CN113783810B - 智能反射面辅助室内通信的信道估计方法、装置及介质 - Google Patents

智能反射面辅助室内通信的信道估计方法、装置及介质 Download PDF

Info

Publication number
CN113783810B
CN113783810B CN202111072347.3A CN202111072347A CN113783810B CN 113783810 B CN113783810 B CN 113783810B CN 202111072347 A CN202111072347 A CN 202111072347A CN 113783810 B CN113783810 B CN 113783810B
Authority
CN
China
Prior art keywords
module
channel
gradient
channel estimation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111072347.3A
Other languages
English (en)
Other versions
CN113783810A (zh
Inventor
陈真
章秀银
唐杰
钟骏城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111072347.3A priority Critical patent/CN113783810B/zh
Publication of CN113783810A publication Critical patent/CN113783810A/zh
Application granted granted Critical
Publication of CN113783810B publication Critical patent/CN113783810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种智能反射面辅助室内通信的信道估计方法、装置及介质,属于无线通信技术领域。对于资源受限的室内场景,在散射体数目增加的情况下,相比于传统基于数学的统计方法,基于深度学习的方法不依赖于假设的统计模型,能更准确地进行信道估计。利用准确的信道状态信息,IRS辅助的Massive MIMO***能够通过调整IRS的相移来控制无源波束形成,提高接收信号功率,抑制干扰,实现高波束形成增益。相比于已有的基于深度学习的信道估计方法,该方案考虑到了IRS辅助***场景,更具有实际意义,从而为IRS辅助的Massive MIMO***在实际中的部署提供了指导。

Description

智能反射面辅助室内通信的信道估计方法、装置及介质
技术领域
本发明涉及无线通信技术领域,尤其涉及一种智能反射面辅助室内通信的信道估计方法、装置及介质。
背景技术
智能反射面(IRS)辅助的大规模多天线(Massive MIMO)技术的增益依赖于接入点(AP)与IRS之间、IRS与用户设备(UEs)之间准确的传输信道状态信息(CSI)估计。但在实际室内场景中,通信信道具有大量的短距离、多散射体路径,这增加了信道估计的难度。若采用传统的基于数学的统计方法进行信道估计,会由于信道估计不准确导致严重的信道失配和偏移误差。
目前,利用深度学习(DL)模型不依赖于假设的统计模型的特性,研究者们提出了一种基于DL的解决方案来实现信道估计任务,但该方法不能直接用于IRS辅助室内通信的信道估计。
发明内容
为至少一定程度上解决现有技术中存在的技术问题之一,本发明的目的在于提供一种智能反射面辅助室内通信的信道估计方法、装置及介质。
本发明所采用的技术方案是:
一种智能反射面辅助室内通信的信道估计方法,包括以下步骤:
获取成对的训练数据ψ={Y,H0},其中Y表示接收信号,H0表示真实的信道信息,初始化迭代次数k=1;
若迭代次数k≤K,将接收信号Y经过稀疏增强模块H(k)、偏移估计模块R(n)、双变量操作模块F(n)以及正则化模块Z(n)这四个模块进行前向传播,输出信道估计结果Ht (k)(Y,Ξ),k∈[1,K],K为预设的迭代总次数;
根据输出的信道估计结果和预设的损失函数学习稀疏增强模块H(k)、偏移估计模块R(n)、双变量操作模块F(n)以及正则化模块Z(n)这四个模块的参数,以及将这四个模块进行反向传播,使k=k+1;
将最后一次迭代所学习的参数Ξ固定,在估计新的接收信号Y时,输入Y,输出
Figure GDA0003346310320000011
作为信道估计的结果。
进一步,采用参数的归一化均方误差作为损失函数,所述损失函数的表达式为:
Figure GDA0003346310320000021
其中,ψ表示通道数组,||·||2表示欧几里得范数。
进一步,在第k次迭代中,稀疏增强模块H(k)的前向传播的步骤包括:
稀疏增强模块H(k)的输入为接收信号Y和前一次迭代输出的信道估计结果
Figure GDA0003346310320000022
计算稀疏增强模块H(k)的输出为:H(k+1)=(ρ(k)I+ΦHΦ)-1(k)Ht (k)HY),其中Φ是测量矩阵,(·)H表示共轭转置,,ρ表示正则化参数,I表示单位矩阵。
进一步,在第k次迭代中,正则化模块
Figure GDA0003346310320000023
的前向传播的步骤包括:
正则化模块Z(n)由视距矩阵
Figure GDA0003346310320000024
和非视距矩阵
Figure GDA0003346310320000025
组成,视距矩阵
Figure GDA0003346310320000026
经过N个基于卷积神经网络结构的卷积模块处理,其中第n个卷积模块分为四层:统一层U(n,k)、第一卷积层
Figure GDA0003346310320000027
第二卷积层C2 (n,k)和非线性变换层S(n,k),初始化统一层U(n,1)为H(n)
在正则化模块Z(n)的视距矩阵
Figure GDA0003346310320000028
中利用维纳反卷积网络进行处理。
进一步,偏移估计模块R(n)的前向传播的步骤包括:
偏移估计模块R(n)的输入为U(n)和H(n),计算偏移估计模块R(n)的输出为:
Figure GDA0003346310320000029
其中,T(n)表示第n次阶段的偏移操作,HLOS是LOS信道链路,HNLOS是NLOS信道链路,U(n)=HLOS (n)+HNLOS (n)是LOS和NLOS信道链路和。
进一步,双变量操作模块F(n)的前向传播的步骤包括:
双变量操作模块F(n)更新两个变量Fa和Fb,计算双变量操作模块F(n)的输出为:
Figure GDA00033463103200000210
Figure GDA00033463103200000211
其中,Fa表示视距链路变量,Fb表示非视距链路变量。
进一步,所述将这四个模块进行反向传播,包括:
计算损失关于偏移估计模块R(n)的参数的梯度
Figure GDA0003346310320000031
T表示ht (n)的微分变量,V表示T(n)的微分变量,ht表示信道分量;
计算损失关于正则化模块Z(n)各层参数的梯度;
计算信道估计模块H(k)的参数ρ(n)的梯度
Figure GDA0003346310320000032
其中h(n,k)表示信道分量。
进一步,所述计算损失关于正则化模块Z(n)各层参数的梯度,包括:
计算损失关于统一层U(n,k)两个输入参数
Figure GDA00033463103200000321
Figure GDA00033463103200000322
的梯度
Figure GDA0003346310320000033
其中在k<K的情况下
Figure GDA0003346310320000034
若k=K输出层相应的梯度为:
Figure GDA0003346310320000035
Figure GDA0003346310320000036
Figure GDA0003346310320000037
其中,
Figure GDA0003346310320000038
Figure GDA0003346310320000039
是U(n,k)的两个分量;
计算损失关于第一卷积层C1 (n,k)的权重ω1 (n,k)和偏置b1 (n,k)的梯度
Figure GDA00033463103200000310
其中
Figure GDA00033463103200000311
该层输出相对于输入的梯度为:
Figure GDA00033463103200000312
计算损失关于非线性变换变量
Figure GDA00033463103200000313
的梯度
Figure GDA00033463103200000314
其中
Figure GDA00033463103200000315
该层输出相对于输入的梯度为:
Figure GDA00033463103200000316
计算损失关于第二卷积层
Figure GDA00033463103200000317
的权重ω2 (n,k)和偏置b2 (n,k)的梯度
Figure GDA00033463103200000318
其中
Figure GDA00033463103200000319
该层输出相对于输入的梯度为:
Figure GDA00033463103200000320
本发明所采用的另一技术方案是:
一种智能反射面辅助室内通信的信道估计装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上所述方法。
本发明所采用的另一技术方案是:
一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序在由处理器执行时用于执行如上所述方法。
本发明的有益效果是:本发明基于基于偏移学习的方法不依赖于假设的统计模型,能更准确地进行信道估计;利用准确的信道状态信息,IRS辅助的Massive MIMO***能够通过调整IRS的相移来控制无源波束形成,提高接收信号功率,抑制干扰,实现高波束形成增益。
附图说明
为了更清楚地说明本发明实施例或者现有技术中的技术方案,下面对本发明实施例或者现有技术中的相关技术方案附图作以下介绍,应当理解的是,下面介绍中的附图仅仅为了方便清晰表述本发明的技术方案中的部分实施例,对于本领域的技术人员而言,在无需付出创造性劳动的前提下,还可以根据这些附图获取到其他附图。
图1是本发明实施例中基于偏移学习的室内信道估计方法整体框架示意图;
图2是本发明实施例中一般IRS辅助室内通信场景;
图3是本发明实施例中第k次迭代时网络结构和正则化模块的示意图;
图4是本发明实施例中引入维纳反卷积滤波器的正则化模块的结构示意图;
图5是本发明实施例中LS、OMP和OLNN三种信道估计方法信噪比SNR对归一化均方误差NMSE和可实现频谱效率ASE的影响的对比图;
图6是本发明实施例中不同数量的散射体对OLNN信道估计结果影响的对比图;
图7是本发明实施例中不同长度的导频序列对OLNN信道估计结果NMSE影响的对比图;
图8是本发明实施例中不同数量的导频序列对OLNN信道估计结果NMSE影响的对比图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
如图1所示,本实施例公开了一种基于偏移学习的智能反射面辅助室内通信信道估计方法,智能反射面(IRS)根据信道状态信息重新配置红外反射单元,通过调整红外反射单元的相移来控制无源波束形成,提高接收信号功率,抑制干扰,实现高波束形成增益,该基于偏移学习的智能反射面辅助室内通信信道估计方法包括下列步骤:
S1、输入迭代总次数K和成对的训练数据ψ={Y,H0},其中Y表示接收信号,H0表示真实的信道信息,初始化迭代次数k=1。
S2、若迭代次数k≤K,将接收信号Y经过稀疏增强模块H(k),偏移估计模块R(n),双变量操作模块F(n)以及正则化模块Z(n)这四个模块进行前向传播,输出信道估计结果Ht (k)(Y,Ξ),k∈[1,K]。
其中,该步骤S2的具体过程如下:
S21、稀疏增强模块H(k)的输入为接收信号Y和前一次迭代输出的偏移估计结果
Figure GDA0003346310320000051
计算模块的输出H(k+1)=(ρ(k)I+ΦHΦ)-1(k)Ht (k)HY);
S22、正则化模块
Figure GDA0003346310320000052
须经过N个基于CNN结构的模块处理,其中第n(n∈[1,N])个模块可分为四层:统一层U(n,k),卷积层C1 (n,k)和C2 (n,k),非线性变换层S(n,k),初始化统一层U(n,1)为H(n)
参见图3,其中图3(a)为第k次迭代时网络结构展开图,图3(b)为引入了卷积层的正则化模块
Figure GDA0003346310320000053
的结构示意图,该步骤S22的具体过程如下:
S221、输入前一个统一层输出U(n,k-1),信道估计模块输出H(n)和第二个卷积层输出C2 (n,k),计算统一层的输出U(n,k)=μ1 (n,k)U(n,k-1)2 (n,k)H(n)-C2 (n,k)
S222、输入统一层输出U(n,k),计算第一个卷积层的输出C1 (n,k)=w1 (n,k)*U(n,k)+b1 (n ,k)
S223、输入第一个卷积层的输出C1 (n,k),计算非线性变换层的输出
Figure GDA0003346310320000061
S224、输入非线性变换层的输出S(n,k),计算第二个卷积层输出的输出C2 (n,k)=w2 (n ,k)*S(n,k)+b2 (n,k)
S23、在正则化模块
Figure GDA0003346310320000062
中利用维纳反卷积网络进行处理;参见图4,图4是引入维纳反卷积滤波器的正则化模块
Figure GDA0003346310320000063
的结构示意图;
S24、偏移估计模块R(n)的输入为U(n)和H(n),计算输出
Figure GDA0003346310320000064
其中T(n)表示第n次阶段的偏移操作;
S25、双变量操作模块更新两个变量Fa和Fb,计算输出
Figure GDA0003346310320000065
Figure GDA0003346310320000066
S3、以归一化均方误差NMSE作为损失函数学习各个模块的参数Ξ,包括稀疏增强模块,偏移估计模块,变量操作模块以及正则化模块,进行反向传播,重复步骤S2。
其中,损失函数的表达式为:
Figure GDA0003346310320000067
其中,该步骤S3的具体过程如下:
S31、计算损失关于偏移估计模块R(n)参数的梯度
Figure GDA0003346310320000068
其中
Figure GDA0003346310320000069
S32、计算损失关于正则化模块Z(n)各层参数的梯度;其中,该步骤S3的具体过程如下:
S321、计算损失关于统一层U(n,k)两个输入
Figure GDA00033463103200000610
Figure GDA00033463103200000611
的梯度
Figure GDA0003346310320000071
S322、计算损失关于第一个卷积层C1 (n,k)的权重ω1 (n,k)和偏置b1 (n,k)的梯度
Figure GDA0003346310320000072
S323、计算损失关于非线性变换层
Figure GDA0003346310320000073
的参数的梯度
Figure GDA0003346310320000074
S324、计算损失关于第二个卷积层C2 (n,k)的权重ω2 (n,k)和偏置b2 (n,k)的梯度
Figure GDA0003346310320000075
S33、计算损失关于信道估计模块H(n)参数ρ(n)的梯度
Figure GDA0003346310320000076
S4、将最后一次迭代所学习的参数Ξ固定,在估计新的接收信号Y时,输入Y,输出Ht K(Y,Ξ)即为信道估计结果。
以下结合附图及具体实施例对上述信道估计方法做详细的说明。
考虑IRS辅助的Massive MIMO***模型如图2所示,其中,AP-IRS之间的有M个散射体,在墙上安装有IRS。接入点天线数目Nt=36,IRS配备36个反射单元,采用两个操作频率,28和37GHz,IRS的高度不低于AP的高度,这样在两者之间就有一个清晰的LOS路径。
为了充分采集训练样本,发射器产生不同方向的单元信号,训练用的数据集共由1500000个样本组成,每个噪声级别(SNR)的20000个样本作为验证数据集。
仿真中,采用归一化均方误差NMSE以及可时间频谱效率ASE作为信道估计准确度的评估指标,其中ASE定义为:
Figure GDA0003346310320000077
其中Nt和Nr表示发送和接收天线的数量。
参见图5,图5(a)是LS、OMP和OLNN三种信道估计方法信噪比SNR对归一化均方误差NMSE的对比图,图5(b)是LS、OMP和OLNN三种信道估计方法信噪比SNR对可实现频谱效率ASE的影响的对比图。得益于偏移学习模块,与OMP和LS信道估计器相比,OLNN(即本实施例提出的方法)方法显著提高了NMSE值和ASE值的估计性能。其中,测试频率为73Hz。
参见图6,图6(a)为在频率73Hz下,不同数量的散射体对OLNN信道估计结果影响的对比图;图6(b)为在频率28GHz下,不同数量的散射体对OLNN信道估计结果影响的对比图。图6可实现频谱效率结果表明,信道估计的精度与训练开销之间存在一个折衷。这是因为少量的散射簇不足以实现基于IRS的信道的高增益,而过多的簇导致信道估计过程的计算代价昂贵。此外,可以观察到,在相同簇数下,工作频率为73Hz的信道估计器略优于工作频率为28Hz的信道估计器。
参见图7和图8,图7(a)为为在频率73Hz下,不同长度的导频序列对OLNN信道估计结果NMSE影响的对比图;图7(b)为在频率28GHz下,不同长度的导频序列对OLNN信道估计结果NMSE影响的对比图;图8(a)为为在频率73Hz下,不同数量的导频序列对OLNN信道估计结果NMSE影响的对比图;图8(b)为在频率28GHz下,不同数量的导频序列对OLNN信道估计结果NMSE影响的对比图。基于图7和图8归一化均方误差结果表明,当使用较长的导频序列时,NMSE得到了增强即获得了更精确的信道状态信息,此外,NMSE随着导频数量的增加而减小并逐渐趋于稳定,工作频率为28Hz的信道估计器表现优于工作频率为73Hz的信道估计器。
相比于采用基于数学的统计方法估计IRS辅助***的信道状态信息,所申请的方案具有更准确的信道估计结果。结合图5的仿真结果可知,基于偏移学习的估计方法能获得较高的NMSE值和ASE值。
根据上述的数值结果证明,本实施例基于偏移学习的智能反射面辅助室内通信信道估计方法能够有效提高对IRS辅助Massive MIMO***的信道估计准确性。
本实施例还提供一种智能反射面辅助室内通信的信道估计装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如图1所示的方法。
本实施例的一种智能反射面辅助室内通信的信道估计装置,可执行本发明方法实施例所提供的一种智能反射面辅助室内通信的信道估计方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本申请实施例还公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行图1所示的方法。
本实施例还提供了一种存储介质,存储有可执行本发明方法实施例所提供的一种智能反射面辅助室内通信的信道估计方法的指令或程序,当运行该指令或程序时,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或所述方框有时能以相反顺序被执行。此外,在本发明的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
此外,虽然在功能性模块的背景下描述了本发明,但应当理解的是,除非另有相反说明,所述的功能和/或特征中的一个或多个可以被集成在单个物理装置和/或软件模块中,或者一个或多个功能和/或特征可以在单独的物理装置或软件模块中被实现。还可以理解的是,有关每个模块的实际实现的详细讨论对于理解本发明是不必要的。更确切地说,考虑到在本文中公开的装置中各种功能模块的属性、功能和内部关系的情况下,在工程师的常规技术内将会了解该模块的实际实现。因此,本领域技术人员运用普通技术就能够在无需过度试验的情况下实现在权利要求书中所阐明的本发明。还可以理解的是,所公开的特定概念仅仅是说明性的,并不意在限制本发明的范围,本发明的范围由所附权利要求书及其等同方案的全部范围来决定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于上述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

1.一种智能反射面辅助室内通信的信道估计方法,其特征在于,包括以下步骤:
获取成对的训练数据ψ={Y,H0},其中Y表示接收信号,H0表示真实的信道信息,初始化迭代次数k=1;
若迭代次数k≤K,将接收信号Y依次经过稀疏增强模块H(k)、偏移估计模块R(n)、双变量操作模块F(n)以及正则化模块Z(n)这四个模块进行前向传播,输出信道估计结果Ht (k)(Y,Ξ),k∈[1,K],K为预设的迭代总次数,n表示第n次迭代结果;
根据输出的信道估计结果和预设的损失函数学习稀疏增强模块H(k)、偏移估计模块R(n)、双变量操作模块F(n)以及正则化模块Z(n)这四个模块的参数,以及将这四个模块进行反向传播,使k=k+1;
将最后一次迭代所学习的参数Ξ固定,在估计新的接收信号Y时,输入Y,输出
Figure FDA0003603748760000011
作为信道估计的结果;
采用参数的归一化均方误差作为损失函数,所述损失函数的表达式为:
Figure FDA0003603748760000012
其中,ψ表示通道数组,||·||2表示欧几里得范数;
偏移估计模块R(n)的前向传播的步骤包括:
偏移估计模块R(n)的输入为U(n)和H(n),计算偏移估计模块R(n)的输出为:
Figure FDA0003603748760000013
其中,Τ(n)表示第n次阶段的偏移操作的结果,HLOS是LOS信道的链路参数,HNLOS是NLOS信道的链路参数,U(n)=HLOS (n)+HNLOS (n)是LOS和NLOS信道的链路参数之和。
2.根据权利要求1所述的一种智能反射面辅助室内通信的信道估计方法,其特征在于,在第k次迭代中,稀疏信道增强模块H(k)的前向传播的步骤包括:
稀疏信道增强模块H(k)的输入为接收信号Y和前一次迭代输出的信道估计结果
Figure FDA0003603748760000014
计算稀疏信道增强模块H(k)的输出为:H(k+1)=(ρ(k)I+ΦHΦ)-1(k)Ht (k)HY),其中Φ是测量矩阵,(·)H表示共轭转置,ρ表示正则化参数,I表示单位矩阵。
3.根据权利要求1所述的一种智能反射面辅助室内通信的信道估计方法,其特征在于,在第k次迭代中,正则化模块Z(n)的前向传播的步骤包括:
正则化模块Z(n)由视距矩阵
Figure FDA0003603748760000021
和非视距矩阵
Figure FDA0003603748760000022
组成,视距矩阵
Figure FDA0003603748760000023
经过N个基于卷积神经网络结构的卷积模块处理,其中第n个卷积模块分为四层:统一层U(n,k)、第一卷积层C1 (n,k)、第二卷积层C2 (n,k)和非线性变换层S(n,k),初始化统一层U(n,1)为H(n)
在正则化模块Z(n)的非视距矩阵
Figure FDA0003603748760000024
中利用维纳反卷积网络进行处理。
4.根据权利要求1所述的一种智能反射面辅助室内通信的信道估计方法,其特征在于,双变量操作模块F(n)的前向传播的步骤包括:
双变量操作模块F(n)更新两个变量Fa和Fb,计算双变量操作模块F(n)的输出为:
Figure FDA0003603748760000025
Figure FDA0003603748760000026
其中,Fa表示视距链路变量,Fb表示非视距链路变量;
Figure FDA0003603748760000027
表示LOS信道的误差因子,
Figure FDA0003603748760000028
表示NLOS信道的误差因子。
5.根据权利要求3所述的一种智能反射面辅助室内通信的信道估计方法,其特征在于,所述将这四个模块进行反向传播,包括:
计算损失关于偏移估计模块R(n)的参数的梯度
Figure FDA0003603748760000029
其中T表示ht (n)的微分变量,V表示T(n)的微分变量,ht表示信道分量;
计算损失关于正则化模块Z(n)各层参数的梯度;
计算信道估计模块H(k)的参数ρ(n)的梯度
Figure FDA00036037487600000210
其中h(n,k)表示信道分量,ρ表示正则化参数。
6.根据权利要求5所述的一种智能反射面辅助室内通信的信道估计方法,其特征在于,所述计算损失关于正则化模块Z(n)各层参数的梯度,包括:
计算损失关于统一层U(n,k)两个输入参数
Figure FDA00036037487600000211
Figure FDA00036037487600000212
的梯度
Figure FDA00036037487600000213
其中在k<K的情况下
Figure FDA0003603748760000031
若k=K输出层相应的梯度为:
Figure FDA0003603748760000032
Figure FDA0003603748760000033
Figure FDA0003603748760000034
计算损失关于第一卷积层C1 (n,k)的权重ω1 (n,k)和偏置b1 (n,k)的梯度
Figure FDA0003603748760000035
其中
Figure FDA0003603748760000036
该层输出相对于输入的梯度为:
Figure FDA0003603748760000037
关于非线性变换层,通过计算非线性变换参数
Figure FDA0003603748760000038
的梯度
Figure FDA0003603748760000039
其中
Figure FDA00036037487600000310
该层输出相对于输入的梯度为:
Figure FDA00036037487600000311
计算损失关于第二卷积层C2 (n,k)的权重ω2 (n,k)和偏置b2 (n,k)的梯度
Figure FDA00036037487600000312
其中
Figure FDA00036037487600000313
该层输出相对于输入的梯度为:
Figure FDA00036037487600000314
7.一种智能反射面辅助室内通信的信道估计装置,其特征在于,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现权利要求1-6任一项所述方法。
8.一种计算机可读存储介质,其中存储有处理器可执行的程序,其特征在于,所述处理器可执行的程序在由所述处理器执行时用于实现如权利要求1-6任一项所述方法。
CN202111072347.3A 2021-09-14 2021-09-14 智能反射面辅助室内通信的信道估计方法、装置及介质 Active CN113783810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111072347.3A CN113783810B (zh) 2021-09-14 2021-09-14 智能反射面辅助室内通信的信道估计方法、装置及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111072347.3A CN113783810B (zh) 2021-09-14 2021-09-14 智能反射面辅助室内通信的信道估计方法、装置及介质

Publications (2)

Publication Number Publication Date
CN113783810A CN113783810A (zh) 2021-12-10
CN113783810B true CN113783810B (zh) 2022-06-14

Family

ID=78843280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111072347.3A Active CN113783810B (zh) 2021-09-14 2021-09-14 智能反射面辅助室内通信的信道估计方法、装置及介质

Country Status (1)

Country Link
CN (1) CN113783810B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900400B (zh) * 2022-05-24 2023-06-16 华南理工大学 一种基于智能反射面辅助物联网的联合稀疏信道估计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192234B1 (ko) * 2019-10-28 2020-12-17 성균관대학교 산학협력단 지능형 반사 평면을 포함하는 무선 통신 시스템의 통신 방법 및 이를 위한 장치
CN112422162A (zh) * 2020-12-10 2021-02-26 中山大学 智能反射面鲁棒波束成形方法及***
CN112769719A (zh) * 2020-12-01 2021-05-07 华南理工大学 基于智能反射表面辅助无线通信***渐进式信道估计方法
CN112769461A (zh) * 2020-12-11 2021-05-07 华南理工大学 基于毫米波智能反射面通信的大规模天线信道估计方法
WO2021112360A1 (ko) * 2019-12-01 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 채널을 추정하기 위한 방법 및 장치
CN113194072A (zh) * 2021-04-02 2021-07-30 西安交通大学 一种智能反射面辅助的合法监听实现方法
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192234B1 (ko) * 2019-10-28 2020-12-17 성균관대학교 산학협력단 지능형 반사 평면을 포함하는 무선 통신 시스템의 통신 방법 및 이를 위한 장치
WO2021112360A1 (ko) * 2019-12-01 2021-06-10 엘지전자 주식회사 무선 통신 시스템에서 채널을 추정하기 위한 방법 및 장치
CN112769719A (zh) * 2020-12-01 2021-05-07 华南理工大学 基于智能反射表面辅助无线通信***渐进式信道估计方法
CN112422162A (zh) * 2020-12-10 2021-02-26 中山大学 智能反射面鲁棒波束成形方法及***
CN112769461A (zh) * 2020-12-11 2021-05-07 华南理工大学 基于毫米波智能反射面通信的大规模天线信道估计方法
CN113194072A (zh) * 2021-04-02 2021-07-30 西安交通大学 一种智能反射面辅助的合法监听实现方法
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Heng Liu等.ADMM Based Channel Estimation for RISs Aided Millimeter Wave Communications.《IEEE Communications Letters ( Volume: 25, Issue: 9, Sept. 2021)》.2021, *
李然等.智能反射表面无线通信的信道估计与帧结构设计.《无线电通信技术》.2020, *

Also Published As

Publication number Publication date
CN113783810A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN110222748B (zh) 基于1d-cnn多域特征融合的ofdm雷达信号识别方法
US8451930B2 (en) Sparse channel estimation using order extension for frequency and time selective MIMO wireless communication networks
CN107450047A (zh) 嵌套阵下基于未知互耦信息的压缩感知doa估计方法
CN108964725B (zh) 时变大规模mimo网络中信道参数的稀疏估计方法
CN113783810B (zh) 智能反射面辅助室内通信的信道估计方法、装置及介质
WO2023165631A1 (zh) 一种用于智能超表面无线通信的信道参数估计方法
CN106646414A (zh) 基于Bi‑CGSTAB和SL0算法的MIMO雷达目标参数估计方法
CN114124623A (zh) 一种无线通信信道估计方法和装置
CN109031227B (zh) 一种共轭梯度空时自适应处理方法及***
CN110808932B (zh) 基于多分布测试数据融合的多层感知器快速调制识别方法
CN115250216A (zh) 一种基于深度学习的水声ofdm联合信道估计和信号检测方法
CN111030644B (zh) 一种非线性网络化控制***的有限时间耗散滤波方法
CN109379116B (zh) 基于切比雪夫加速法与sor算法的大规模mimo线性检测算法
CN111934694A (zh) 一种宽带零中频收发***失真补偿装置
CN114938232B (zh) 基于lstm的同时同频全双工数字域自干扰抑制方法
CN113890798B (zh) Ris级联信道多用户联合的结构化稀疏估计方法及装置
CN109298381A (zh) 一种基于变分贝叶斯推断的互质阵相干信号方位角估计方法
Boas et al. Machine learning for CSI recreation in the digital twin based on prior knowledge
KR20190083040A (ko) 시간적 상관 관계를 이용한 다중 안테나 통신 시스템에서 채널 추정 방법 및 그 장치
CN113965236A (zh) 适用于卫星通信的高鲁棒性自适应波束赋形方法和装置
Ahmed et al. A review: Deep learning aided channel estimation techniques for wireless communication system
Gong et al. Super-resolution delay-Doppler estimation for OTFS radar
CN105553899A (zh) 基于线性方程组求近似解的信号检测方法及装置
CN110336762A (zh) 一种mimo***的相位噪声补偿方法、***及相关组件
CN115834306B (zh) 干扰条件下多通信信号符号序列直接估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant