CN113787171B - Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting - Google Patents

Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting Download PDF

Info

Publication number
CN113787171B
CN113787171B CN202111195486.5A CN202111195486A CN113787171B CN 113787171 B CN113787171 B CN 113787171B CN 202111195486 A CN202111195486 A CN 202111195486A CN 113787171 B CN113787171 B CN 113787171B
Authority
CN
China
Prior art keywords
casting
pouring
sprue
casing
temperature alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111195486.5A
Other languages
Chinese (zh)
Other versions
CN113787171A (en
Inventor
康茂东
陈基东
郜亚洲
王俊
王国祥
李建中
高海燕
孙宝德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongchao Hangyu Investment Casting S&t Co
Shanghai Jiaotong University
Original Assignee
Zhongchao Hangyu Investment Casting S&t Co
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongchao Hangyu Investment Casting S&t Co, Shanghai Jiaotong University filed Critical Zhongchao Hangyu Investment Casting S&t Co
Priority to CN202111195486.5A priority Critical patent/CN113787171B/en
Publication of CN113787171A publication Critical patent/CN113787171A/en
Application granted granted Critical
Publication of CN113787171B publication Critical patent/CN113787171B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/086Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The invention provides a rapid mold filling pouring system and a pouring method for a large-scale high-temperature alloy casing casting, which comprises the following steps: a pouring cup for receiving pouring liquid; the inlet of the sprue is communicated with the bottom of the sprue cup; the ceramic slag blocking net is arranged between the sprue and the sprue cup; the feeding modules are arranged on the upper side of the casing casting and used for feeding the casing casting in a solidification process; and the cross gate is positioned among the feeding modules and communicated with the feeding modules. The casting system and the casting method of the invention abandon the upper and lower double annular cross gate design and the bottom pouring type filling mode of the traditional large-scale high-temperature alloy casing casting, reduce the metal liquid for filling the complex casting system, provide the process yield, ensure that the metal melt can quickly fill the whole cavity of the casing casting and reduce the heat loss, have only one intersection chance at the front edge of the melt, greatly reduce the oxide film defect generated by multi-head intersection hedging of the melt, and obviously improve the metallurgical quality of the casting.

Description

Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting
Technical Field
The invention relates to the field of high-temperature alloy precision casting, in particular to a rapid mold filling pouring system and a pouring method for a large-scale high-temperature alloy casing casting.
Background
The large-scale case component is one of main bearing structures of an aeroengine, and can be classified into a titanium alloy case and a high-temperature alloy case according to the temperature bearing capacity and the service load requirement. In engineering, a titanium alloy casing is usually formed by centrifugal casting precision, the design of a casting system is relatively simple, and the macro segregation of elements is very easy to occur in high-temperature alloy under the action of centrifugal force, so that the forming mode mainly adopts gravity precision casting. Through the literature search of the prior art, the following findings are obtained: the Chinese invention patent with the application number of 202010703005.6 relates to a bottom pouring type pouring system and a pouring method for a large-scale high-temperature alloy casing casting, and provides the bottom pouring type pouring system and the pouring method for the large-scale high-temperature alloy casing casting, wherein the system comprises a sprue cup, a sprue and a pouring mechanism communicated with the sprue, and the pouring mechanism is connected with an outer ring and an inner ring of the casting; the method comprises the steps of guiding the casting liquid to the casting feeding mechanism through the drainage device, respectively carrying out mold filling and feeding on the casting from the upper end and the bottom end of the casting through the casting feeding mechanism so as to transfer the stress of the inner ring and the outer ring of the casting, and simultaneously carrying out mold filling and feeding on the outer wall of the casting from top to bottom through the casting feeding mechanism so as to complete the casting of the high-temperature alloy casing casting. The bottom pouring type pouring system provided by the invention better solves the problem of turbulence in the pouring process of a large casting, and can be applied to precise forming of a part of low-grade high-temperature alloy materials. However, the gating system design increases the flow before the melt is filled, and the distributed ingate design is not beneficial to the rapid filling of the melt. Therefore, it is difficult to apply the method to precision molding of high-temperature alloys having a large interval between crystallization temperatures.
Through retrieval, the optimization design and application verification of a power turbine casing investment casting system are reported in the 417 pages 414-and-fro 417 of the No. 4 volume 39 of special casting and non-ferrous alloy in 2019 of Houzhengqian et al, an inner filling type and half-wrapping type pouring system is designed, and the problem of macroscopic shrinkage cavity and shrinkage porosity of casing castings is solved. However, the pouring system design has a plurality of metal liquid flows which are opposite to each other, so that the oxide film defect is easily generated, the fatigue performance of the casing casting is reduced, and when the pouring system design is applied to the development of the high-performance aircraft engine casing casting, the pouring system design needs to be further optimized to improve the long-term service reliability.
Disclosure of Invention
Aiming at the defects of the design and the pouring method of the pouring system of the existing large-scale high-temperature alloy casing casting, the invention aims to provide a rapid filling type pouring system and a rapid filling type pouring method of the large-scale high-temperature alloy casing casting.
According to one aspect of the invention, a large superalloy casing casting rapid-filling type pouring system is provided, comprising:
a pouring cup for receiving pouring liquid;
the inlet of the sprue is communicated with the bottom of the sprue cup;
the ceramic slag blocking net is arranged between the sprue and the sprue cup;
the feeding modules are arranged on the upper side of the casing casting and are used for feeding the casing casting in a solidification process;
and the cross gate is positioned among the feeding modules and is communicated with the feeding modules.
Preferably, the pouring cup is an inverted circular truncated cone type pouring cup, the diameter of the lower circle of the inverted circular truncated cone type pouring cup is the same as that of the sprue, the diameter of the upper circle of the inverted circular truncated cone type pouring cup is 2-3 times that of the sprue, and the height of the inverted circular truncated cone type pouring cup is 1.5-3 times that of the lower circle of the inverted circular truncated cone type pouring cup.
Preferably, the sprue may be one of a plurality of feeding modules, and in particular, one of the dense feeding modules with the largest modulus is selected as the sprue. The feeding modules are vertically arranged according to the shape of the casing casting to form a dense feeding module. The modulus of a single feeding module is 1.5-2 times of the modulus of the corresponding part of the casing casting.
Preferably, the pouring system further comprises a wedge structure, and the feeding module is connected with the casing casting through the wedge structure.
Preferably, the feeding module is arranged on the upper side of a thick-wall flange of the casing casting, the thin-wall flange of the casing casting is placed on the bottom side, and the thick-wall flange is placed on the upper side.
According to another aspect of the invention, a pouring method of the rapid filling type pouring system for the large-scale high-temperature alloy casing casting is also provided, and the pouring method comprises the following steps:
assembling a pouring system, wherein the pouring system adopts the rapid filling type pouring system for the large-scale high-temperature alloy casing casting;
preparing a large-scale high-temperature alloy casing casting shell, roasting and preheating the shell, smelting high-temperature alloy and adopting the pouring system for pouring and molding;
and after casting molding and cooling, cutting the casting system to obtain the large-scale high-temperature alloy casing casting.
Preferably, the casting molding adopts a technology for controlling the effective mass of the critical casting, wherein:
thermodynamic software is adopted to calculate the liquidus temperature and the shrinkage coefficient of the high-temperature alloy, the pouring temperature of the high-temperature alloy is liquidus temperature + (200-: (casting volume + dense feeding module volume + cross gate volume + sprue volume) x the high-temperature alloy density at room temperature, and the actual pouring amount in the pouring process is the critical pouring effective mass +/-1 kg.
Preferably, the cast molding, wherein: the heating magnesium powder is added in the feeding module to prolong the solidification time and enhance the feeding effect of the feeding module on the casing casting.
In the invention, in the casting molding, if the casting quality is less than the critical effective casting quality, the casting is not sufficiently fed, and the casting has the defects of shrinkage cavity and shrinkage porosity; more than the critical effective pouring quality, a large amount of molten metal exists in a cross gate at the later stage of solidification, and inward tension is formed during solidification shrinkage, so that the casing is deformed non-uniformly, and the dimensional accuracy is reduced. The present invention of the technology for controlling the effective quality of the critical casting can well overcome the above problems.
Compared with the prior art, the invention has the following beneficial effects:
the pouring system and the pouring method of the invention abandon the upper and lower double annular cross gate design and the bottom pouring type filling mode of the traditional large high-temperature alloy casing casting, reduce the metal liquid for filling the complex pouring system, provide the process yield, ensure that the metal melt can quickly fill the whole cavity of the casing casting and reduce the heat loss, have only one intersection chance at the front edge of the melt, greatly reduce the oxide film defect generated by multi-head intersection hedging of the melt, obviously improve the metallurgical quality of the casting, have obvious economic benefits, and have the advantages that the design of the existing large high-temperature alloy casing casting pouring system cannot be compared with the design.
The casting system and the casting method can provide support for developing high-grade high-temperature alloy large-scale casing castings with large crystallization temperature intervals and high casting temperatures, and provide a solution for a casting engineer to develop the design of the casting system of the large-scale casing castings.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
FIG. 1 is a schematic diagram of a system architecture for a rigging according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a rigging system according to an embodiment of the present invention;
in the figure: a large high-temperature alloy casing casting 1; a thin-walled flange 2; a thick-walled flange 3; a feeding module 4; a wedge-shaped structure 5; a cross gate 6; a sprue 7; an inverted circular truncated cone-shaped pouring cup 8; a ceramic slag trap net 9.
Detailed Description
The present invention will be described in detail with reference to specific examples. The following examples will assist those skilled in the art in further understanding the invention, but are not intended to limit the invention in any way. It should be noted that variations and modifications can be made by persons skilled in the art without departing from the spirit of the invention. All falling within the scope of the present invention.
FIG. 1 is a schematic diagram of a system architecture for a rigging according to an embodiment of the present invention; FIG. 2 is a cross-sectional view of a rigging system in accordance with an embodiment of the present invention.
As shown in fig. 1 and 2, the present embodiment provides a rapid-filling type pouring system for large-scale superalloy casing castings, which includes: the casting device comprises a pouring cup 8, a cross runner 6, a sprue 7, a ceramic slag blocking net 9 and a plurality of feeding modules 4, wherein the pouring cup 8 is used for receiving pouring liquid; the inlet of the sprue 7 is communicated with the bottom of the pouring cup 8; the ceramic slag blocking net 9 is arranged between the sprue 7 and the pouring cup 8; the feeding modules 4 are arranged on the upper side of the casing casting 1 and are used for feeding the casing casting 1 in the solidification process; the runner 6 is located between the feeding modules 4 and communicates the feeding modules 4.
The pouring system in the embodiment abandons the upper and lower double-ring cross gate design and the bottom pouring type filling mode of the traditional large-scale high-temperature alloy casing casting, and reduces the metal liquid filled in the complex pouring system.
In some embodiments, when the casting system design of the large-scale high-temperature alloy casing casting 1 is carried out, the thin-wall flange 2 of the casing casting is placed on the bottom side, and the thick-wall flange 3 is placed on the upper side. And feeding modules 4 are densely arranged on the upper side of the thick-wall flange 3 to feed the casing casting 1 in the solidification process, and the modulus of each feeding module 4 is 1.5-2 times that of the corresponding part of the casing casting 1.
Referring to fig. 1, in some embodiments, the feeding modules 4 are connected by a cross runner 6, and the cross runner 6 is cylindrical and has a diameter 0.5 times that of the dense feeding modules. Further, one of the dense feeding modules with the largest modulus is preferably selected as the sprue 7 based on the modulus calculation of each part of the casing casting 1.
Referring to fig. 2, in some embodiments, the inverted circular truncated cone type pouring cup 8 is connected to the sprue 7, the diameter of the lower circle of the inverted circular truncated cone type pouring cup 8 is the same as that of the sprue 7, the diameter of the upper circle is 2-3 times that of the sprue 7, and the height of the inverted circular truncated cone type pouring cup 8 is 1.5-3 times that of the lower circle. A ceramic slag blocking net 9 is arranged between the sprue 7 and the inverted round platform type sprue cup 8, and has the functions of removing slag and stabilizing metal fluid.
In some embodiments, the dense feeding modules 4 are connected to the casing casting 1 through a wedge structure 5, as shown in fig. 2, the wedge structure 5 includes a wedge member disposed at a lower end of each feeding module 4, and a socket member disposed on the casing casting 1 and corresponding to each wedge member, and the wedge member is inserted into the socket member to communicate the feeding modules 4 with the casing casting 1.
In the embodiment of the invention, the design idea of the casting system is eliminated, the upper and lower double-ring cross runners of the traditional casing casting are designed, the process yield is improved, the metal melt can be ensured to quickly fill the whole cavity of the casing casting, the heat loss is reduced, only one melt intersection chance is provided, the oxide film defect generated by multi-head intersection hedging of the melt can be greatly reduced, and the metallurgical quality of the casting is obviously improved.
According to the pouring system, wax molds of a pressing casing casting 1, a feeding module 4, a cross gate 6, a wedge-shaped structure 5, a straight gate 7 and an inverted circular truncated cone type pouring cup 8 are designed, and the pouring system is assembled according to the design. Thermodynamic software is adopted to calculate the liquidus temperature and the shrinkage coefficient of the high-temperature alloy, the casting temperature of the high-temperature alloy is the liquidus temperature plus 200-300 ℃, the total amount of the cast high-temperature alloy is the critical effective mass, and the specific amount is as follows: the casting volume, the volume of the dense feeding module, the volume of the cross gate, the volume of the straight gate and the density of the high-temperature alloy at room temperature are multiplied, and the actual pouring amount in the pouring process is the critical effective pouring mass +/-1 kg. The dense feeding module 4 is internally added with heating magnesium powder to prolong the solidification time of the dense feeding module and enhance the feeding effect of the dense feeding module on casing castings. The technical advantage of controlling the critical effective pouring quality is that the critical effective pouring quality is less than the critical effective pouring quality, so that the casting is not fully fed, and the casting has the defects of shrinkage cavity and shrinkage porosity; more than the critical effective pouring quality, a large amount of molten metal exists in a cross gate at the later stage of solidification, and inward tension is formed during solidification shrinkage, so that the casing is deformed non-uniformly, and the dimensional accuracy is reduced. After casting molding and cooling, the casting system is cut, and then the large-scale high-temperature alloy casing casting with high dimensional precision and excellent internal quality can be obtained.
To better illustrate the above described embodiments of the invention, the following description is made in conjunction with specific alloys and casing components:
example 1: the large-scale high-temperature alloy casing component of a certain aeroengine has the diameter of 970mm, the height of 200mm and the minimum wall thickness of 5 mm. According to the service requirement, the K447A high-temperature alloy is selected, because the content of the K447A high-temperature alloy gamma' is 64.31%, the welding repair performance is extremely poor, the high-temperature alloy cannot be formed by additive manufacturing, and only can be integrally and precisely formed at one time by a precise casting technology. Firstly, developing a large-scale casing casting wax mold by adopting an MPI wax pressing machine, flatly placing the casting wax mold on a marble worktable, placing a thin-wall flange of the casing casting on the bottom side, and placing a thick-wall flange on the upper side so as to form a sequential solidification mode from bottom to top in the solidification process. 19 feeding modules are densely distributed on the upper side of the thick-wall flange, wherein the diameter of 17 feeding modules is 38mm, the diameter of 2 feeding modules is 23mm, and the casing casting is fully fed in the solidification process. The dense feeding module is connected with the casing casting through a wedge-shaped structure, and the dense feeding module is connected with the casing casting through a cross gate with the diameter of 15 mm. Based on the modulus calculation of each part of the casing casting, the diameter of the selected sprue is 50mm, the sprue is connected with an inverted circular truncated cone type sprue cup, the diameter of the upper circular truncated cone is 120mm, and the height of the circular truncated cone is 60 mm.
After the pouring system is assembled according to the design, the concrete pouring method is to adopt the traditional silica sol slurry-cementing sand-spraying method to prepare the large-scale thin-wall high-temperature alloy hollow casing casting shell, roast the shell for 24 hours, preheat the shell to 1000 ℃, smelt K447A high-temperature alloy and perform pouring molding. After calculating the liquidus temperature of the high-temperature alloy as a shrinkage coefficient by adopting JMatPro thermodynamic software, determining the pouring temperature of the K447A high-temperature alloy of 1530 ℃ and calculating the critical effective weight of 220 Kg. And after the casting molding is cooled for 24 hours, a casting system is cut, the internal quality is found to be good, and the dimensional accuracy of the large-scale high-temperature alloy casing casting is evaluated to reach the CT5 grade through three-coordinate measurement and is superior to the technical index requirement.
Example 2:
the large-scale high-temperature alloy casing component of a certain aeroengine has the diameter of 1050mm, the height of 220mm and the minimum wall thickness of 3 mm. According to the service requirement, the selected material IC10 high-temperature alloy has large brittleness because the content of gamma' of the IC10 high-temperature alloy is 69.44%, and the traditional repair welding method can not repair welding and shape correction and can only be integrally and precisely formed at one time by a precise casting technology.
Firstly, developing a large-scale casing casting wax mold by adopting an MPI wax pressing machine, flatly placing the casting wax mold on a marble worktable, placing a thin-wall flange of the casing casting on the bottom side, and placing a thick-wall flange on the upper side so as to form a sequential solidification mode from bottom to top in the solidification process. The thick wall flange upside is intensive arranges 23 feeding modules, and feeding module diameter is 42mm, realizes carrying out the full feeding of solidification process to the quick-witted casket foundry goods. The dense feeding module is connected with the casing casting through a wedge-shaped structure, and the dense feeding module is connected with the casing casting through a cross gate with the diameter of 20 mm. Based on the modulus calculation of each part of the casing casting, the diameter of the selected sprue is 60mm, the sprue is connected with an inverted circular truncated cone type sprue cup, the diameter of the upper circular truncated cone is 150mm, and the height of the circular truncated cone is 90 mm.
After the pouring system is assembled according to the design, the concrete pouring method is to adopt the traditional silica sol slurry-cementing sand-spraying method to prepare the large-scale thin-wall high-temperature alloy hollow casing casting shell, roast the shell for 24 hours and preheat to 1000 ℃, smelt the IC10 high-temperature alloy and perform pouring molding. After calculating the liquidus temperature of the high-temperature alloy as a shrinkage coefficient by adopting JMatPro thermodynamic software, determining the pouring temperature of the IC10 high-temperature alloy to be 1550 ℃, and calculating the critical effective weight to be 310 Kg. After the casting molding is cooled for 24 hours, a casting system is cut, the internal quality is found to be good, the dimensional accuracy of the large-scale high-temperature alloy casing casting is evaluated to reach the CT5 level through three-coordinate measurement, the technical index requirement is met, and the invention is verified to be suitable for developing high-grade high-temperature alloy precision castings which are difficult to repair weld and modify.
The foregoing description of specific embodiments of the present invention has been presented. It is to be understood that the present invention is not limited to the specific embodiments described above, and that various changes and modifications may be made by one skilled in the art within the scope of the appended claims without departing from the spirit of the invention. The above-described preferred features may be used in any combination without conflict with each other.

Claims (7)

1. A large-scale superalloy casing casting rapid mold filling type pouring system is characterized by comprising:
a pouring cup for receiving pouring liquid;
the inlet of the straight pouring gate is communicated with the bottom of the pouring cup;
the ceramic slag blocking net is arranged between the sprue and the sprue cup;
the feeding modules are arranged on the upper side of the casing casting and used for feeding the casing casting in a solidification process;
the feeding module is connected with the casing casting through the wedge-shaped structure;
the cross pouring channel is positioned among the feeding modules and is communicated with the feeding modules;
the sprue is one of the feeding modules, wherein the feeding module with the largest modulus is selected as the sprue; the feeding module is arranged on the upper side of a thick-wall flange of the casing casting, the thin-wall flange of the casing casting is placed on the bottom side, and the thick-wall flange is placed on the upper side.
2. The rapid filling runner system of large superalloy case casting of claim 1, wherein the sprue cup is an inverted frustoconical sprue cup, a lower circle of the inverted frustoconical sprue cup is the same as the sprue diameter, an upper circle of the inverted frustoconical sprue cup is 2-3 times the sprue diameter, and a height of the inverted frustoconical sprue cup is 1.5-3 times the lower circle diameter.
3. The rapid filling and running system for large-scale superalloy casing castings according to claim 1, wherein a modulus of a single feeding module is 1.5-2 times a modulus of a corresponding portion of the casing casting.
4. The large superalloy casing casting rapid-filling pouring system according to claim 1, wherein the wedge structure comprises a wedge piece arranged at a lower end of the feeding module, and a socket piece arranged on the casing casting and matched with the wedge piece, wherein the wedge piece is inserted into the socket piece to achieve communication between the feeding module and the casing casting.
5. A pouring method of the rapid filling type pouring system for the large-scale high-temperature alloy casing casting according to any one of claims 1 to 4, wherein the pouring method comprises the following steps:
assembling a rigging system which employs the large superalloy case casting rapid fill rigging system of any of claims 1-4;
preparing a large-scale high-temperature alloy casing casting shell, roasting and preheating the shell, smelting high-temperature alloy and adopting the pouring system for pouring and molding;
and after casting molding and cooling, cutting a casting system to obtain a large-scale high-temperature alloy casing casting.
6. The method of claim 5, wherein the casting is performed by a technique for controlling the effective mass of the critical casting, wherein:
thermodynamic software is adopted to calculate the liquidus temperature and the shrinkage coefficient of the high-temperature alloy, the pouring temperature of the high-temperature alloy is 200-300 ℃ higher than the liquidus temperature, and the total amount of the poured high-temperature alloy is critical effective mass, and the specific amount is as follows: (casting volume + dense feeding module volume + cross gate volume + sprue volume) x the high-temperature alloy density at room temperature, and the actual pouring amount in the pouring process is the critical pouring effective mass +/-1 kg.
7. The method of pouring for a large superalloy casing casting rapid fill system according to claim 5, wherein the casting is shaped wherein: the heating magnesium powder is added in the feeding module to prolong the solidification time and enhance the feeding effect of the feeding module on the casing casting.
CN202111195486.5A 2021-10-14 2021-10-14 Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting Active CN113787171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111195486.5A CN113787171B (en) 2021-10-14 2021-10-14 Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111195486.5A CN113787171B (en) 2021-10-14 2021-10-14 Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting

Publications (2)

Publication Number Publication Date
CN113787171A CN113787171A (en) 2021-12-14
CN113787171B true CN113787171B (en) 2022-09-02

Family

ID=79184780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111195486.5A Active CN113787171B (en) 2021-10-14 2021-10-14 Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting

Country Status (1)

Country Link
CN (1) CN113787171B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691882A (en) * 2013-12-17 2014-04-02 上海交通大学 Complicated thin-walled investment casting and method for evaluating casting performance of nickel-based alloy
CN203541439U (en) * 2013-09-05 2014-04-16 贵州安吉航空精密铸造有限责任公司 Runner system for investment casting process
CN204724802U (en) * 2015-06-30 2015-10-28 四川德恩精工科技股份有限公司 Based on the belt pulley blank casting mould of symmetric form ingate
CN105312504A (en) * 2015-11-04 2016-02-10 沈阳黎明航空发动机(集团)有限责任公司 High temperature alloy thin-wall annular casting pouring system and manufacturing method
CN106583657A (en) * 2016-12-13 2017-04-26 山西平阳重工机械有限责任公司 Solidification and feeding method for complicated annular thin-wall shell steel casting
CN108465779A (en) * 2018-06-25 2018-08-31 株洲中航动力精密铸造有限公司 The bottom gating and pouring procedure of blade vertical-type guider
CN111922290A (en) * 2020-07-21 2020-11-13 上海交通大学 Bottom pouring type pouring system and method for high-temperature alloy large-scale casing casting
CN112317692A (en) * 2020-11-03 2021-02-05 西北工业大学 Pouring system for casting alloy standard sample and manufacturing method of formwork

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203541439U (en) * 2013-09-05 2014-04-16 贵州安吉航空精密铸造有限责任公司 Runner system for investment casting process
CN103691882A (en) * 2013-12-17 2014-04-02 上海交通大学 Complicated thin-walled investment casting and method for evaluating casting performance of nickel-based alloy
CN204724802U (en) * 2015-06-30 2015-10-28 四川德恩精工科技股份有限公司 Based on the belt pulley blank casting mould of symmetric form ingate
CN105312504A (en) * 2015-11-04 2016-02-10 沈阳黎明航空发动机(集团)有限责任公司 High temperature alloy thin-wall annular casting pouring system and manufacturing method
CN106583657A (en) * 2016-12-13 2017-04-26 山西平阳重工机械有限责任公司 Solidification and feeding method for complicated annular thin-wall shell steel casting
CN108465779A (en) * 2018-06-25 2018-08-31 株洲中航动力精密铸造有限公司 The bottom gating and pouring procedure of blade vertical-type guider
CN111922290A (en) * 2020-07-21 2020-11-13 上海交通大学 Bottom pouring type pouring system and method for high-temperature alloy large-scale casing casting
CN112317692A (en) * 2020-11-03 2021-02-05 西北工业大学 Pouring system for casting alloy standard sample and manufacturing method of formwork

Also Published As

Publication number Publication date
CN113787171A (en) 2021-12-14

Similar Documents

Publication Publication Date Title
EP3294476B2 (en) Casting process and sand mould provided with an inlet system for producing at least partly thin walled aluminium casts with sand moulding technology by means of gravity casting
CN109550903B (en) Precision casting forming method for thin-wall variable-section casting
US4154289A (en) Gating system
KR20170049566A (en) Method for producing iron metal castings
CN109396345A (en) A method of for investment casting formwork part Quench
CN104174819A (en) Casting technology for three-stage planetary frame of ocean platform climbing machine
CN113787171B (en) Rapid mold filling pouring system and pouring method for large-scale high-temperature alloy casing casting
CN113814354B (en) Deformation-inhibiting pouring system and method for large-sized thin-wall high-temperature alloy hollow casing casting
CN102974805A (en) Semi-mold pre-filling titling casting process and special mold
CN207547598U (en) Thin-walled nacelle monolithic molding mold and its device
JPH07155897A (en) Mold structure and casting method
Nyemba et al. Optimization of the casting technology and sustainable manufacture of 100mm grinding balls for the mining Sector in Zimbabwe
CN115047160A (en) Device and method for evaluating casting performance of single crystal high-temperature alloy
CN212191123U (en) Pouring cup
RU2585604C1 (en) Mould for centrifugal end shaped castings from refractory and chemically active alloys
CN113477886A (en) Casting system and casting process for steam turbine cylinder body casting
Srinivasan et al. Tribological Studies of Shrinkage Defect and Effective Yield Upgrade of Grey Cast-Iron Castings
RU2741044C1 (en) Method for production of small-section casting bars and device for implementation thereof
Zhang et al. Numerical simulation study on monoblock casting process of ultra-slender structural components and experimental validation
CN115475911A (en) Casting method of engine body cover
US4402743A (en) Consumable molding process for super alloys
CN216729435U (en) Novel foundry goods die cavity of vice valve body of ball valve
CN114160758B (en) Pouring system of double-layer bidirectional integral director casting and casting forming method thereof
Li et al. Numerical Simulation and Rapid Centrifugal Casting of Large Complex Thin-Walled Titanium Alloy Intermediate Casing Based on 3D Printed Pattern
Singh Casting Processes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant