CN113789536A - Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature - Google Patents

Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature Download PDF

Info

Publication number
CN113789536A
CN113789536A CN202111180111.1A CN202111180111A CN113789536A CN 113789536 A CN113789536 A CN 113789536A CN 202111180111 A CN202111180111 A CN 202111180111A CN 113789536 A CN113789536 A CN 113789536A
Authority
CN
China
Prior art keywords
ldh
nife
sulfur
room temperature
electrocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111180111.1A
Other languages
Chinese (zh)
Inventor
王孝广
万子豪
马自在
李晋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202111180111.1A priority Critical patent/CN113789536A/en
Publication of CN113789536A publication Critical patent/CN113789536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

The invention provides a method for preparing a sulfur-doped porous NiFe-LDH nanosheet oxygen evolution electrocatalyst at room temperature. The method comprises the steps of preparing NiFe-LDH nano-sheets by a hydrothermal method and using Na with a certain molar concentration at room temperature2S·9H2And infiltrating and etching the NiFe-LDH nanosheets by using the O solution, and drying in vacuum to obtain the sulfur-doped porous NiFe-LDH nanosheets. The method does not need high temperature and high pressure conditions required by the traditional sulfur doping, can avoid the strong agglomeration of sulfides in the material processing under the high temperature condition, and reduces the generation of harmful byproducts. The metal cation usually acts as the actual active site for Oxygen Evolution Reaction (OER), while the doped sulfur anion at room temperature can act as an electron donor to modulate the metal cationThe degree of polarization of the sub-active sites creates an electronic structure that is favorable for the electrocatalyst. Meanwhile, a unique three-dimensional porous nanosheet structure can be generated on the NiFe-LDH nanosheet due to etching, so that the electrocatalyst exposes a large number of active sites and charge transfer channels, and has excellent catalytic performance when used as an electrochemical OER catalyst.

Description

Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature
Technical Field
The invention relates to a preparation method of an electrocatalyst for an anodic oxygen evolution reaction in an alkaline solution, belonging to the technical field of material science and the field of oxygen production by electrolyzing water.
Background
The traditional fossil fuel has low energy utilization efficiency, is not friendly to the environment, and causes problems such as energy crisis and the like, which seriously restrict the sustainable development of the human society. Therefore, there is an urgent need to find clean renewable energy sources, such as solar energy, wind energy, tidal energy, etc., to replace the conventional fossil energy sources. However, the characteristics of discontinuous supply and high rejection rate of these energy sources limit further scale development of clean renewable energy sources. As an important secondary energy source, hydrogen has the characteristics of high energy density, various sources, easiness in storage, various application industries and the like. Compared with the traditional hydrogen production by cracking fossil energy, the hydrogen production by biomass and the hydrogen production by photocatalytic water, the hydrogen production by water electrolysis is one of the key technologies which most probably realize the recycling of hydrogen energy. However, the hydrogen gas produced by electrolyzing water accounts for only about 3% of the total hydrogen consumption, because the electric energy consumption is excessive in the actual water electrolysis process, the overpotential caused by the activation energy barrier of the cathode and the anode needs to be overcome in the reaction process, and more energy (i.e., higher overpotential) needs to be consumed in the actual water electrolysis process to promote the water electrolysis reaction. Therefore, a high efficiency electrocatalyst needs to be designed to reduce the activation energy of the reaction process. The electrolyzed water is formed by two half reactions of cathodic Hydrogen Evolution (HER) and anodic Oxygen Evolution (OER), four electrons are needed to participate in the reaction in the oxygen evolution process, and the multi-step and multi-electron reaction causes high overpotential and slow reaction kinetics. Therefore, the oxygen evolution reaction is more difficult than the hydrogen evolution reaction. Therefore, in the process of water electrolysis, in order to improve the energy conversion efficiency of hydrogen production by water electrolysis, the development of an OER electrocatalyst becomes one of the key technologies of hydrogen production by water electrolysis. Currently, Ru/Ir-based compounds are considered to be highly active OER electrocatalysts, but their high cost and scarcity prevent their large-scale utilization. Therefore, the design of an electrocatalyst with high efficiency, abundant reserves and low price is imperative. Among them, Fe and Ni are abundant in the earth, and have great potential to replace noble metal elements.
The Layered Double Hydroxide (LDH) is a two-dimensional layered material assembled by a main body laminate with positive charges and interlayer anions through the interaction of non-covalent bonds, and the types and the compositions of metal ions of the main body laminate and the interlayer anions have the advantage of being adjustable. And the special electronic structure and the layered structure can endow the catalyst with enough large specific surface area and good electrochemical water cracking catalytic activity. However, the inherent poor activity of the catalytic sites of layered double hydroxides remains a drawback to be overcome.
Disclosure of Invention
The invention aims to provide a method for preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst at room temperature, wherein Na is used at a certain molar concentration2S·9H2And (3) etching the NiFe-LDH nanosheets at room temperature by using the O solution as an etching solution to prepare the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst with excellent oxygen evolution performance.
The invention is realized by adopting the following technical scheme:
a method for preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst at room temperature comprises the following steps:
(1) a certain mass of Ni (NO)3)2·6H2O、Fe(NO3)3·9H2O、CO(NH2)2Dissolving the nickel foam in a certain amount of deionized water, uniformly stirring, putting the mixture and the nickel foam into a hydrothermal reaction kettle, and then putting the reaction kettle into a forced air drying oven for hydrothermal reaction;
(2) washing the sample with deionized water and ethanol for several times, and vacuum drying at 40-80 ℃ to obtain NiFe-LDH;
(3) configuring Na with 0.2M-1M2S·9H2O solution, NiFe-LDH is placed in Na at room temperature of 15-30 DEG C2S·9H2Soaking in O for 0.5-24h, washing the soaked sample with deionized water and ethanol for several times, and vacuum drying at 40-80 ℃ to obtain the sulfur-doped porous NiFe-LDH nanosheet electro-catalytic material.
The catalyst prepared by the invention has the following advantages:
(1) through Na2S·9H2The O solution etches on the NiFe-LDH nano-sheets to generate a plurality of micron-sized holes which are beneficial to the diffusion of the electrolyte solution, thereby greatly increasing the capacity of the electrolyte solutionMore active sites are exposed, and oxygen bubbles are promoted to be released from the surface of the catalyst, so that the oxygen evolution performance is improved.
(2) The sulfur atom doping can adjust local chemical combination environment and electronic structure around Ni and Fe, and improve electronic conductivity and ion mobility.
(3) The preparation method has low requirement on preparation conditions, is simple and feasible in process, and is easy to realize large-scale preparation.
Drawings
FIG. 1 shows an X-ray diffraction (XRD) pattern of example 1.
FIG. 2 shows a Scanning Electron Microscope (SEM) image of example 1.
Fig. 3 shows a Transmission Electron Microscope (TEM) image of example 1.
FIG. 4 shows a High Resolution Transmission Electron Microscope (HRTEM) image of example 1.
FIG. 5 shows the oxygen evolution polarization curve of the electrocatalyst of example 1 in 1M KOH.
FIG. 6 shows the oxygen evolution polarization curve of the electrocatalyst for example 2 in 1M KOH.
FIG. 7 shows the oxygen evolution polarization curve of the electrocatalyst for example 3 in 1M KOH.
FIG. 8 shows the oxygen evolution polarization curve of the electrocatalyst for example 4 in 1M KOH.
Detailed Description
The first embodiment is as follows: in the embodiment, foam nickel is used as a substrate, and a three-dimensional NiFe-LDH nanosheet is grown on the foam nickel in situ by a hydrothermal method. Subsequently soaking NiFe-LDH to a certain molar concentration of Na under the condition of room temperature2S 9H2Preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst in an O solution.
The method for preparing the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst at room temperature comprises the following steps:
(1) cutting the foamed nickel into a rectangle of 2cm multiplied by 4cm, respectively carrying out ultrasonic treatment for 10min by using 1M hydrochloric acid, acetone, alcohol and ultrapure water to remove an oxide layer and dirt on the surface, and then carrying out vacuum drying for 10min at 60 ℃;
(2) 35mL of 0.5mM Fe (NO)3)3·9H2O、1.5mM Ni(NO3)·6H2O and 2.5mM CO (NH)2)2The mixed solution is uniformly stirred and is put into a hydrothermal reaction kettle together with foamed nickel, and then the hydrothermal reaction kettle is put into an air-blowing drying oven for hydrothermal reaction, wherein the reaction time is 10 hours and the reaction temperature is 120 ℃;
(3) washing a sample with ethanol and deionized water for 3 times respectively, and then carrying out vacuum drying at 60 ℃ for 6h to obtain NiFe-LDH;
(4) soaking NiFe-LDH into 0.5M Na at room temperature of 25 DEG C2S·9H2And standing the mixture in the O solution for 3 hours. Then taking out the sample, washing with ethanol and deionized water for 3 times respectively, and then drying in vacuum at 60 ℃ for 6 h;
(5) the electrochemical test of the embodiment is performed in a three-electrode electrolytic cell at 25 ℃ and normal pressure, the counter electrode is Pt (10 × 10 × 0.1mm), the reference electrode is an Hg/HgO electrode, and the working electrode is the sulfur-doped porous NiFe-LDH nanosheet prepared in the embodiment; the electrochemical workstation is Costett CS2350H, and the electrolyte is 1M KOH. As can be seen from the oxygen evolution polarization curve chart, the electrode is at 50mA/cm2Only a 247mV overpotential is required for the oxygen evolution current density.
Taking the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst obtained in the embodiment as an example, the powder of the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst is scraped from foamed nickel and subjected to XRD analysis, as shown in FIG. 1, the diffraction peak of the sparsely-doped porous NiFe-LDH nanosheet electrocatalyst prepared in the embodiment is consistent with the PDF card (PDF #00-051-0463) of standard NiFe-LDH, and no related sulfide peak exists, which indicates that sulfur atoms are successfully doped into the NiFe-LDH crystal lattice. It can be observed from the SEM image of NiFe-LDH (FIG. 2) that sulfur-doped porous NiFe-LDH nanosheets grow vertically on the foamed nickel substrate. From the TEM image (FIG. 3), it can be observed that a large number of micron-sized pores are distributed on the NiFe-LDH nanosheets; HRTEM (FIG. 4) is the fine structure of sulfur-doped porous NiFe-LDH nanosheets, with the 0.259nm and 0.153nm interplanar spacings matching the (012) and (110) crystal planes of NiFe-LDH, respectively.
The second embodiment is as follows: according to the embodiment, foam nickel is used as a substrate, and the three-dimensional NiFe-LDH nanosheet grows on the foam nickel in situ through a hydrothermal method. Followed by strip at room temperatureUnder the condition, NiFe-LDH is infiltrated to Na with a certain molar concentration2S·9H2Preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst in an O solution.
(1) The pretreatment of the foamed nickel matrix and the preparation of the NiFe-LDH are the same as the step (1), the step (2) and the step (3) of the first example;
(2) soaking NiFe-LDH into 0.2M Na at room temperature of 25 DEG C2S·9H2And standing the mixture in the O solution for 3 hours. Then taking out the sample, washing with ethanol and deionized water for 3 times respectively, and then drying in vacuum at 60 ℃ for 6 h;
(3) the electrochemical test of the embodiment is performed in a three-electrode electrolytic cell at 25 ℃ and normal pressure, the counter electrode is Pt (10 × 10 × 0.1mm), the reference electrode is an Hg/HgO electrode, and the working electrode is the sulfur-doped porous NiFe-LDH nanosheet prepared in the embodiment; the electrochemical workstation is Costett CS2350H, and the electrolyte is 1M KOH. As can be seen from the oxygen evolution polarization curve chart, the electrode is at 50mA/cm2Only 256mV of overpotential is needed for the oxygen evolution current density.
The third concrete embodiment: according to the embodiment, foam nickel is used as a substrate, and the three-dimensional NiFe-LDH nanosheet grows on the foam nickel in situ through a hydrothermal method. Subsequently soaking NiFe-LDH to a certain molar concentration of Na under the condition of room temperature2S·9H2Preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst in an O solution.
(1) The pretreatment of the foamed nickel matrix and the preparation of the NiFe-LDH are the same as the step (1), the step (2) and the step (3) of the first example;
(2) soaking NiFe-LDH into 1M Na at room temperature of 25 DEG C2S·9H2And standing the mixture in the O solution for 3 hours. Then taking out the sample, washing with ethanol and deionized water for 3 times respectively, and then drying in vacuum at 60 ℃ for 6 h;
(3) the electrochemical test of the embodiment is performed in a three-electrode electrolytic cell at 25 ℃ and normal pressure, the counter electrode is Pt (10 × 10 × 0.1mm), the reference electrode is an Hg/HgO electrode, and the working electrode is the sulfur-doped porous NiFe-LDH nanosheet prepared in the embodiment; the electrochemical workstation is Costett CS2350H, and the electrolyte is 1M KOH. The oxygen evolution polarization curve graph shows thatThe electrode is at 50mA/cm2Only 263mV overpotential is needed for the oxygen evolution current density.
The fourth concrete embodiment: according to the embodiment, foam nickel is used as a substrate, and the three-dimensional NiFe-LDH nanosheet grows on the foam nickel in situ through a hydrothermal method. Subsequently soaking NiFe-LDH to a certain molar concentration of Na under the condition of room temperature2S·9H2Preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst in an O solution.
(1) The pretreatment of the foamed nickel matrix and the preparation of the NiFe-LDH are the same as the step (1), the step (2) and the step (3) of the first example;
(2) soaking NiFe-LDH into 1M Na at room temperature of 25 DEG C2S·9H2And standing the mixture in the O solution for 24 hours. Then taking out the sample, washing with ethanol and deionized water for 3 times respectively, and then drying in vacuum at 60 ℃ for 6 h;
(3) the electrochemical test of the embodiment is performed in a three-electrode electrolytic cell at 25 ℃ and normal pressure, the counter electrode is Pt (10 × 10 × 0.1mm), the reference electrode is an Hg/HgO electrode, and the working electrode is the sulfur-doped porous NiFe-LDH nanosheet prepared in the embodiment; the electrochemical workstation is Costett CS2350H, and the electrolyte is 1M KOH. As can be seen from the oxygen evolution polarization curve chart, the electrode is at 50mA/cm2Only 268mV overpotential is required for the oxygen evolution current density of (1).

Claims (3)

1. A method for preparing a sulfur-doped porous NiFe-LDH nanosheet electrocatalyst at room temperature is characterized by comprising the following steps of: the method comprises the following steps:
(1) a certain mass of Ni (NO)3)2·6H2O、Fe(NO3)3·9H2O and CO (NH)2)2Dissolving in deionized water, stirring, pouring the solution into a polytetrafluoroethylene bottle, putting the polytetrafluoroethylene bottle and the substrate into a hydrothermal reaction kettle, and putting the hydrothermal reaction kettle and the substrate into a forced air drying oven to react at a certain temperature;
(2) washing the reacted sample with deionized water and ethanol respectively, and vacuum drying at 40-80 ℃ for 8-12h to obtain NiFe-LDH;
(3) preparing 0.2M-1M Na2S·9H2O solution, placing NiFe-LDH in Na at room temperature2S 9H2Soaking in O solution for a certain time, washing the soaked sample with deionized water and ethanol respectively, and drying in vacuum at 40-80 ℃ for 4-6h to obtain the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst.
2. The method for preparing the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst according to claim 1, wherein the method comprises the following steps: in step (1), Ni (NO)3)2·6H2O、Fe(NO3)3·9H2O and CO (NH)2)2The amount of the nickel-based catalyst is 2-4mM, 0.8-1.2mM and 0.2-0.4mM respectively, the hydrothermal reaction condition is 100-: respectively placing foamed nickel in 0.5-2M hydrochloric acid, acetone, ethanol and deionized water for ultrasonic treatment for 5-20min, and then placing in a vacuum drying oven at 40-80 ℃ for drying for 10-30min, wherein in the step (3), the room temperature is 20-30 ℃ under normal pressure; na (Na)2S·9H2The molar concentration of the O solution is 0.2-1M, and the soaking time is 0.5-24 h.
3. The method for preparing the sulfur-doped porous NiFe-LDH nanosheet electrocatalyst at room temperature recited in claim 1, wherein the method is used for electrocatalytic oxygen evolution reaction.
CN202111180111.1A 2021-09-29 2021-09-29 Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature Pending CN113789536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111180111.1A CN113789536A (en) 2021-09-29 2021-09-29 Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111180111.1A CN113789536A (en) 2021-09-29 2021-09-29 Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature

Publications (1)

Publication Number Publication Date
CN113789536A true CN113789536A (en) 2021-12-14

Family

ID=79184823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111180111.1A Pending CN113789536A (en) 2021-09-29 2021-09-29 Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature

Country Status (1)

Country Link
CN (1) CN113789536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657591A (en) * 2022-03-30 2022-06-24 青岛科技大学 Nickel-iron hydrotalcite/nickel sulfide iron heterostructure seawater oxidation electrocatalyst and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657591A (en) * 2022-03-30 2022-06-24 青岛科技大学 Nickel-iron hydrotalcite/nickel sulfide iron heterostructure seawater oxidation electrocatalyst and preparation method thereof
CN114657591B (en) * 2022-03-30 2023-08-15 青岛科技大学 Ferronickel hydrotalcite-like compound/ferronickel sulfide heterostructure seawater oxidation electrocatalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
Chen et al. Hierarchical porous NiFe-P@ NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density
CN112023946A (en) Preparation method of self-supporting nickel-iron layered double hydroxide sulfide electrocatalyst
CN107308959B (en) Cu2-xSe nanosheet array @ foamed copper composite material, and preparation method and application thereof
CN109954503B (en) Nickel selenide and ternary nickel-iron selenide composite electrocatalyst, preparation method and application
CN110479281B (en) Electro-catalyst based on FeOOH-NiOOH/NF and preparation method
CN110639534B (en) Oxygen evolution electrocatalytic material and preparation method and application thereof
CN111672514A (en) Bifunctional electrocatalytic material and preparation method and application thereof
CN110124673B (en) Boron-induced amorphous layered double hydroxide electrocatalyst and preparation and application thereof
CN114016050B (en) Iron-molybdenum doped nickel sulfide/foam nickel electrode and preparation method and application thereof
CN112156798A (en) NiCoP/NiCo-DH @ NF composite material, preparation method and application
CN111663152B (en) Preparation method and application of foam nickel-loaded amorphous phosphorus-doped nickel molybdate bifunctional electrocatalytic electrode
CN112791736A (en) WP2/Cu3Application of P composite nano-structure catalyst in aspect of hydrogen production by electrolyzing water
CN113019398B (en) High-activity self-supporting OER electrocatalyst material and preparation method and application thereof
CN111495394A (en) Carbon cloth loaded CoS2/MoS2Heterojunction composite material and preparation method and application thereof
CN110735147A (en) Prussian blue analogue nanosheet array material and application thereof in water electrolysis
CN111939947B (en) Preparation method of nanosheet array electrocatalyst
CN113981483A (en) Preparation method of platinum-doped copper-cobalt hydroxide array structure
CN110629248A (en) Fe-doped Ni (OH)2Preparation method of/Ni-BDC electrocatalyst
CN112962107B (en) Square-meter-level high-activity high-stability nickel electrode, preparation method and application thereof
CN113481532A (en) Preparation method and application of bifunctional electrocatalyst
CN113789536A (en) Method for preparing sulfur-doped porous NiFe-LDH electrocatalyst at room temperature
CN112090426A (en) Metal metastable phase electrolyzed water oxygen evolution catalyst and preparation method and application thereof
CN109097788B (en) Double-carbon coupling transition metal nickel-based quantum dot electrocatalyst and preparation method thereof
CN111437819A (en) Method for synthesizing cobalt-doped ferronickel reticular nanosheet array high-efficiency dual-functional electrocatalyst and application
CN113789545B (en) Electrolytic water catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination