CN113791429B - 一种基于svm的卫星接收机故障分析方法 - Google Patents

一种基于svm的卫星接收机故障分析方法 Download PDF

Info

Publication number
CN113791429B
CN113791429B CN202110913858.7A CN202110913858A CN113791429B CN 113791429 B CN113791429 B CN 113791429B CN 202110913858 A CN202110913858 A CN 202110913858A CN 113791429 B CN113791429 B CN 113791429B
Authority
CN
China
Prior art keywords
training model
classification
classification training
svm multi
verified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110913858.7A
Other languages
English (en)
Other versions
CN113791429A (zh
Inventor
王崇旭
刘璞
何伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN202110913858.7A priority Critical patent/CN113791429B/zh
Publication of CN113791429A publication Critical patent/CN113791429A/zh
Application granted granted Critical
Publication of CN113791429B publication Critical patent/CN113791429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明提供了一种基于SVM的卫星接收机故障分析方法,所述方法包括:S10、采集卫星接收机在多种工况下的试验数据;S20、对多种工况下的试验数据进行预处理;S30、得到SVM多分类训练模型;S40、得到参数寻优后的SVM多分类训练模型;S50、得到验证后的SVM多分类训练模型;S60、得到验证后的SVM多分类训练模型的准确率;S70、在准确率大于或等于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型;S80、在准确率小于预设值的情况下,获取健康状态评估函数;S90、基于健康状态评估函数对卫星接收机故障进行分析。本发明能够解决现有方法无法快速、准确地解决卫星接收机***长时间运行过程中的故障检测和分类的技术问题。

Description

一种基于SVM的卫星接收机故障分析方法
技术领域
本发明涉及卫星导航故障分析技术领域,尤其涉及一种基于SVM的卫星接收机故障分析方法。
背景技术
卫星接收机是卫星导航的关键设备之一。随着卫星导航技术的发展,导航接收机传送下来的卫星导航数据质量及其接收机性能的高低越来越受到关注,卫星导航试验数据故障分析技术与接收机性能评估的研究也越来越深入。近十几年来,卫星导航技术和应用发展很快,特别是北斗导航等新导航***的加入,使得传送下来的卫星导航试验数据的字段越来越多、数据量越来越大,产生的故障类型越来越复杂,人工排查难以覆盖全面。
因此,现有方法无法快速、准确地解决卫星接收机***长时间运行过程中的故障检测和分类。
发明内容
本发明提供了一种基于SVM的卫星接收机故障分析方法,能够解决现有方法无法快速、准确地解决卫星接收机***长时间运行过程中的故障检测和分类的技术问题。
根据本发明的一方面,提供了一种基于SVM的卫星接收机故障分析方法,所述方法包括:
S10、采集卫星接收机在多种工况下的试验数据,并分别将每种工况下的试验数据打上标签进行标识;
S20、对多种工况下的试验数据进行预处理,得到预处理后的样本数据,并将预处理后的样本数据随机分为训练样本集和测试样本集;
S30、基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型;
S40、采用网格搜索方法对SVM多分类训练模型进行参数寻优,得到参数寻优后的SVM多分类训练模型;
S50、采用交叉验证方法对参数寻优后的SVM多分类训练模型进行验证,得到验证后的SVM多分类训练模型;
S60、将测试样本集导入验证后的SVM多分类训练模型,得到验证后的SVM多分类训练模型的准确率;
S70、在验证后的SVM多分类训练模型的准确率大于或等于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,以完成卫星接收机的故障诊断;
S80、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数;
S90、基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断。
优选的,在S60中,通过下式得到验证后的SVM多分类训练模型的准确率:
式中,ACC为验证后的SVM多分类训练模型的准确率,TP为验证后的SVM多分类训练模型将正例标签数据分类为正例的数量,TN为验证后的SVM多分类训练模型将正例标签数据分类为反例的数量,FN为验证后的SVM多分类训练模型将反例标签数据分类为反例的数量,FP为验证后的SVM多分类训练模型将反例标签数据分类为正例的数量。
优选的,在S80中,在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数包括:
S81、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型;
S82、在测试样本的故障类型为正常工况的情况下,将验证后的SVM多分类训练模型的决策函数最大值赋值给健康状态评估函数;
S83、在测试样本的故障类型为故障工况的情况下,将验证后的SVM多分类训练模型的决策函数最小值赋值给健康状态评估函数。
优选的,在S90中,基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断包括:
S91、在健康状态评估函数大于或等于1的情况下,卫星接收机处于健康状态;
S92、在健康状态评估函数大于或等于0且小于1的情况下,卫星接收机处于亚健康状态;
S93、在健康状态评估函数大于-1且小于0的情况下,卫星接收机处于临界检修状态;
S94、在健康状态评估函数小于或等于-1的情况下,卫星接收机处于故障状态。
优选的,在S20中,对多种工况下的试验数据进行预处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据。
优选的,对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及采用主成分分析方法进行降维处理,得到预处理后的样本数据。
优选的,在S30中,基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型包括:
S31、选取核函数和多分类问题类型,并基于选取的核函数、多分类问题类型和训练样本集确定惩罚因子和训练样本集的工况类别数量k;
S32、将训练样本集中的训练样本分k类排序以获取k(k-1)/2个二分类组合,并获取各个分类组合的决策函数;
S33、基于各个分类组合的决策函数得到SVM多分类训练模型。
优选的,多种工况包括正常工况和故障工况,其中,正常工况包括正常运行状态,故障工况包括试验数据丢帧状态、功率字跳变过大状态和滤波器损坏状态。
根据本发明的又一方面,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一所述方法。
应用本发明的技术方案,对多种工况下的试验数据进行预处理,便于后续模型计算,且提高了支持向量机(Support Vector Machine,SVM)多分类训练模型的分类准确率;对SVM多分类训练模型进行参数寻优,进一步提高了SVM多分类训练模型的分类准确率;采用交叉验证方法来检验SVM多分类训练模型的性能,降低SVM多分类训练模型的过拟合问题;通过测试样本的故障类型或健康状态评估函数来完成卫星接收机的故障诊断。本发明的方法能够克服现有技术的缺陷,从而更快速、准确地解决卫星接收机***长时间运行过程中的故障检测和分类。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施例,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明的一种实施例提供的基于SVM的卫星接收机故障分析方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
如图1所示,本发明提供了一种基于SVM的卫星接收机故障分析方法,所述方法包括:
S10、采集卫星接收机在多种工况下的试验数据,并分别将每种工况下的试验数据打上标签进行标识;
S20、对多种工况下的试验数据进行预处理,得到预处理后的样本数据,并将预处理后的样本数据随机分为训练样本集和测试样本集;
S30、基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型;
S40、采用网格搜索方法对SVM多分类训练模型进行参数寻优,得到参数寻优后的SVM多分类训练模型;
S50、采用交叉验证方法对参数寻优后的SVM多分类训练模型进行验证,得到验证后的SVM多分类训练模型;
S60、将测试样本集导入验证后的SVM多分类训练模型,得到验证后的SVM多分类训练模型的准确率;
S70、在验证后的SVM多分类训练模型的准确率大于或等于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,以完成卫星接收机的故障诊断;
S80、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数;
S90、基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断。
本发明对多种工况下的试验数据进行预处理,便于后续模型计算,且提高了支持向量机(Support Vector Machine,SVM)多分类训练模型的分类准确率;对SVM多分类训练模型进行参数寻优,进一步提高了SVM多分类训练模型的分类准确率;采用交叉验证方法来检验SVM多分类训练模型的性能,降低SVM多分类训练模型的过拟合问题;通过测试样本的故障类型或健康状态评估函数来完成卫星接收机的故障诊断。本发明的方法能够克服现有技术的缺陷,从而更快速、准确地解决卫星接收机***长时间运行过程中的故障检测和分类。
根据本发明的一种实施例,S10中的多种工况包括正常工况和故障工况,其中,正常工况包括正常运行状态,故障工况包括试验数据丢帧状态、功率字跳变过大状态和滤波器损坏状态。
其中,试验数据丢帧状态即传出的数据不连续;功率字跳变过大状态即不同定位***功率受到一定程度的干扰;滤波器损坏状态即数据显示情况为功率字为0。
根据本发明的一种实施例,在S20中,对多种工况下的试验数据进行预处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据。
本发明通过对多种工况下的试验数据进行单位化处理,以避免部分字段随时间而增长的问题;通过对多种工况下的试验数据进行归一化处理,以避免大数值区间的属性过分支配小数值区间的属性及避免计算过程中数值的复杂度,同时,可以使数据更加整洁,有利于模型的收敛、使各个特征量在模型构建时的贡献大小均匀;通过对多种工况下的试验数据进行降维处理,以降低模型计算的复杂度,提高分类准确率。
具体地,由于试验数据中有负值,可通过下式将每个试验数据线性缩放至区间[-1,1]:
式中,y为归一化处理的试验数据,x为原始的试验数据,ymin和ymax分别为归一化处理的试验数据的最小值和最大值,xmin和xmax分别为原始的试验数据的最小值和最大值。
进一步地,对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及采用主成分分析方法进行降维处理,得到预处理后的样本数据。
具体地,采用主成分分析方法对试验数据进行降维处理时,将n维特征映射到k维上(k<n),k维为全新的正交特征,将此k维特征称为主成分,它是重新构造出来的k维特征。
根据本发明的一种实施例,在S30中,基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型包括:
S31、选取核函数和多分类问题类型,并基于选取的核函数、多分类问题类型和训练样本集确定惩罚因子和训练样本集的工况类别数量k;
S32、将训练样本集中的训练样本分k类排序以获取k(k-1)/2个二分类组合,并获取各个分类组合的决策函数;
S33、基于各个分类组合的决策函数得到SVM多分类训练模型。
其中,SVM是基于线性分类器的思想发展而来,在二维空间中,必然存在一个一元函数g(x)=wx+b将样本分类,样本代入函数的值小于0时为一类,大于0时为一类;以此类推,在三维或更高空间中,都可以找到一个函数g(x)=wx+b,式中,x为向量,w为系数矩阵,b为常数。在三维空间中,g(x)的物理意义为将样本分为两类的一个平面,在更高维空间中则称为超平面。
根据本发明的一种实施例,在S40中,采用网格搜索方法进行参数寻优,在S50中,采用k折交叉验证方法进行验证,提高模型的抗过拟合能力,从而提高模型对卫星接收机数据的适应能力和分类准确率。
根据本发明的一种实施例,在S60中,通过下式得到验证后的SVM多分类训练模型的准确率:
式中,ACC为验证后的SVM多分类训练模型的准确率,TP为验证后的SVM多分类训练模型将正例标签数据分类为正例的数量,TN为验证后的SVM多分类训练模型将正例标签数据分类为反例的数量,FN为验证后的SVM多分类训练模型将反例标签数据分类为反例的数量,FP为验证后的SVM多分类训练模型将反例标签数据分类为正例的数量。
其中,验证后的SVM多分类训练模型的准确率通过混淆矩阵获得,混淆矩阵的公式如下:
式中,CM为混淆矩阵,A为正例,B为反例。
根据本发明的一种实施例,在S80中,在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数包括:
S81、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型;
S82、在测试样本的故障类型为正常工况的情况下,将验证后的SVM多分类训练模型的决策函数最大值赋值给健康状态评估函数;
S83、在测试样本的故障类型为故障工况的情况下,将验证后的SVM多分类训练模型的决策函数最小值赋值给健康状态评估函数。
在本发明中,通过下式获取健康状态评估函数:
式中,M为健康状态评估函数,N为测试样本的数量,aiyixi为特征向量ω的拉格朗日函数表示形式,x为任意测试样本,b为特征向量。
根据本发明的一种实施例,在S90中,基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断包括:
S91、在健康状态评估函数大于或等于1的情况下,卫星接收机处于健康状态;
S92、在健康状态评估函数大于或等于0且小于1的情况下,卫星接收机处于亚健康状态;
S93、在健康状态评估函数大于-1且小于0的情况下,卫星接收机处于临界检修状态;
S94、在健康状态评估函数小于或等于-1的情况下,卫星接收机处于故障状态。
也就是说,根据当前输入测试样本坐落在正常分类界线、超平面和故障分类界线之间的不同位置,得到不同健康状态评估函数M的值。
下面以卫星接收机具有四种工况,每种工况数据样本均为450组为例,对本发明的方法进行具体说明。
在本实施例中,卫星接收机具有正常运行状态、试验数据丢帧、功率字跳变过大和滤波器损坏共四种工况,分别标识上标签1、标签2、标签3和标签4。数据样本维度为50维。其中,可以选取70%作为训练样本集,30%作为测试样本集。
在本实施例中,采用主成分分析方法进行降维处理。不同维度的数据与模型的准确率有关。当降至5维时准确率可以达到88%,6维时可以达到94%,9维时可以达到98%。
在本实施例中,采用4折交叉验证方法进行验证。也就是将样本顺序随机化,依次取第n(n=1,2,3,4)份样本作为测试样本,剩余的3/4样本作为训练样本,即分4次进行子模型的训练和测试,得到训练样本集的交叉验证结果。验证后可知,最终的交叉验证精确度高达99%,确保了SVM模型的适应性。
通过上述数据获取的验证后的SVM多分类训练模型的准确率为94.87%,大于预设值,因此基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,以完成卫星接收机的故障诊断。
在本发明中,由于卫星导航数据量大、噪声多、且易受外界环境干扰,数据发生细微变化时不易识别其运行状态,因此,采用基于SVM算法对卫星接收机故障进行分析,该算法对卫星导航数据进行二分类,其决策边界是对学***面,利用超平面对卫星导航数据进行分类,从而进行故障分析。
本发明还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一所述方法。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于SVM的卫星接收机故障分析方法,其特征在于,所述方法包括:
S10、采集卫星接收机在多种工况下的试验数据,并分别将每种工况下的试验数据打上标签进行标识;
S20、对多种工况下的试验数据进行预处理,得到预处理后的样本数据,并将预处理后的样本数据随机分为训练样本集和测试样本集;
S30、基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型;
S40、采用网格搜索方法对SVM多分类训练模型进行参数寻优,得到参数寻优后的SVM多分类训练模型;
S50、采用交叉验证方法对参数寻优后的SVM多分类训练模型进行验证,得到验证后的SVM多分类训练模型;
S60、将测试样本集导入验证后的SVM多分类训练模型,得到验证后的SVM多分类训练模型的准确率;
S70、在验证后的SVM多分类训练模型的准确率大于或等于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,以完成卫星接收机的故障诊断;
S80、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数;
S90、基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断;
其中,在S80中,在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型,并基于每个测试样本的故障类型和验证后的SVM多分类训练模型的决策函数获取健康状态评估函数包括:
S81、在验证后的SVM多分类训练模型的准确率小于预设值的情况下,基于验证后的SVM多分类训练模型的准确率得到测试样本集中每个测试样本的故障类型;
S82、在测试样本的故障类型为正常工况的情况下,将验证后的SVM多分类训练模型的决策函数最大值赋值给健康状态评估函数;
S83、在测试样本的故障类型为故障工况的情况下,将验证后的SVM多分类训练模型的决策函数最小值赋值给健康状态评估函数;
在S90中,基于健康状态评估函数对卫星接收机故障进行分析,以完成卫星接收机的故障诊断包括:
S91、在健康状态评估函数大于或等于1的情况下,卫星接收机处于健康状态;
S92、在健康状态评估函数大于或等于0且小于1的情况下,卫星接收机处于亚健康状态;
S93、在健康状态评估函数大于-1且小于0的情况下,卫星接收机处于临界检修状态;
S94、在健康状态评估函数小于或等于-1的情况下,卫星接收机处于故障状态。
2.根据权利要求1所述的方法,其特征在于,在S60中,通过下式得到验证后的SVM多分类训练模型的准确率:
式中,ACC为验证后的SVM多分类训练模型的准确率,TP为验证后的SVM多分类训练模型将正例标签数据分类为正例的数量,TN为验证后的SVM多分类训练模型将正例标签数据分类为反例的数量,FN为验证后的SVM多分类训练模型将反例标签数据分类为反例的数量,FP为验证后的SVM多分类训练模型将反例标签数据分类为正例的数量。
3.根据权利要求1所述的方法,其特征在于,在S20中,对多种工况下的试验数据进行预处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据。
4.根据权利要求3所述的方法,其特征在于,对多种工况下的试验数据进行单位化、归一化以及降维处理,得到预处理后的样本数据包括:对多种工况下的试验数据进行单位化、归一化以及采用主成分分析方法进行降维处理,得到预处理后的样本数据。
5.根据权利要求1所述的方法,其特征在于,在S30中,基于核函数、多分类问题类型和训练样本集得到SVM多分类训练模型包括:
S31、选取核函数和多分类问题类型,并基于选取的核函数、多分类问题类型和训练样本集确定惩罚因子和训练样本集的工况类别数量k;
S32、将训练样本集中的训练样本分k类排序以获取k(k-1)/2个二分类组合,并获取各个分类组合的决策函数;
S33、基于各个分类组合的决策函数得到SVM多分类训练模型。
6.根据权利要求1所述的方法,其特征在于,多种工况包括正常工况和故障工况,其中,正常工况包括正常运行状态,故障工况包括试验数据丢帧状态、功率字跳变过大状态和滤波器损坏状态。
7.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6任一所述方法。
CN202110913858.7A 2021-08-10 2021-08-10 一种基于svm的卫星接收机故障分析方法 Active CN113791429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110913858.7A CN113791429B (zh) 2021-08-10 2021-08-10 一种基于svm的卫星接收机故障分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110913858.7A CN113791429B (zh) 2021-08-10 2021-08-10 一种基于svm的卫星接收机故障分析方法

Publications (2)

Publication Number Publication Date
CN113791429A CN113791429A (zh) 2021-12-14
CN113791429B true CN113791429B (zh) 2024-05-07

Family

ID=78875813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110913858.7A Active CN113791429B (zh) 2021-08-10 2021-08-10 一种基于svm的卫星接收机故障分析方法

Country Status (1)

Country Link
CN (1) CN113791429B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013524A1 (fr) * 2010-07-29 2012-02-02 Sagem Defense Securite Procede de detection et d'exclusion de multi-pannes satellites
CN103995237A (zh) * 2014-05-09 2014-08-20 南京航空航天大学 一种卫星电源***在线故障诊断方法
CN104268381A (zh) * 2014-09-16 2015-01-07 哈尔滨工业大学 一种基于AdaBoost算法的卫星故障诊断方法
CN104573740A (zh) * 2014-12-22 2015-04-29 山东鲁能软件技术有限公司 一种基于svm分类模型的设备故障诊断方法
CN106021771A (zh) * 2016-05-30 2016-10-12 天河国云(北京)科技有限公司 一种故障诊断方法及装置
CN107634857A (zh) * 2017-09-22 2018-01-26 安徽师范大学 基于svm的故障检测模型构建及评估方法
CN109871304A (zh) * 2018-12-29 2019-06-11 北京航天测控技术有限公司 一种卫星电源状态评估方法
CN110399906A (zh) * 2019-07-03 2019-11-01 深兰科技(上海)有限公司 基于支撑向量机的故障分类模型的训练方法及装置
CN111209939A (zh) * 2019-12-27 2020-05-29 冶金自动化研究设计院 一种具有智能参数优化模块的svm分类预测方法
CN112001440A (zh) * 2020-08-20 2020-11-27 苏州鸿哲智能科技有限公司 一种故障诊断逻辑算法及***
CN112508053A (zh) * 2020-11-10 2021-03-16 泽恩科技有限公司 基于集成学习框架的智能诊断方法、装置、设备及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10417528B2 (en) * 2018-02-18 2019-09-17 Sas Institute Inc. Analytic system for machine learning prediction model selection
US10594027B1 (en) * 2018-08-31 2020-03-17 Hughes Networks Systems, Llc Machine learning models for detecting the causes of conditions of a satellite communication system
US11907833B2 (en) * 2018-11-27 2024-02-20 The Boeing Company System and method for generating an aircraft fault prediction classifier
US11562180B2 (en) * 2019-05-03 2023-01-24 Microsoft Technology Licensing, Llc Characterizing failures of a machine learning model based on instance features

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013524A1 (fr) * 2010-07-29 2012-02-02 Sagem Defense Securite Procede de detection et d'exclusion de multi-pannes satellites
CN103995237A (zh) * 2014-05-09 2014-08-20 南京航空航天大学 一种卫星电源***在线故障诊断方法
CN104268381A (zh) * 2014-09-16 2015-01-07 哈尔滨工业大学 一种基于AdaBoost算法的卫星故障诊断方法
CN104573740A (zh) * 2014-12-22 2015-04-29 山东鲁能软件技术有限公司 一种基于svm分类模型的设备故障诊断方法
CN106021771A (zh) * 2016-05-30 2016-10-12 天河国云(北京)科技有限公司 一种故障诊断方法及装置
CN107634857A (zh) * 2017-09-22 2018-01-26 安徽师范大学 基于svm的故障检测模型构建及评估方法
CN109871304A (zh) * 2018-12-29 2019-06-11 北京航天测控技术有限公司 一种卫星电源状态评估方法
CN110399906A (zh) * 2019-07-03 2019-11-01 深兰科技(上海)有限公司 基于支撑向量机的故障分类模型的训练方法及装置
CN111209939A (zh) * 2019-12-27 2020-05-29 冶金自动化研究设计院 一种具有智能参数优化模块的svm分类预测方法
CN112001440A (zh) * 2020-08-20 2020-11-27 苏州鸿哲智能科技有限公司 一种故障诊断逻辑算法及***
CN112508053A (zh) * 2020-11-10 2021-03-16 泽恩科技有限公司 基于集成学习框架的智能诊断方法、装置、设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于C-SVM 的组合导航***故障诊断算法;张涛等;中国惯性技术学报;第19卷(第2期);240-241 *
无人机导航***故障检测方法研究;李波;中国优秀硕士学位论文全文数据库工程科技Ⅱ辑(第5期);C031-124 *

Also Published As

Publication number Publication date
CN113791429A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
Lapuschkin et al. Analyzing classifiers: Fisher vectors and deep neural networks
CN108765412B (zh) 一种带钢表面缺陷分类方法
Keemink et al. FISSA: A neuropil decontamination toolbox for calcium imaging signals
Zhang et al. Wood defect detection method with PCA feature fusion and compressed sensing
Mathiassen et al. Texture similarity measure using Kullback-Leibler divergence between gamma distributions
US20190340744A1 (en) Image processing method, terminal and storge medium
Ghamarian et al. Hierarchical density-based cluster analysis framework for atom probe tomography data
CN111222588B (zh) 一种后门样本检测方法、***及装置
CN111460250A (zh) 用于画像的数据的清洗方法、装置、介质及电子设备
CN113704082A (zh) 模型评测方法、装置、电子设备及存储介质
CN114333013A (zh) 人脸识别模型的训练方法、装置、电子设备及存储介质
US20150242676A1 (en) Method for the Supervised Classification of Cells Included in Microscopy Images
CN116129224A (zh) 检测模型的训练方法、分类方法、装置及电子设备
CN111144425A (zh) 检测拍屏图片的方法、装置、电子设备及存储介质
Bach et al. Analyzing classifiers: Fisher vectors and deep neural networks
CN113791429B (zh) 一种基于svm的卫星接收机故障分析方法
Pardyl et al. Active visual exploration based on attention-map entropy
Moran et al. Optimal Tag Sets for Automatic Image Annotation.
CN107943916B (zh) 一种基于在线分类的网页异常检测方法
Jin et al. A generative semi-supervised model for multi-view learning when some views are label-free
CN112446428B (zh) 一种图像数据处理方法及装置
CN111127485B (zh) 一种ct图像中目标区域提取方法、装置及设备
CN114897797A (zh) 印刷电路板的缺陷检测方法、装置、设备及存储介质
Zhuo et al. Pattern Recognition for the Working Condition Diagnosis of Oil Well Based on Electrical Parameters
Padmanabhan et al. Sanity checks for saliency methods explaining object detectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant