at 120 ℃ for 12h. Wherein LiFePO 4 The loading amount of (2) was 3.36mg cm -2
Comparative example 2
Compared with example 3, the difference is that the negative electrode of the assembled full cell of comparative example 2 is a graphene/MXene lithium metal composite electrode (graphene/MXene-Li), wherein the preparation method of the graphene/MXene lithium metal composite electrode is the same as that of the graphene/MXene lithium metal composite electrode of example 2.
Comparative example 3
Compared with example 3, the difference is that the negative electrode of the full cell of comparative example 3 is the Cu — Li electrode prepared in comparative example 1.
Fig. 4 shows EI S spectra of the full cells of example 3, comparative example 2 and comparative example 3 after 50 cycles of charging and discharging, and it can be seen from the graphs that the resistance value of the graphdine/MXene-Li electrode is smaller than that of the graphene/MXene-Li and Cu-Li electrodes, which indicates that the graphdine/MXene can optimize the transmission performance of lithium ions in the material compared with the graphene/MXene and copper foil, and is significant for enhancing the electrochemical performance of the cell.
In addition, the full battery of the graphite alkyne/MXene lithium metal composite negative electrode has the characteristics of high capacity, long cycle and excellent rate performance under high current density, and the two-dimensional graphite alkyne/MXene material is proved to effectively inhibit the formation of lithium dendrites, and the metal lithium composite negative electrode constructed by the material has excellent cycle stability.
It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (6)

1. A preparation method of a two-dimensional graphite alkyne/MXene composite material is characterized by comprising the following steps: preparing MXene by using an MAX phase as a raw material through an etching method, and performing ultrasonic treatment to obtain a monodisperse MXene nanosheet dispersion liquid; taking the graphite alkyne powder as a raw material, and obtaining a graphite alkyne nanosheet dispersion solution with monodispersity by adopting cation-assisted ultrasonic stripping; and mixing and stirring the two dispersion liquids to obtain flocculent products, collecting, washing, freezing and drying to obtain the two-dimensional graphite alkyne/MXene composite material, wherein the two-dimensional graphite alkyne/MXene composite material is formed by stacking two-dimensional graphite alkyne and MXene nanosheets layer by layer.
2. The preparation method of the two-dimensional graphdine/MXene composite material according to claim 1, characterized in that: the concentration of the MXene nano-sheet dispersion liquid is 0.5-2 mg/mL.
3. The preparation method of the two-dimensional graphdine/MXene composite material according to claim 1, characterized in that: the concentration of the graphite alkyne nanosheet dispersion liquid is 0.5-2 mg/mL.
4. The preparation method of the two-dimensional graphdine/MXene composite material according to claim 1, characterized in that: MXene is prepared by an etching method, wherein an etching agent is HF or a mixed solution of HCl and LiF.
5. The preparation method of the two-dimensional graphdiyne/MXene composite material according to claim 1, wherein: and (3) carrying out ultrasonic stripping with the aid of cations to obtain a monodisperse graphite alkyne nanosheet dispersion liquid, wherein the cations are poly (diallyl dimethyl ammonium) chloride (PDDA) or polyacrylic acid (PAA).
6. The preparation method of the two-dimensional graphdine/MXene composite material according to claim 1, characterized in that: and mixing and stirring the two dispersions to obtain flocculent products, collecting, washing and freeze-drying, wherein the electrical properties of the surfaces of the nanosheets in the two dispersions are opposite, and assembling through electrostatic action to form the two-dimensional graphdiyne/MXene composite material.
CN202111059722.0A 2021-09-10 2021-09-10 Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof Active CN113809298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111059722.0A CN113809298B (en) 2021-09-10 2021-09-10 Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111059722.0A CN113809298B (en) 2021-09-10 2021-09-10 Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof

Publications (2)

Publication Number Publication Date
CN113809298A CN113809298A (en) 2021-12-17
CN113809298B true CN113809298B (en) 2022-11-04

Family

ID=78940631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111059722.0A Active CN113809298B (en) 2021-09-10 2021-09-10 Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof

Country Status (1)

Country Link
CN (1) CN113809298B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551811A (en) * 2022-02-22 2022-05-27 北京航空航天大学 Preparation method of vertical MXene array pole piece, vertical MXene array pole piece and application
CN114551888A (en) * 2022-04-26 2022-05-27 北京三川烯能科技有限公司 Method for inhibiting lithium precipitation of lithium ion battery negative electrode, slurry, negative electrode, battery and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070857A (en) * 2012-11-28 2014-06-11 건국대학교 산학협력단 Anode material with graphynes, and a lithium ion battery having the same
CN108281612A (en) * 2018-01-19 2018-07-13 浙江大学 A kind of compound lithium an- ode
CN111799464A (en) * 2020-07-08 2020-10-20 中国科学院电工研究所 MXene/graphene composite nanosheet, preparation method and application thereof, electrode plate and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293276B (en) * 2020-02-07 2022-10-14 大连理工大学 Composite lithium metal negative electrode based on MXene nanobelt and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070857A (en) * 2012-11-28 2014-06-11 건국대학교 산학협력단 Anode material with graphynes, and a lithium ion battery having the same
CN108281612A (en) * 2018-01-19 2018-07-13 浙江大学 A kind of compound lithium an- ode
CN111799464A (en) * 2020-07-08 2020-10-20 中国科学院电工研究所 MXene/graphene composite nanosheet, preparation method and application thereof, electrode plate and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石墨炔类结构储锂性能的第一性原理研究;赵晗等;《高等学校化学学报》;20140831;第35卷(第8期);第1731-1738页 *

Also Published As

Publication number Publication date
CN113809298A (en) 2021-12-17

Similar Documents

Publication Publication Date Title
Cao et al. 3D hierarchical porous α‐Fe2O3 nanosheets for high‐performance lithium‐ion batteries
CN102142536B (en) Electrically conductive nanocomposite material and open porous nanocomposites produced by the same
CN113437254B (en) Negative pole piece of sodium ion battery, electrochemical device and electronic equipment
KR20100103429A (en) Open porous electrically conductive nanocomposite material
CN113809298B (en) Two-dimensional graphite alkyne/MXene composite material and preparation and application thereof
CN107808944A (en) Porous MOF/CNFs composites for lithium anode protection
CN112928381B (en) Lithium-supplementing electrode plate and lithium-supplementing diaphragm of lithium ion battery and preparation method of lithium-supplementing electrode plate and lithium-supplementing diaphragm
CN112117435B (en) All-solid-state lithium battery positive plate, preparation method thereof and all-solid-state lithium battery
CN109088095B (en) All-solid-state lithium battery and preparation method thereof
Han et al. Lithiophilic and conductive V2O3/VN nanosheets as regulating layer for high-rate, high-areal capacity and dendrite-free lithium metal anodes
Yang et al. Nickel cobalt selenides on black phosphorene with fast electron transport for high-energy density sodium-ion half/full batteries
Kim et al. Metal–organic framework for dendrite-free anodes in aqueous rechargeable zinc batteries
Zheng et al. Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating
CN104766971A (en) Positive electrode material and aqueous battery containing positive electrode material
Li et al. Unlocking cycling longevity in micro-sized conversion-type FeS2 cathodes
Jeon et al. Argentophilic pyridinic nitrogen for embedding lithiophilic silver nanoparticles in a three-dimensional carbon scaffold for reversible lithium plating/stripping
Zheng et al. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries
CN113697811A (en) Three-dimensional layered boron-doped titanium carbide and preparation method and application thereof
Cao et al. A mixed ion-electron conducting network derived from a porous CoP film for stable lithium metal anodes
US20230006215A1 (en) Negative electrode plate, method for preparing same, battery containing same, and electronic device
CN113540454B (en) Lithium-philic porous composite carbon skeleton of 3D lithium metal negative electrode and preparation method and application thereof
CN115498175A (en) High-reversible dendrite-free zinc-poor negative electrode based on ZnCo ZIF derived carbon
CN113461848B (en) Preparation and application of lithium polymethacrylsulfonate for lithium battery cathode protection
CN115275168A (en) High-rate lithium ion battery negative electrode material and preparation method thereof
WO2018195837A1 (en) Metal-sulfur battery and preparation method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant