CN113788788B - 一种荧光离子液体及其合成方法与应用 - Google Patents

一种荧光离子液体及其合成方法与应用 Download PDF

Info

Publication number
CN113788788B
CN113788788B CN202110835607.1A CN202110835607A CN113788788B CN 113788788 B CN113788788 B CN 113788788B CN 202110835607 A CN202110835607 A CN 202110835607A CN 113788788 B CN113788788 B CN 113788788B
Authority
CN
China
Prior art keywords
hdq
ionic liquid
fluorescent
mercury
mercury ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110835607.1A
Other languages
English (en)
Other versions
CN113788788A (zh
Inventor
车思莹
尹琳琳
佘远斌
范尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202110835607.1A priority Critical patent/CN113788788B/zh
Publication of CN113788788A publication Critical patent/CN113788788A/zh
Application granted granted Critical
Publication of CN113788788B publication Critical patent/CN113788788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种式(I)所示的荧光离子液体[HDQ][P66614],并提供了一种快速、可视化检测实际样品中汞离子及对常见金属离子进行区分的方法;本发明以离子交换法合成具有蓝色荧光发射的离子液体,该方法合成步骤简单、合成产率高;合成的荧光离子液体热稳定性好、不易挥发、对环境污染性小;离子液体对汞离子有较强的特异性、灵敏度,可实现较宽线性范围内汞离子的检测;本发明可以对实际样品中的汞离子进行定性分析、定量检测,为复杂体系中汞离子的检测提供了可能;

Description

一种荧光离子液体及其合成方法与应用
技术领域
本发明涉及一种荧光离子液体及其合成方法,以及在实际样品中汞离子荧光/比色快速检测及常见金属离子区分中的应用。
背景技术
在所有的重金属离子中,汞是违规化妆品、油漆、电池、弹药厂等行业中普遍存在的有用金属元素之一。而许多未经处理的烟气、废水和废弃物被排放到生态环境中,使空气、水和土壤中广泛分布着汞,汞的存在形式有:金属汞、无机汞、汞离子和有机汞。而汞离子是其中最重要的强毒性分析物。当汞离子通过接触或食物链进入人体内后,会与含有巯基的物质例如酶、蛋白质结合,影响细胞的功能和生长,此外,汞离子进入人体后不易被代谢,极易积蓄,从而使人体部位受损。当前对汞离子的检测方法主要有电化学分析法、电感耦合等离子质谱法、高效液相色谱法、原子吸收光谱法等,这些方法的检测限低、灵敏度高,但仪器昂贵、前处理复杂,因此建立一种可以快速、准确、灵敏的检测汞离子的检测方法对人类和环境安全至关重要。
离子液体作为一种功能材料,已成功应用于各个领域,例如催化剂、合成、电化学和提取。已被广泛用于气体捕集、溶剂、催化剂和提取等领域,取得了良好的效果。更重要的是,近年来,由于离子液体具有高度可调性,已显示出其作为荧光探针来检测目标对象尤其是金属离子的巨大潜力。离子液体的结构稳定、热稳定性优异、生物相容性好,同时,具有高度的可调性,具有较大的发展潜力。
为了解决实际样品中汞离子检测成本高、时间长和前处理复杂等问题,本发明通过简单的酸碱去质子化反应以[P66614][Cl]与8-羟基喹啉为原料合成了具有蓝色荧光发射的离子液体[HDQ][P66614],开发了一种荧光猝灭型的荧光/比色传感器,用于检测实际样品中的汞离子,为复杂体系中汞离子的快速、准确检测提供了可能。
发明内容
本发明设计合成了一种新型的高灵敏度和特异性的离子液体型荧光探针,该探针可用于实际样品中汞离子的快速检测,结合化学计量学可以实现常见金属离子的区分,该方法对汞离子的检测限低、灵敏度高、线性范围宽且操作简单。
本发明以荧光离子液体[HDQ][P66614]为荧光/比色探针,以汞离子为待测物,通过汞离子与[HDQ][P66614]特异性结合使探针的荧光猝灭,根据以荧光强度为纵坐标,硫酸汞浓度为横坐标拟合的线性曲线进行定量分析,实现对实际样品中汞离子的准确识别和定量检测。结合PSO-OSWLS-SVM模型对1~104nM浓度范围内的汞离子进行更准确的定量分析,然后结合PLSDA模型实现对常见金属离子的区分。
本发明的技术方案如下:
一种荧光离子液体,其化学式为[HDQ][P66614],结构式如式(I)所示:
本发明所述荧光离子液体[HDQ][P66614]的合成方法为:
以无水乙醇为溶剂,将[P66614][OH]与8-羟基喹啉在40~80℃下搅拌反应2~24h,之后旋蒸除去溶剂,在40~80℃氮气氛围中干燥,得到荧光离子液体[HDQ][P66614];
所述[P66614][OH]与8-羟基喹啉的摩尔比为1:1;
所述[P66614][OH]由三己基(十四烷基)氯化膦([P66614][Cl])经过强碱性阴离子交换树脂脱氯处理得到,具体的脱氯处理方法为:
将[P66614][Cl]的乙醇溶液加入到装有强碱性阴离子交换树脂的层析柱中,收集流出液即为[P66614][OH]的乙醇溶液(无需蒸干,直接用于反应)。
本发明所述荧光离子液体[HDQ][P66614]可作为荧光/比色探针用于实际样品中汞离子的快速检测,具体的检测方法如下:
(1)绘制标准拟合曲线
将荧光离子液体[HDQ][P66614]溶于无水乙醇,加入标准品硫酸汞,配制不同硫酸汞浓度的标准溶液,然后在激发波长为320nm、激发与发射狭缝宽度分别为10nm和20nm的条件下记录[HDQ][P66614]荧光发射光谱最高峰峰高及对应的峰位置,以最高峰荧光强度为纵坐标,硫酸汞浓度为横坐标,拟合线性曲线;
(2)实际样品检测
将荧光离子液体[HDQ][P66614]溶于无水乙醇并稀释至当激发波长为320nm时,[HDQ][P66614]在414nm处的荧光强度为800~1300a.u.,然后加入待测样品,在激发波长为320nm、激发与发射狭缝宽度分别为10nm和20nm的条件下采集荧光发射光谱,根据步骤(1)拟合的线性曲线对实际样品中汞离子的浓度进行定量分析。
本发明中荧光光谱测定条件均为激发波长为320nm,激发和发射狭缝宽度分别为10nm和20nm,发射波长测量范围为340~580nm。
本发明根据以荧光强度为纵坐标,硫酸汞浓度为横坐标拟合的线性曲线对实际样品中的汞离子进行定量分析。
本发明结合基于粒子群优化(PSO-OSWLS-SVM)模型的优化样本加权最小二乘支持向量机对1~104nM的硫酸汞进行线性拟合,然后结合偏最小二乘分析(PLSDA)模型实现对常见金属盐的区分。
本发明制备的[HDQ][P66614]荧光/比色探针可用于茶叶、白酒、尿液、人血浆、人血清、牛血清蛋白中汞离子的检测。
本发明以荧光离子液体[HDQ][P66614]为荧光/比色探针,以汞离子为待测物,通过汞离子与[HDQ][P66614]特异性结合使探针的荧光猝灭,利用以荧光强度为纵坐标,硫酸汞浓度为横坐标拟合的线性曲线进行定量分析,实现对实际样品中汞离子的准确识别和定量检测。结合PSO-OSWLS-SVM模型进行更准确的定量分析,结合PLSDA模型可以对常见金属盐进行区分。
与现有技术相比,本发明的有益效果在于:
本发明开发了一种新型荧光离子液体,并提供了一种快速、可视化检测实际样品中汞离子及对常见金属离子进行区分的方法。以制备的具有蓝色荧光发射的离子液体[HDQ][P66614]作为荧光/比色探针,配置固定浓度的乙醇溶液,加入待测实际样品并混合均匀。记录激发波长为320nm条件下[HDQ][P66614]的荧光激发光谱,根据拟合的线性曲线实现实际样品中汞离子的定量检测,然后结合化学计量学对常见金属离子进行区分。
本发明以离子交换法合成具有蓝色荧光发射的离子液体,该方法合成步骤简单、合成产率高;合成的[HDQ][P66614]荧光离子液体热稳定性好、不易挥发、对环境污染性小;离子液体[HDQ][P66614]对汞离子有较强的特异性、灵敏度,可实现较宽线性范围内汞离子的检测;本发明可以对实际样品中的汞离子进行定性分析、定量检测,为复杂体系中汞离子的检测提供了可能。
附图说明
图1为本发明在[HDQ][P66614]的乙醇溶液中加入不同浓度(1nM,5nM,30nM,70nM,0.1μM,0.3μM,0.5μM,0.7μM,1μM,3μM,5μM,7μM,10μM)的硫酸汞的乙醇溶液的荧光发射光谱图。
图2为本发明在[HDQ][P66614]的乙醇溶液中加入不同浓度(0,0.1nM,1nM,30μM,70μM,1μM,10μM)的硫酸汞的乙醇溶液在紫外灯照射下拍摄的可视化照片。
图3为本发明以[HDQ][P66614]的荧光强度为纵坐标,硫酸汞浓度(9~100nM)为横坐标拟合的线性曲线(A);以[HDQ][P66614]的荧光强度为纵坐标,硫酸汞浓度(0.3~1μM)为横坐标拟合的线性曲线(B)。
图4为本发明测试集在100个PSO周期内的预测误差值;插图:测试集在100个PSO周期内预测的预测均方根误差值(A);使用PSO-OSWLS-SVM对汞离子的定量结果(B)。
图5为本发明在[HDQ][P66614]的乙醇溶液中加入硫酸汞的乙醇溶液(70μM)和其他常见金属盐的(λrawemem)与荧光强度的比值图。
图6为本发明结合PLSDA对常见金属离子进行判别区分的结果。
图7本发明在实际样品(白酒,茶叶,人血浆,人血清,牛血清蛋白,尿液)中的加标回收结果。
具体实施方式
为了更好地理解本发明,下面结合具体实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例,不应理解以下内容是对本发明保护范围的限制。
实施例中所使用的化学试剂和溶剂均为分析纯。
所使用的强碱性阴离子交换树脂为717强碱性I型阴离子交换树脂,购自阿拉丁化学有限公司。
所述的荧光光谱测定条件均为激发波长为320nm,发射波长340~580nm,激发和发射狭缝宽度分别为10nm和20nm。
实施例1
一种荧光离子液体的合成,具体合成方法如下:
(1)[P66614][Cl]的脱氯处理:
将[P66614][Cl]的乙醇溶液缓缓加入到装有强碱性阴离子交换树脂的层析柱中([P66614][Cl]与强碱性阴离子交换树脂的质量比为1:6),收集流出液,得到[P66614][OH]的乙醇溶液。
(2)荧光离子液体[HDQ][P66614]的合成:
将8-羟基喹啉0.1405g和步骤(1)所得[P66614][OH]的乙醇溶液(含[P66614][OH]5.1847g)加入250mL圆底烧瓶内,加入50mL无水乙醇,在60℃油浴搅拌下反应12h,其中[P66614][OH]与8-羟基喹啉的摩尔比为1:1。将反应后的产物使用旋转蒸发仪除去溶剂乙醇后,在氮气氛围中加热除去产物中的微量乙醇和水,最终得到棕色的粘稠状液体。室温密封保存。反应式如下:
实施例2
离子液体作为比色/荧光探针用于实际样品中汞离子的快速检测,具体步骤包括:
(1)荧光/比色探针对汞离子的检测:
称取0.0314g[HDQ][P66614]溶于溶剂无水乙醇,配置为1mM的储备液。将100μL[HDQ][P66614]的储备液与800μL无水乙醇溶液混合,再加入100μL不同浓度(1nM,5nM,30nM,70nM,0.1μM,0.3μM,0.5μM,0.7μM,1μM,3μM,5μM,7μM,10μM)的汞离子溶液,在激发波长为320nm,激发和发射狭缝宽度分别为10nm和20nm的条件下采集荧光发射光谱,结果如图1所示。
从图1中可以看出当汞离子浓度从1nM逐渐增加到100nM时,荧光探针的荧光强度逐渐增加;当汞离子浓度从300nM逐渐增加到104nM时,荧光探针的荧光强度逐渐减弱并产生蓝移。
(2)在若干比色皿中准确加入100μL储备液,再加入不同浓度(0,0.1nM,1nM,30μM,70μM,1μM,10μM)的硫酸汞的乙醇溶液在365nm波长照射下拍摄可视化照片,如图2所示。
(3)标准曲线的绘制
以荧光强度为纵坐标,硫酸汞浓度为横坐标拟合的线性曲线进行定量分析结果如图3A、3B所示。当汞离子浓度为1~100nM时,线性拟合得到的方程为y=0.73x+690.84(R2=0.991);当汞离子浓度为300~104nM时,线性拟合得到的方程为y=-35.13x+1046.26(R2=0.991)。
(4)使用PSO-OSWLS-SVM对汞离子进行定量
结合PSO-OSWLS-SVM模型对全光谱数据进行分析,可以实现1×10-5nM宽线性范围内汞离子的准确定量检测,PSO循环优化结果如图4A所示,定量结果如图4B所示。
(5)常见金属离子及阴离子对[HDQ][P66614]检测汞离子的干扰
将100μL储备液与70μL 10μM硫酸汞的乙醇溶液或100μL 10μM的其他金属盐(AgNO3,Zn(Ac)2,MgCl2,KCl,BaCl2,NiCl2,ZnCl2,Pb(NO3)2,CdCl2,Ni(NO3)2,Zn(NO3)2,CaCl2,Co(NO3)3,ZnSO4,Cu(NO3)2,CuSO4,MnCl2,Al(NO3)3,CuCl2,Mn(Ac)4,FeCl2,FeSO4,Fe(NO3)3,FeCl3,Cr(NO3)3,NaCl)的乙醇溶液混合,使用无水乙醇定容至1mL,在激发波长为320nm,激发和发射狭缝宽度分别为10nm和20nm的条件下采集荧光发射光谱。以加入不同金属盐的乙醇溶液的(λrawemem)与荧光强度的比值为纵坐标,金属盐的种类为横坐标绘制柱状图,如图5。
(6)使用PLSDA对常见金属离子的区分
将采集到的[HDQ][P66614]与不同浓度金属离子反应后的全光谱数据利用PLSDA模型进行处理。在该模型中,每种金属离子由f1-f26进行标记(f1-f26分别为HgSO4,NaCl,KCl,AgNO3,Ni(NO3)2,NiCl2,MgCl2,ZnCl2,Zn(NO3)2,Zn(Ac)2,ZnSO4,CaCl2,CuCl2,Cu(NO3)2,CuSO4,BaCl2,CdCl2,Pb(NO3)2,FeCl2,FeSO4,MnCl2,Al(NO3)3,FeCl3,Fe(NO3)3,Mn(Ac)4,Cr(NO3)3),HgSO4包括140个样品,其他金属离子均为90个样品。随机抽取每组样本的所有金属离子样品并重新分配到训练集和预测集中。结果如图6所示,结合PLSDA模型处理全光谱数据可以实现对常见金属离子的区分。
(7)实际样品中汞离子的检测
将0.05g茶叶在5mL乙醇中浸泡10min,取上清液。加入一定量的硫酸汞的乙醇溶液作为待测液,在待测液中加入100μL储备液,在激发波长为320nm,激发和发射狭缝宽度分别为10nm和20nm的条件下采集荧光发射光谱。
同样的,将一定量硫酸汞加入白酒、尿液、人血清(0.01g溶于10mL无水乙醇溶液)、人血浆(100μL溶于9.9mL无水乙醇)、牛血清蛋白(0.01g溶于10mL无水乙醇溶液)中作为待测液,采用加标回收法分析实际样品中的汞离子,结果如图7所示。

Claims (5)

1.一种荧光离子液体,其化学式为[HDQ][P66614],结构式如式(I)所示:
2.如权利要求1所述荧光离子液体[HDQ][P66614]的合成方法,其特征在于,所述合成方法为:
以无水乙醇为溶剂,将[P66614][OH]与8-羟基喹啉在40~80℃下搅拌反应2~24h,之后旋蒸除去溶剂,在40~80℃氮气氛围中干燥,得到荧光离子液体[HDQ][P66614];
所述[P66614][OH]与8-羟基喹啉的摩尔比为1:1。
3.如权利要求2所述的合成方法,其特征在于,所述[P66614][OH]由[P66614][Cl]经过强碱性阴离子交换树脂脱氯处理得到,所述脱氯处理方法为:
将[P66614][Cl]的乙醇溶液加入到装有强碱性阴离子交换树脂的层析柱中,收集流出液即为[P66614][OH]的乙醇溶液。
4.如权利要求1所述荧光离子液体[HDQ][P66614]作为荧光/比色探针在实际样品中汞离子的快速检测中的应用。
5.如权利要求4所述的应用,其特征在于,所述检测的方法如下:
(1)绘制标准拟合曲线
将荧光离子液体[HDQ][P66614]溶于无水乙醇,加入标准品硫酸汞,配制不同硫酸汞浓度的标准溶液,然后在激发波长为320nm、激发与发射狭缝宽度分别为10nm和20nm的条件下记录[HDQ][P66614]荧光发射光谱最高峰峰高及对应的峰位置,以最高峰荧光强度为纵坐标,硫酸汞浓度为横坐标,拟合线性曲线;
(2)实际样品检测
将荧光离子液体[HDQ][P66614]溶于无水乙醇并稀释至当激发波长为320nm时,[HDQ][P66614]在414nm处的荧光强度为800~1300a.u.,然后加入待测样品,在激发波长为320nm、激发与发射狭缝宽度分别为10nm和20nm的条件下采集荧光发射光谱,根据步骤(1)拟合的线性曲线对实际样品中汞离子的浓度进行定量分析。
CN202110835607.1A 2021-07-23 2021-07-23 一种荧光离子液体及其合成方法与应用 Active CN113788788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110835607.1A CN113788788B (zh) 2021-07-23 2021-07-23 一种荧光离子液体及其合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110835607.1A CN113788788B (zh) 2021-07-23 2021-07-23 一种荧光离子液体及其合成方法与应用

Publications (2)

Publication Number Publication Date
CN113788788A CN113788788A (zh) 2021-12-14
CN113788788B true CN113788788B (zh) 2023-12-05

Family

ID=78876913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110835607.1A Active CN113788788B (zh) 2021-07-23 2021-07-23 一种荧光离子液体及其合成方法与应用

Country Status (1)

Country Link
CN (1) CN113788788B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433126B (zh) * 2022-08-12 2023-10-20 浙江工业大学 一种功能化喹啉类比色离子探针及其合成方法与应用
CN115745940B (zh) * 2022-10-24 2023-12-05 浙江工业大学 一种磺酰荧光素离子液体探针及其合成方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101313223A (zh) * 2005-07-26 2008-11-26 电泳有限公司 用于包含2,6-二甲基-哌啶-1-基-亚甲基或嘧啶-2-基硫代亚甲基质量标记部分以及琥珀酰亚胺基-氧-羰基活性官能团的生物分子的质量标记物
CN101326275A (zh) * 2005-10-07 2008-12-17 阿拉巴马大学 多功能离子液体组合物
CN104655473A (zh) * 2015-02-26 2015-05-27 中国科学院电子学研究所 检测水中痕量汞的方法
CN106215912A (zh) * 2016-08-25 2016-12-14 中国石油大学(北京) 一种纳米复合材料及其制备方法和检测汞离子的方法
CN108912054A (zh) * 2018-07-03 2018-11-30 中国科学院兰州化学物理研究所 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用
CN110146452A (zh) * 2018-02-10 2019-08-20 首都师范大学 一种基于离子液体快速检测食品中汞含量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101313223A (zh) * 2005-07-26 2008-11-26 电泳有限公司 用于包含2,6-二甲基-哌啶-1-基-亚甲基或嘧啶-2-基硫代亚甲基质量标记部分以及琥珀酰亚胺基-氧-羰基活性官能团的生物分子的质量标记物
CN101326275A (zh) * 2005-10-07 2008-12-17 阿拉巴马大学 多功能离子液体组合物
CN104655473A (zh) * 2015-02-26 2015-05-27 中国科学院电子学研究所 检测水中痕量汞的方法
CN106215912A (zh) * 2016-08-25 2016-12-14 中国石油大学(北京) 一种纳米复合材料及其制备方法和检测汞离子的方法
CN110146452A (zh) * 2018-02-10 2019-08-20 首都师范大学 一种基于离子液体快速检测食品中汞含量的方法
CN108912054A (zh) * 2018-07-03 2018-11-30 中国科学院兰州化学物理研究所 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water》;Lisa Fischer等;water re search 4 5;全文 *
《Polymer-supportedionicliquidsolidphaseextractionfortrace inorganic andorganicmercurydeterminationinwatersamplesby flow injection-cold vapor atomic absorption spectrometry》;Leticia B.Escudero等;Talanta;第116卷;全文 *
《Towards an Efficient Microsystem for the Real-Time Detection and Quantification of Mercury in Water Based on a Specifically Designed Fluorogenic Binary Task-Specific Ionic Liquid》;Fadjiba Loe-Mie等;Angew. Chem. Int. Ed(第49期);全文 *
《环境水样中痕量金属的检测》;张柳杨;中国优秀硕士论文全文数据库-工程科技I辑;全文 *

Also Published As

Publication number Publication date
CN113788788A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
Timerbaev Element speciation analysis by capillary electrophoresis
Xu et al. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes
Shrivas et al. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe
Martinis et al. Tetradecyl (trihexyl) phosphonium chloride ionic liquid single-drop microextraction for electrothermal atomic absorption spectrometric determination of lead in water samples
Bağ et al. Determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite
Abbasi et al. A highly sensitive method for simultaneous determination of ultra trace levels of copper and cadmium in food and water samples with luminol as a chelating agent by adsorptive stripping voltammetry
Hassan et al. A novel and potential chemical sensor for effective monitoring of Fe (II) ion in corrosion systems of water samples
Shamsipur et al. Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg (II) ions
CN113788788B (zh) 一种荧光离子液体及其合成方法与应用
Zargoosh et al. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane
CN104819970B (zh) 一种超分子配合物荧光探针测定水中多菌灵的方法
CN110118769B (zh) 一种用于检测重金属离子的金纳米粒子及其制备方法
Amin et al. Utility of solid phase spectrophotometry for the modified determination of trace amounts of cadmium in food samples
Ulusoy et al. Development of an inexpensive and sensitive method for the determination of low quantity of arsenic species in water samples by CPE–FAAS
Alam et al. Status and advances in technologies for phosphorus species detection and characterization in natural environment-A comprehensive review
CN114213385B (zh) 一种荧光素型离子液体及其合成方法与在汞离子或甲基汞离子检测中的应用
Zeng et al. Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a “turn-off-on” mechanism
Yang et al. Determination of trace hydrazine by differential pulse voltammetry using magnetic microspheres
Xu et al. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
Fathi et al. Enrichment of trace amounts of copper (II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination
Akl Preconcentration extractive separation, speciation and spectrometric determination of iron (III) in environmental samples
Moore et al. Organic complexation of iron by strong ligands and siderophores in the eastern tropical North Pacific oxygen deficient zone
Arvand et al. Sensitive and selective detection of trace copper in standard alloys, food and biological samples using a bulk optode based on N, N′-(4, 4′-ethylene biphenyl) bis (3-methoxy salicylidine imine) as neutral carrier
CN109580564B (zh) 一种检测水中汞离子的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant