CN113788832A - 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用 - Google Patents

䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用 Download PDF

Info

Publication number
CN113788832A
CN113788832A CN202110930196.4A CN202110930196A CN113788832A CN 113788832 A CN113788832 A CN 113788832A CN 202110930196 A CN202110930196 A CN 202110930196A CN 113788832 A CN113788832 A CN 113788832A
Authority
CN
China
Prior art keywords
compound
solar cell
hole transport
spiroalkene
azabicyclo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110930196.4A
Other languages
English (en)
Other versions
CN113788832B (zh
Inventor
雷鸣
唐泽丰
张雨燕
李天宇
贺丽飞
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110930196.4A priority Critical patent/CN113788832B/zh
Publication of CN113788832A publication Critical patent/CN113788832A/zh
Application granted granted Critical
Publication of CN113788832B publication Critical patent/CN113788832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本发明公开了一种
Figure DDA0003210314780000011
基氮杂双[6]螺烯类化合物及其作为空穴传输材料在太阳能电池中的应用。实验结果表明,采用本发明制备的
Figure DDA0003210314780000012
基氮杂双[6]螺烯类化合物作为空穴传输层制备的钙钛矿太阳能电池器件的能量转换效率可高达18.5%~21.5%。同时,器件的稳定性好。

Description

䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能 电池中的应用
技术领域
本发明属于太阳电池材料领域,具体涉及一种
Figure BDA0003210314760000012
基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用。
背景技术
有机-无机杂化钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)因具有加工成本低、能量转换效率(PCE)高等优点而得到迅速发展,如今该类太阳能电池的PCE已超过25%,有望实现商用化。然而,PSC器件的稳定性是制约其商品化的重要因素之一。在PSCs中,空穴传输材料(HTM)在空穴提取和传输过程中避免了钙钛矿层和电池正极的直接接触,减少电子空穴的复合,改善了钙钛矿层表面形态,是PSCs器件的关键组成部分。性能优异的HTM应具备以下几种性能(1)与钙钛矿层相匹配的HOMO、LUMO能级;(2)高空穴迁移率和电导率;(3)原料成本低,合成制备简单,且在高温、高光、高湿度等条件下物理化学性质稳定。研究表明,高玻璃化转变温度的HTM,有利于提升器件的热稳定性。
现有技术中,钙钛矿太阳能电池中最广泛使用的有机空穴传输材料主要为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)。但是Spiro-OMeTAD化学结构复杂、合成路线长、价格昂贵,同时该材料空穴迀移率较低,从而导致钙钛矿太阳能电池能量转换效率低。通常需要采用双(三氟甲基磺酰亚胺)锂(LiTFSI)、叔丁基吡啶(t-BP)等进行p型掺杂来提高空穴迀移率,但这类掺杂会导致电池器件性能不稳定,同时材料费用昂贵。
螺烯是通过多个芳香环邻位稠和而成的多环芳烃化合物,具有独特的螺旋型π延展结构,分子堆积容易产生更多的分子间接触,有利于提高电荷迁移率,并且提高了分子的溶解度,有利于器件的溶液加工;本发明基于
Figure BDA0003210314760000013
分子的两个湾区(Bay region)扩展π体系,通过两分子氨基
Figure BDA0003210314760000014
在同一湾区处进行稠合得到氮杂双[6]螺烯分子,采用电子给体(Donor)封端得到一类D-π-D型空穴传输材料。本发明提供的
Figure BDA0003210314760000015
基氮杂双[6]螺烯类空穴传输材料的迁移率,实验结果表明,采用本发明制备的
Figure BDA0003210314760000016
基氮杂双[6]螺烯类化合物作为空穴传输层制备的钙钛矿太阳能电池的能量转换效率可高达
Figure BDA0003210314760000017
同时,这些材料的玻璃化温度高,制备得到的钙钛矿太阳能电池器件的热稳定性好。
参考文献:
1.Green,M.A.;Ho-Baillie,A.;Snaith,H.J.,The Emergence of PerovskiteSolar Cells[J].Nature Photonics 2014,8(7),506-514.
2.National Renewable Energy Laboratory.(NREL)Best Research-CellEfficiencies,https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf.
3.Li,D.;Zhang,D.;Lim,K.-S.;Hu,Y.;Rong,Y.;Mei,A.;Park,N.-G.;Han,H.,AReview on Scaling Up Perovskite Solar Cells[J].Advanced Functional Materials2020,31,2008621.
4.Sheibani,E.;Yang,L.;Zhang,J.,Recent Advances in Organic HoleTransporting Materials for Perovskite Solar Cells[J].Solar RRL 2020,4,2000461.
5.Hawash,Z.;Ono,L.K.;Qi Y.B.Recent Advances in Spiro-MeOTAD HoleTransport Material and Its Applications in Organic–Inorganic HalidePerovskite Solar Cells[J].Adv.Mater.Interfaces 2018,5,1700623.
6.Asghara,M.I.;Zhang J.;Wang H.;Lund P.D.,Device Stability ofPerovskite Solar Cells–A Review[J].Renewable&Sustainable Energy Reviews 2017,77,131-146.
7.Shen,Y.,Chen,C.F.Helicenes:Synthesis and Applications[J].Chem.Rev.2012,112,1463-1535.
发明内容
本发明的目的是克服现有技术的不足,公开了一种
Figure BDA0003210314760000022
基氮杂双[6]螺烯类空穴传输材料及其在太阳能电池中的应用。
为实现上述目的,本发明具体采用的技术方案如下:
第一方面,本发明提供了一种
Figure BDA0003210314760000023
基氮杂双[6]螺烯类化合物DA6-HTM,其结构式如式Ⅰ所示:
Figure BDA0003210314760000021
其中:
R选自H、C1~C16烃基或Cl~C16烷氧基;D选自二胺类基团:
Figure BDA0003210314760000031
R'选自H、C1~C16烃基或Cl~C16烷氧基。
作为优选,DA6-HTM的优选形式为DA6-BMCA-C6、DA6-BMCA-C8、DA6-BDBA或DA6-BDNA,其结构式分别如式Ⅱ~式V所示:
Figure BDA0003210314760000032
Figure BDA0003210314760000041
第二方面,本发明提供了一种上述第一方面任一方案所述的
Figure BDA0003210314760000042
基氮杂双[6]螺烯类化合物作为空穴传输材料的应用。
第三方面,本发明提供了一种钙钛矿太阳能电池,其特征在于,太阳能电池的空穴传输层材料为上述第一方面任一方案所述的
Figure BDA0003210314760000043
基氮杂双[6]螺烯类化合物。
优选的,从上到下依次由基底、透明氧化物电极、电子传输层、光活性层、空穴传输层与金属电极组成。
进一步的,所述的电子传输层材料为二氧化钛。
进一步的所述的光活性层材料为钙钛矿。
本发明制备的
Figure BDA0003210314760000044
基氮杂双[6]螺烯类化合物作为空穴传输层制备的钙钛矿太阳能电池的能量转换效率可高达18.5%~21.5%,其中DA6-BMCA的能量转换效率为19.4%。同时,这些材料的玻璃化温度高,制备得到的钙钛矿太阳能电池器件的热稳定性好。因此,本发明的
Figure BDA0003210314760000045
基氮杂双[6]螺烯类化合物作为钙钛矿太阳能电池的空穴传输材料促进电荷传输,提高太阳能电池的能量转换效率和稳定性。
附图说明
图1是PSC器件的结构示意图,其中的空穴传输层材料为
Figure BDA0003210314760000046
基氮杂双[6]螺烯类化合物,电子传输层材料为二氧化钛,光活性层为钙钛矿。
图2基于DA6-BMCA-C6的PSCs器件J-V曲线。
图3基于DA6-BMCA-C6为空穴传输层的钙钛矿太阳能电池器件在经过60℃21天的黑暗条件下的老化过程的PCE变化曲线。
图4基于BA7-BMCA-C6和DA6-BMCA-C6的钙钛矿太阳能电池器件的稳定性比较(室温,AM1.5 G,100mW cm-2)。
具体实施方式
下面结合附图和具体实施例对本发明做进一步阐述和说明。
本发明的
Figure BDA0003210314760000053
基氮杂双[6]螺烯类空穴传输材料的结构式为:
Figure BDA0003210314760000051
其中:
R选自H、C1~C16烃基或Cl~C16烷氧基;
D选自二胺类基团,具体包括:
Figure BDA0003210314760000052
R'选自H、C1~C16烃基或Cl~C16烷氧基。
本发明的
Figure BDA0003210314760000054
基氮杂双[6]螺烯类化合物作为钙钛矿太阳能电池的空穴传输材料促进电荷传输,提高太阳能电池的能量转换效率和稳定性。
对制备得到的式Ⅰ所示的
Figure BDA0003210314760000055
基氮杂双[6]螺烯类化合物DA6-HTM的空穴迀移率进行测定,空穴迀移率分布范围为:4.36×10-5~8.25×10-4 cm2 V-1
以下实施例将有助于理解本发明,但本发明的保护范围不限于以下实施例的内容:
实施例1 DA6-BMCA的合成
Figure BDA0003210314760000056
基氮杂双[6]螺烯类化合物DA6-BMCA的合成路线如下:
Figure BDA0003210314760000061
上述合成路线中,化合物1~6的合成方法具体如下:
化合物1(6,12-二溴
Figure BDA0003210314760000064
)的合成:
Figure BDA0003210314760000062
将原料
Figure BDA0003210314760000065
(2.0g,228.3g/mol,8.8mmol)加入装有70mL氯仿的150mL封管中,液溴(1.4mL,3.1g/mL,4.2g,159.8g/mol,26.3mmol)溶于10mL氯仿中,加入到封管,缓慢加热至80℃反应16h,反应完全后冷却至室温,加入50mL Na2S2O3水溶液(0.1mol/L,150mL)淬灭反应,再用100mL不良溶剂甲醇将二溴
Figure BDA0003210314760000066
全部析出,减压抽滤,滤液再次用氢氧化钠水溶液处理,得到的滤饼为粗产品,甲苯重结晶得到白色固体(化合物1)3.1g,产率为90.4%。合成的化合物1的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ9.19–9.18(s,2H),8.93–8.92(d,J=8.0Hz,2H),8.43–8.42(d,J=7.6Hz,2H),7.84–7.76(m,4H).13C NMR(126MHz,THF-d8)δ130.70,130.67,128.34,128.31,127.95,127.89,127.65,125.36,123.75,122.95ppm.
化合物2的合成:
Figure BDA0003210314760000063
将化合物1(2.0g,386.1g/mol,5.2mmol)和1-氯代-2-氨基萘(2.8g,177.6g/mol,15.6mmol),Pd(OAc)2(34.9mg,224.5g/mol,15.5%mmol),DPEPhOS(251.0mg,538.6g/mol,0.5mmol),NaO(t-Bu)(2.5g,96.0g/mol,25.9mmol)加到200mL的单口圆底烧瓶中,加入100mL甲苯做溶剂,氩气氛围下120℃加热回流16h,反应完全后冷却至室温,硅藻土过滤掉催化剂和碱,滤液浓缩后用THF重结晶得白色固体(化合物2)2.4g,产率为79.6%。合成的化合物2的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.79–8.78(d,J=8.4Hz,2H),8.76–8.75(s,2H),8.27–8.26(d,J=8.3Hz,2H),8.18–8.17(d,J=8.5Hz,2H),7.75–7.72(m,4H),7.68–7.65(dd,J=8.4,6.8Hz,2H),7.60–7.54(m,6H),7.32–7.31(dd,J=8.0,6.5Hz,2H),7.09–7.08(d,J=8.9Hz,2H).13C NMR(126MHz,THF-d8)δ142.55,137.95,133.51,133.01,131.04,131.03,130.62,129.53,128.94,128.72,128.36,128.35,127.95,125.19,125.07,124.52,123.72,119.10,117.43.HR-MS(ESI)m/z calcd.For(C38H24Cl2N2):578.1317.Found:578.1301.FT-IR:2956,2922,2852,1626,1597,1504,1474,1434,1351,1321,1293,1252,1025,988,863,811.
化合物3(DA6H)的合成
Figure BDA0003210314760000071
将化合物2(2.0g,579.5g/mol,3.5mmol)、Pd(OAc)2(78.6mg,224.5g/mol,0.4mmol)、K2CO3(2.9g,138.0g/mol,20.7mmol)和P(t-Bu)3·HBF4(200.0mg,290.0g/mol,0.7mmol)加入到300mL单口圆底烧瓶中,200mL超干N,N-二甲基乙酰胺(DMAc)做反应溶剂,氩气保护下,130℃加热条件下搅拌反应24h,反应完全后反应液用DCM(30mL×3)萃取,有机相用无水Na2SO4干燥后,过滤,旋蒸得到粗产物,用氧化铝柱分离提纯,洗脱剂为THF和甲苯(体积比为2:1)得到黄色固体(化合物3)472.1mg,产率为27.0%。合成的化合物3的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ11.99–11.98(s,2H),8.55–8.54(d,J=8.0Hz,2H),8.42–8.41(d,J=8.3Hz,2H),7.97-7.96(d,J=7.9Hz,2H),7.89–7.88(dd,J=12.7,8.7Hz,2H),7.83–7.82(d,J=8.4Hz,2H),7.62–7.59(m,2H),7.32–7.29(m,2H),7.25–7.22(m,2H),7.11–7.10(dd,J=11.7,4.5Hz,2H).13C NMR(126MHz,THF-d8)δ134.85,131.36,128.66,128.00,127.45,127.14,126.26,125.65,123.94,123.73,122.24,122.12,121.98,120.42,119.49,118.64,116.92,111.84,111.17ppm.HR-MS(ESI)m/z calcd.For(C38H22N2):506.1783.Found:506.1778.FT-IR:2957,2924,2853,1667,1531,1454,1397,1262,1023,897,804,756,717,669.
化合物4(DA6-C6)合成:
Figure BDA0003210314760000081
将化合物3(472.1mg,506.6g/mol,0.9mmol)溶解于超干DMF和超干THF 50mL(体积比1:1),缓慢加入NaH(446.4mg,24g/mol,18.6mmol),氩气保护下搅拌10min,然后加入碘己烷(789.0mg,212.1g/mol,3.7mmol),室温搅拌3h,反应完全后缓慢加水(300mL)淬灭反应,用DCM(50mL×3),萃取,有机相用无水Na2SO4干燥,过滤,旋蒸得到粗产物,采用硅胶柱分离,甲苯和石油醚(1:8)洗脱即可得到黄色粉末(化合物4)503.8mg,产率为98.0%。合成的化合物4的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.64–8.63(d,J=8.3Hz,2H),8.40–8.39(d,J=8.5,2H),8.02–8.01(d,J=9.0Hz,2H),7.97–7.95(dd,J=11.9,5.0Hz,4H),7.83–7.81(d,J=8.5Hz,2H),7.60–7.59(dd,J=8.3,6.8,2H),7.30–7.29(dd,J=7.9,6.7,2H),7.21–7.20(dd,J=8.2,6.8,2H),7.06–7.05(dd,J=8.4,6.8,2H),5.23–5.17(m,2H),5.07–5.00(m,2H),2.48–2.32(m,4H),1.79–1.76(m,4H),1.60–1.53(m,4H),1.50–1.43(m,4H),0.98–(t,J=7.3Hz,6H).13C NMR(126MHz,THF-d8)δ136.02,130.85,128.79,128.67,127.99,126.64,126.25,125.28,124.08,123.64,122.71,122.22,122.20,120.67,120.23,119.37,115.99,112.28,109.31,44.12,29.75,28.79,24.77,20.78,11.57ppm.HR-MS(MALDI-TOF)m/z calcd.For(C50H46N2):674.3661.Found:674.3657.FT-IR:2925,2852,1616,1524,1442,1398,1288,1217,1023,798,750,715,629.
化合物5(DA6-C6-2Br)的合成:
Figure BDA0003210314760000091
在100mL单口圆底烧瓶中加入化合物4(503.8mg,551.7g/mol,0.9mmol),加入DCM50mL将其完全溶解,再加入NBS(321.0mg,178.0g/mol,1.8mmol),室温条件下搅拌1h,反应完全后加入Na2S2O3水溶液(0.1mol/L,50mL)淬灭反应,DCM(20mL×3)萃取反应液,有机相用无水Na2SO4干燥,过滤,旋蒸得到粗产物,再通过硅胶柱分离,甲苯和石油醚(体积比为1:8)洗脱即可得到黄色固体(化合物5)562.5mg,产率为90.0%。合成的化合物5的结构表征数据如下:
1H NMR(500MHz,CDCl3)δ8.44–8.43(dd,J=8.3,5.0Hz,4H),8.31–8.29(d,J=8.4Hz,2H),8.18–8.16(s,2H),7.85–7.83(d,J=8.4Hz,2H),7.56–7.54(dd,J=7.6Hz,2H),7.45–7.42(dd,J=7.6Hz,2H),7.24–7.20(m,2H),7.15–7.12(dd,J=7.7Hz,2H),5.02–4.96(m,2H),4.81–4.75(m,2H),2.41–2.25(m,4H),1.72–1.86(m,4H),1.55–1.50(m,4H),1.47–1.42(m,4H),0.98–0.96(t,J=7.2Hz,6H).13C NMR(126MHz,CDCl3)δ137.65,133.57,131.09,130.94,129.39,127.95,127.77,126.39,125.69,125.15,125.03,124.53,122.55,121.42,120.39,118.35,115.82,114.30,46.89,31.96,31.06,27.18,23.11,14.48.HR-MS(MALDI-TOF)m/z calcd.For(C50H44Br2N2):830.1871.Found:830.122.FT-IR:2926,2852,1714,1499,1469,1424,1335,948,858,698.
化合物6(DA6-BMCA-C6)的合成:
Figure BDA0003210314760000092
将化合物5(500.0mg,832.7g/mol,0.6mmol)、原料中间体BMCA(675.9mg,375.5g/mol,1.8mmol)、Pd2(dba)3(55.0mg,916.0g/mol,0.06mmol)、P(t-Bu)3·HBF4(34.8mg,290.0g/mol,0.1mmol)和NaO(t-Bu)(288.0mg,96.0g/mol,3.0mmol)加入到200mL的单口圆底烧瓶,加入甲苯100mL,氩气条件下120℃回流反应过夜。反应完全后冷却至室温,硅藻土过滤催化剂和碱,滤液旋蒸浓缩后通过硅胶柱分离,THF-石油醚(体积比为1:3)洗脱即可得到黄色固体(化合物6)597.6mg,产率为70%。合成的化合物6的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.59–8.54(m,4H),8.43–8.41(m,2H),7.99–7.96(m,4H),7.95–7.93(m,2H),7.89–7.86(m,6H),7.55–7.53(m,2H),7.42–7.38(m,12H),7.35–7.33(m,4H),7.25–7.23(m,2H),7.11–7.08(m,2H),7.04–6.98(m,6H),5.03–4.97(m,2H),4.87–4.80(m,2H),3.86(s,12H),2.21–2.17(m,4H),1.47–1.41(m,4H),1.24–1.21(m,4H),1.14–1.09(m,J=7.4Hz,4H),0.70–0.68(t,J=7.3Hz,6H).13C NMR(125MHz,THF-d8)δ145.42,144.31,142.48,139.22,137.95,133.77,131.37,131.24,130.81,128.26,128.19,126.30,126.23,126.04,125.32,125.01,124.80,124.36,123.55,123.35,123.30,122.73,121.98,120.98,118.92,116.84,115.14,115.10,112.53,109.70,108.98,46.52,32.13,31.30,30.47,28.97,27.27,14.03.HR-MS(MALDI-TOF)m/z calcd.For(C102H84N8):1420.6819.Found:1420.8735.
对制备得到的DA6-BMCA-C6的空穴迀移率进行测定,空穴迀移率为:8.25×10- 4cm2V-1。差示扫描量热测试(DSC)测得DA6-BMCA-C6的Tg为233℃,高于另一种
Figure BDA0003210314760000102
基氮杂[7]螺烯类化合物BA7-BMCA-C6的194℃。
Figure BDA0003210314760000103
基氮杂[7]螺烯类化合物BA7-BMCA-C6的结构式为:
Figure BDA0003210314760000101
实施例2 DA6-BMCA-C8的合成:
以化合物3为原料,参照实施例1中的步骤,可合成DA6-BMCA-C8。合成路线如下:
Figure BDA0003210314760000111
化合物DA6-BMCA-C8的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.59–8.55(m,4H),8.43–8.40(m,2H),7.99–7.96(m,4H),7.95–7.92(m,2H),7.89–7.86(m,6H),7.55–7.53(m,2H),7.42–7.38(m,12H),7.35–7.33(m,4H),7.25–7.23(m,2H),7.11–7.08(m,2H),7.04–6.97(m,6H),5.03–4.97(m,1H),4.87–4.80(m,1H),3.86–3.83(s,12H),3.53-3.50(m,4H),2.21–2.16(m,4H),1.47–1.41(m,4H),1.24–1.21(m,4H),1.14–1.09(m,J=7.4Hz,4H),0.85-0.83(t,J=7.0Hz,6H),0.68-0.66(t,J=7.0Hz,6H).13C NMR(125MHz,THF-d8)δ145.43,144.32,142.49,139.23,137.96,133.76,131.38,131.24,130.81,128.26,128.18,126.32,126.24,126.06,125.32,125.02,124.82,124.38,123.56,123.37,123.31,122.73,121.98,120.98,118.92,116.84,115.14,115.10,112.53,109.70,108.98,46.53,32.15,31.31,30.48,29.86,28.96,27.29,14.06.HR-MS(MALDI-TOF)m/z calcd.For(C106H92N8):1477.9488.Found:1477.9525.
对制备得到的DA6-BMCA-C8的空穴迀移率进行测定,空穴迀移率为:6.23×10- 4cm2V-1。差示扫描量热测试(DSC)测得DA6-BMCA-C8的Tg为225℃。
实施例3 DA6-BDBA的合成:
以化合物5为原料,参照实施例1中的步骤,可合成DA6-BDBA。反应方程式如下:
Figure BDA0003210314760000112
合成的化合物DA6-BDBA的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.79–8.64(m,4H),7.93–7.95(m,2H),7.89–7.86(m,6H),7.42–7.38(m,16H),7.36–7.28(m,4H),7.11(dd,10,5Hz,2H),5.03–4.97(m,2H),4.87–4.80(m,2H),3.83(s,12H),2.22–2.17(m,4H),1.46–1.41(m,4H),1.24–1.20(m,4H),1.13–1.09(m,J=7.4Hz,4H),0.70–0.68(t,J=7.3Hz,6H).13C NMR(125MHz,THF-d8)δ145.43,144.32,142.48,139.22,137.96,133.78,131.37,130.81,128.26,126.30,126.05,125.33,124.80,123.55,123.30,122.73,121.98,120.99,118.92,116.84,115.10,55.85,46.52,32.13,31.31,28.97,27.27,14.02.HR-MS(MALDI-TOF)m/z calcd.For(C78H72N4O4):1129.4508.Found:1129.4585.
对制备得到的DA6-BDBA的空穴迀移率进行测定,空穴迀移率为:6.25×10-5cm2V-1。差示扫描量热测试(DSC)测得DA6-BDBA的Tg为195℃。
实施例4 DA6-BDNA的合成:
以化合物5为原料,参照实施例1中的步骤,可合成DA6-BDNA。反应方程式如下:
Figure BDA0003210314760000121
化合物DA6-BDNA的结构表征数据如下:
1H NMR(500MHz,THF-d8)δ8.70–8.64(m,4H),8.43–8.41(m,2H),7.95–7.93(m,2H),7.89–7.85(m,6H),7.55–7.51(m,2H),7.42–7.38(m,12H),7.35–7.33(m,4H),7.25–7.23(m,2H),7.11–7.09(m,2H),7.04–6.98(m,6H),5.03–4.97(m,2H),4.87–4.80(m,2H),3.82(s,12H),2.22–2.17(m,4H),1.46–1.41(m,4H),1.25–1.22(m,4H),1.13–1.09(m,J=7.4Hz,4H),0.70(t,J=7.3Hz,6H).13C NMR(125MHz,THF-d8)δ145.43,144.32,142.47,139.21,137.96,133.76,131.36,131.25,130.80,128.25,126.31,126.05,125.33,124.81,123.54,123.31,122.72,121.99,120.97,118.93,116.85,115.15,115.11,55.83,46.53,32.12,31.31,30.48,28.98,27.27,14.02.HR-MS(MALDI-TOF)m/z calcd.For(C94H80N4O4):1329.6900.Found:1329.6987.
对制备得到的DA6-BDNA的空穴迀移率进行测定,空穴迀移率为:1.23×10-4cm2V-1。差示扫描量热测试(DSC)测得DA6-BDNA的Tg为203℃。
实施例5太阳能电池器件的制备:
依次用洗涤剂、去离子水、丙酮、乙醇和异丙醇在超声仪中清洗FTO玻璃,每次10分钟。将0.6mL二(乙酰丙酮基)钛酸二异丙酯和0.4mL乙酰丙酮溶于9mL无水乙醇中配成前躯体溶液,再在450℃下,以氧气为载气将制得的前驱体溶液通过喷雾热解法沉积在FTO上,形成30nm厚的致密TiO2层。将市售的TiO2糊剂(30NR-D)和无水乙醇按质量比为1:6稀释,然后以2000rpm s-1的转速旋涂10s使得介孔TiO2沉积在基底上,形成200nm厚的介孔TiO2层。再在80℃下干燥10min,然后将TiO2薄膜在450℃干燥空气流动下热退火30min以除去有机成分,再进行紫外-臭氧处理30min。用DMSO/DMF(体积比为1:4)的混合溶液溶解1.30M PbI2、1.19M FAI,0.14M PbBr2和0.14M MABr以及0.07M CsI制备得到(FAPbI3)0.875(MAPbBr3)0.075(CsPbI3)0.05(PbI2)0.03的钙钛矿前驱体溶液,然后在相对湿度小于2%的干燥空气流动下的手套中进行钙钛矿层的制备,连续两步以200rpm s-1的转速旋凃10s和以2000rpms-1的转速旋凃30s,将钙钛矿前躯体溶液沉积在电子传输层上。在程序结束前的前15s,将150μL的氯苯滴在正在旋转的吸光层上,然后将钙钛矿层在120℃下热退火1h,完成钙钛矿层的制备。
空穴传输层的制备也是在相对湿度小于2%的干燥空气流动下的手套箱中进行的,分别将上述实施例合成的
Figure BDA0003210314760000132
基氮杂双[6]螺烯类化合物作为空穴传输材料,将空穴传输材料掺杂0.5当量的HTFSI(二(三氟甲基磺酰)酰胺)和3.3当量的t-BP(叔丁基吡啶)并配成30mM氯苯溶液,然后以4000rpm s-1的转速旋涂20s,将其沉积在退火后的钙钛矿薄膜上,最后真空蒸镀一层120nm厚的金后完成基于上述
Figure BDA0003210314760000133
基氮杂双[6]螺烯类化合物为空穴传输层的钙钛矿太阳能电池器件的制作,钙钛矿太阳能电池器件结构如图1所示。
本实施例中,分别以上述实施例1~4中合成的4种
Figure BDA0003210314760000134
基氮杂双[6]螺烯类化合物DA6-BMCA-C6、DA6-BMCA-C8、DA6-BDBA或DA6-BDNA制备空穴传输层,一共得到了四类太阳能电池器件。对四类钙钛矿太阳能电池器件进行光伏性能测试,结果如下:
表1以不同
Figure BDA0003210314760000135
基氮杂双[6]螺烯类化合物为空穴传输层的钙钛矿太阳能电池器件的光伏性能参数
Figure BDA0003210314760000131
其中,图2示例性地展示了基于DA6-BMCA-C6制备的空穴传输层的钙钛矿太阳能电池器件的J-V曲线。
实施例6稳定性测试:
稳定性测试结果如图3所示,基于DA6-BMCA的PSCs器件在经过60℃下21天的黑暗条件下的老化后,其PCE保有率为77%。
在干燥空气氛围和室温条件下保存30天后,对基于DA6-BMCA-C6为空穴传输层的钙钛矿太阳能电池器件和另一种
Figure BDA0003210314760000141
基氮杂[7]螺烯类化合物BA7-BMCA-C6为空穴传输层的钙钛矿太阳能电池器件进行稳定性测试(室温,AM1.5 G,100mW cm-2)。基于BA7-BMCA-C6的为空穴传输层的钙钛矿太阳能电池器件与实施例2中基于DA6-BMCA-C6为空穴传输层的钙钛矿太阳能电池器件其余均相同,区别仅在于空穴传输层为BA7-BMCA-C6。稳定性测试的结果如图4所示,两种太阳电池器件的PCE保有率分别为93.1%和81.3%。说明基于DA6-BMCA-C6的钙钛矿太阳能电池器件相对于基于BA7-BMCA-C6的钙钛矿太阳能电池器件的稳定性较好。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (7)

1.一种
Figure FDA0003210314750000014
基氮杂双[6]螺烯类化合物,其结构式如式Ⅰ所示:
Figure FDA0003210314750000011
其中:
R选自H、C1~C16烃基或Cl~C16烷氧基;D选自二胺类基团:
Figure FDA0003210314750000012
R'选自H、C1~C16烃基或Cl~C16烷氧基。
2.根据权利要求1所述的
Figure FDA0003210314750000015
基氮杂双[6]螺烯类化合物,其特征在于,其结构式如式Ⅱ~式V任一所示:
Figure FDA0003210314750000013
Figure FDA0003210314750000021
3.一种权利要求1或2所述的
Figure FDA0003210314750000022
基氮杂双[6]螺烯类化合物作为空穴传输材料的应用。
4.一种钙钛矿太阳能电池,其特征在于,太阳能电池的空穴传输层材料为权利要求1或2所述的
Figure FDA0003210314750000023
基氮杂双[6]螺烯类化合物。
5.如权利要求4所述的钙钛矿太阳能电池,其特征在于,从上到下依次由基底、透明氧化物电极、电子传输层、光活性层、空穴传输层与金属电极组成。
6.如权利要求5所述的钙钛矿太阳能电池,其特征在于,所述的电子传输层材料为二氧化钛。
7.如权利要求5所述的钙钛矿太阳能电池,其特征在于,所述的光活性层材料为钙钛矿。
CN202110930196.4A 2021-08-13 2021-08-13 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用 Active CN113788832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110930196.4A CN113788832B (zh) 2021-08-13 2021-08-13 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110930196.4A CN113788832B (zh) 2021-08-13 2021-08-13 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用

Publications (2)

Publication Number Publication Date
CN113788832A true CN113788832A (zh) 2021-12-14
CN113788832B CN113788832B (zh) 2022-08-05

Family

ID=79181749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110930196.4A Active CN113788832B (zh) 2021-08-13 2021-08-13 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用

Country Status (1)

Country Link
CN (1) CN113788832B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621845A (zh) * 2023-07-20 2023-08-22 中节能万润股份有限公司 一种䓛基稠环化合物、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130877A (zh) * 2015-07-31 2015-12-09 山东大学 基于芴与咔唑的高稠环一氮杂[7]螺烯化合物及其合成方法和应用
KR20160143558A (ko) * 2015-06-05 2016-12-14 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
KR20170132493A (ko) * 2016-05-24 2017-12-04 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN108055841A (zh) * 2015-09-24 2018-05-18 株式会社Lg化学 化合物和包含其的有机电子器件
US20190378982A1 (en) * 2016-11-23 2019-12-12 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition, organic electronic device and application
KR20200033049A (ko) * 2018-09-19 2020-03-27 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113135925A (zh) * 2021-04-14 2021-07-20 浙江大学 氮杂螺烯小分子钙钛矿太阳电池空穴传输材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143558A (ko) * 2015-06-05 2016-12-14 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
CN105130877A (zh) * 2015-07-31 2015-12-09 山东大学 基于芴与咔唑的高稠环一氮杂[7]螺烯化合物及其合成方法和应用
CN108055841A (zh) * 2015-09-24 2018-05-18 株式会社Lg化学 化合物和包含其的有机电子器件
KR20170132493A (ko) * 2016-05-24 2017-12-04 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
US20190378982A1 (en) * 2016-11-23 2019-12-12 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition, organic electronic device and application
KR20200033049A (ko) * 2018-09-19 2020-03-27 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113135925A (zh) * 2021-04-14 2021-07-20 浙江大学 氮杂螺烯小分子钙钛矿太阳电池空穴传输材料及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZEFENG TANG等: "Chrysene-Based Azahelicene π-Linker of D-π-D-Type Hole-Transporting Materials for Perovskite Solar Cells", 《CHEMSUSCHEM》 *
刘博等: "D-π-D型咔唑类空穴传输材料的设计及其在钙钛矿太阳能电池中的应用", 《河北师范大学学报》 *
邹金龙等: "空穴传输材料在高效钙钛矿太阳能电池中的发展演变", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621845A (zh) * 2023-07-20 2023-08-22 中节能万润股份有限公司 一种䓛基稠环化合物、制备方法及应用
CN116621845B (zh) * 2023-07-20 2023-10-03 中节能万润股份有限公司 一种䓛基稠环化合物、制备方法及应用

Also Published As

Publication number Publication date
CN113788832B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN105153085B (zh) 一种二苯并呋喃的衍生物及其制备方法和应用
CN108461637B (zh) 一种用于聚合物太阳能电池电子传输层的杂化物及其制备方法
JP7265738B2 (ja) 芳香族アミン系化合物及び光電デバイスにおけるその使用
CN112707882B (zh) 螺[芴-9,9’-氧杂蒽]核空穴传输材料及其制备方法和应用
CN108794494A (zh) 一种三并咔唑-芳香胺衍生物空穴传输材料及其制备方法与应用
CN112300057B (zh) 一种d-a-d型空穴传输材料及其合成方法和应用
CN111393452B (zh) 一种不对称的噻吩并吲哚核小分子受体材料及其制备方法
CN108101834B (zh) 一种咔唑基四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN113788832B (zh) 䓛基氮杂双[6]螺烯类化合物及其在空穴传输材料和太阳能电池中的应用
CN115819457A (zh) 一种含膦酸与甲硫基的咔唑类有机小分子空穴传输材料及其制备方法和应用
Kula et al. 9, 9′-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications
CN108192083B (zh) 含三氟甲基的共轭聚合物及其制备方法和应用
CN113801057B (zh) 䓛基氮杂[7]螺烯类化合物、制备方法及应用
CN114133385B (zh) 一种以咔唑为核心、以噻吩嗪或吩恶嗪为端基的空穴传输材料及其合成方法和应用
JP7200381B2 (ja) 非対称構造を有する有機高分子およびその光電材料としての使用
CN108774250A (zh) 一种基于三苯胺的星状有机小分子n-型半导体材料及其制备方法与应用
CN109053676B (zh) 一种无掺杂有机空穴传输材料、制备方法及钙钛矿太阳能电池
CN116621848B (zh) 一种苝基稠环化合物、制备方法及应用
CN113336772A (zh) 一种空穴传输材料及其合成方法与应用
CN116621845B (zh) 一种䓛基稠环化合物、制备方法及应用
WO2015005869A1 (en) Perylene functionalized porphyrin dyes for dye-sensitized solar cells
CN113956220B (zh) 一种非掺杂空穴传输材料及其制备方法、钙钛矿太阳能电池和制备方法
CN114315856B (zh) 一种含吩嗪并二噻吩类免掺杂空穴传输材料及其制备方法和应用
CN116283996B (zh) 一种新型吲哚[3,2-b]咔唑衍生物及其应用
CN112876656B (zh) 一种电子传输型聚合物及其制备方法、电子传输型薄膜和有机光伏电池器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant