CN113764688B - Three-dimensional carbon structure supported GaN catalyst and preparation method thereof - Google Patents

Three-dimensional carbon structure supported GaN catalyst and preparation method thereof Download PDF

Info

Publication number
CN113764688B
CN113764688B CN202110997157.6A CN202110997157A CN113764688B CN 113764688 B CN113764688 B CN 113764688B CN 202110997157 A CN202110997157 A CN 202110997157A CN 113764688 B CN113764688 B CN 113764688B
Authority
CN
China
Prior art keywords
dimensional carbon
gan
carbon structure
powder
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110997157.6A
Other languages
Chinese (zh)
Other versions
CN113764688A (en
Inventor
王如志
杨孟骐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110997157.6A priority Critical patent/CN113764688B/en
Publication of CN113764688A publication Critical patent/CN113764688A/en
Application granted granted Critical
Publication of CN113764688B publication Critical patent/CN113764688B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A three-dimensional carbon structure supported GaN catalyst and a preparation method thereof belong to the technical field of fuel cell catalysts. The method comprises the following steps: 1) The three-dimensional carbon structure powder is obtained by a pretreatment process of various structural carbon-based materials; 2) Carrying out plasma treatment on the carbon powder with the three-dimensional structure to obtain carbon powder with the three-dimensional structure and activated surface; 3) Preparing a GaN nano material by adopting a microwave plasma chemical vapor deposition system; 4) Transferring the GaN nano material to the surface of a foam nickel electrode, and carrying out electrostatic adsorption on the three-dimensional carbon structure in an aqueous solution; 5) And carrying out annealing treatment on the three-dimensional carbon structure adsorbed with the GaN nano material to obtain the three-dimensional carbon structure supported GaN catalyst. The three-dimensional carbon structure supported GaN catalyst prepared by the invention has the mass activity larger than 100mA/[email protected], and the mass activity attenuation is reduced by less than 20% after 10000 times of aging test.

Description

Three-dimensional carbon structure supported GaN catalyst and preparation method thereof
Technical Field
The invention belongs to the technical field of fuel cell catalysts, and relates to a three-dimensional carbon structure supported gallium nitride (GaN) catalyst and a preparation method thereof.
Background
Proton exchange membrane fuel cells are one of the important ways to utilize hydrogen energy, can realize high-efficiency energy conversion, are key technical means for replacing petroleum fuels, and the catalysts adopted by the proton exchange membranes at present are noble metal catalysts such as Pt, ir and the like, so that the large-scale development and utilization of the hydrogen energy are greatly hindered, and therefore, the high-performance non-noble metal catalysts become hot spots in the current research. The non-noble metal catalysts have the following main problems: 1. the activity of the non-noble metal catalyst is not high, and the catalytic efficiency is low; 2. the stability of the non-noble metal catalyst is poor; 3. the energy consumption required for the non-noble metal catalyst is higher. GaN, one of the most important third generation semiconductors, has not only piezoelectric polarization (stress induced polarization) but also spontaneous polarization generation (structural symmetry polarization) characteristics, and has been widely used in photovoltaic devices, communication chips, high frequency, high power semiconductor devices, and the like. In recent years, gaN has been successively found to have good catalytic properties, including in particular: 1) The proper energy band structure and chemical stability enable the catalyst to have good photocatalytic activity and catalytic stability; 2) The catalytic performance of the catalyst can be further regulated by regulating the catalytic crystal face of the catalyst; 3) The polarized surface induces an electric field to promote the catalytic activity. According to the invention, the three-dimensional carbon structure is uniformly loaded with GaN and the post-treatment method is carried out, so that the catalytic activity and stability of the three-dimensional carbon structure loaded with GaN are improved, the impurity content of the three-dimensional carbon structure is greatly reduced, and the catalyst has a long cycle life while high-efficiency catalysis is maintained.
Disclosure of Invention
The invention provides a three-dimensional carbon structure supported GaN catalyst and a preparation method thereof for realizing a non-noble metal catalyst of a fuel cell with high activity and high stability. The technical steps provided by the invention are as follows:
step 1: preparation and treatment of three-dimensional carbon structure carrier
Mixing 0.5-1.5 parts by weight of zero-dimensional carbon material, 0.5-1.5 parts by weight of one-dimensional carbon material, 0.5-1.5 parts by weight of two-dimensional carbon material and 1-10 parts by weight of carbon black, dissolving in 20-100 parts by weight of 10wt% nitric acid solution, stirring at 60-80 ℃ for 5-10 hours, washing and filtering the obtained mixture with water, drying at 60-80 ℃ for 5-10 hours, and ball-milling the dried product at 250-400rpm for 1-2 hours to obtain three-dimensional carbon structure powder;
step 2: surface modification of three-dimensional carbon structures
Carrying out surface modification on the three-dimensional carbon powder in the step 1 by adopting a Plasma Enhanced Chemical Vapor Deposition (PECVD) system, placing the powder in a rotatable ceramic crucible, fixing the crucible by a rotary rod, and introducing N 2 Or O 2 The gas, the radio frequency power is 150W, the heat preservation temperature is 100-300 ℃, and the plasma treatment time is 1-3 hours;
step 3: gaN nanomaterial preparation
Mixing 1 part of gallium oxide and 0.5-2 parts of activated carbon powder according to parts by weight to form uniform powder, placing the uniform powder into a crucible of a microwave plasma chemical vapor deposition system, and preparing SiO of an Au catalyst with a sputtered surface in advance 2 Placing Si substrate right above the crucible, introducing 5-10sccm N 2 Maintaining cavity pressure at 1-5Torr and microwave power at 300W, and growing at 850-900 deg.C for 20-60 min to obtain Ga-rich GaN nanomaterial, and placing it in HNO with concentration of 70wt% 3 And 50wt% HF in the volume ratio of 2-10 to 1 for 30 min, and filtering to obtain Ga-rich GaN nanometer material;
step 4: preparation of three-dimensional carbon structure supported GaN material
Dispersing 1 part of the GaN nano material in the step 2 into 100 parts of ethanol according to parts by weight, coating the mixture on the surface of a foam nickel electrode after ultrasonic treatment for 20 minutes, dispersing 1 part of the surface modified three-dimensional carbon structure in the step 2 in deionized water for 20 parts by weight, and carrying out ultrasonic dispersion for 30 minutes, and placing the mixture in an electrolytic cell for electrostatic adsorption;
step 5: three-dimensional carbon structure supported GaN material post-treatment
The product of step 5 was subjected to a gas flow rate N of 200sccm 2 And (3) placing the mixture in a muffle furnace at 150-400 ℃ under the protection gas for high-temperature annealing for 1-3 hours, and obtaining the final product, namely the three-dimensional carbon structure supported GaN catalyst.
Further, the zero-dimensional carbon material comprises nano diamond and fullerene; the one-dimensional carbon material comprises carbon nanotubes and carbon nanofibers; the two-dimensional carbon material includes graphene;
further, the rotatable crucible is in a square hollow barrel-shaped structure, the thickness of the placed powder is not higher than 2mm, and the rotating speed is 1-10rpm;
further, N is introduced into 2 The air flow is 5-15sccm, the cavity pressure is 10-20Pa, and O is introduced 2 The air flow is 20-30sccm, and the cavity pressure is 20-40Pa;
further, the anode of the electrolytic cell is a foam nickel electrode coated with Ga-rich GaN nano material, the cathode is a carbon rod electrode, the external circuit voltage is 0.5-1V, the pressurizing time is 0.5-3 hours, and magnetic stirring at 30-60rpm is carried out in the electrostatic adsorption process.
The invention has the following advantages and benefits:
(1) According to the preparation method, the three-dimensional carbon structure supported GaN catalyst is prepared by adopting an aqueous solution electrostatic adsorption method, the bonding force of GaN and a carbon material is improved by a thermal annealing method, and the stability of the material is improved;
(2) Furthermore, the invention provides a preparation idea of the non-noble metal catalyst, and provides a new development idea and a new technical approach for developing a new generation of high-performance non-noble metal electrocatalyst;
(3) Furthermore, the invention adopts a plasma treatment mode to construct the three-dimensional carbon structure powder with electronegativity, thereby providing necessary conditions for the electrostatic adsorption process;
(4) Furthermore, the invention provides a preparation method of Ga-rich GaN, which utilizes the polarization characteristics of the surface and the interface to obviously improve the performance of the electrocatalyst.
Drawings
FIG. 1 is a schematic diagram of plasma processing (1 is a radio frequency coil, 2 is a crucible holder, 3 is a rotating rod, 4 is a reaction chamber, 5 is a rotatable crucible)
FIG. 2 is a cross-sectional view of a crucible (6 is plasma, 7 powder to be processed)
FIG. 3GaN nanomaterial
Detailed Description
In order to more specifically explain the production process and principle of the invention, examples are given. The examples are for the purpose of illustration and description only and are not intended to limit the scope of the invention.
Example 1
Weighing 0.5g of carbon nano tube, 0.5g of graphene, 0.5g of fullerene and 1g of carbon black serving as raw materials of a three-dimensional carbon structure to prepare uniformly mixed powder, adding 10g of 10wt% nitric acid solution into the powder, stirring at 60 ℃ for 5 hours, washing and filtering the obtained mixture with water, drying at 60 ℃ for 5 hours, and ball-milling the dried product at 250rpm for 1 hour to obtain three-dimensional carbon structure powder; placing the powder into a rotatable ceramic crucible of a plasma enhanced chemical vapor deposition system, wherein the thickness of the powder is 1mm, the rotation speed of the crucible is 1rpm, and introducing N 2 The air flow is 5sccm, the radio frequency power is 150W, the heat preservation temperature is 100 ℃, and the plasma treatment is carried out for 1 hour; 1g of gallium oxide powder and 0.5g of activated carbon powder are weighed to prepare mixed powder, the mixed powder is placed in a crucible of a microwave plasma chemical vapor deposition system, and SiO of which the surface is sputtered with Au catalyst is prepared in advance 2 The Si substrate is arranged right above the crucible, and N with the flow rate of 5sccm is introduced 2 Maintaining the cavity pressure at 5Torr and the microwave power at 300W, and growing for 20 minutes at 850 ℃, wherein yellow substances on the surface of the substrate are the obtained Ga-rich GaN nanowire material; 20mL of HNO with concentration of 70wt% is measured 3 And 10mL of HF with the concentration of 50wt% are prepared into mixed solution, and SiO is etched 2 After the Si substrate is adopted, a dispersed Ga-rich GaN nanowire material is obtained, 1mg of Ga-rich GaN nanowire material is weighed and dispersed into 100mg of ethanol, the mixture is coated on the surface of a foam nickel electrode after ultrasonic treatment is carried out for 20 minutes, and the ethanol is volatilized for later use; weighing 1g of plasma-treated three-dimensional carbon powder, 20g of deionized water, performing ultrasonic dispersion for 30 minutes, then placing the three-dimensional carbon powder into an electrolytic cell, and selecting and coating Ga-rich GaN nanometer on an anodeThe foam nickel electrode of the material, the cathode selects a carbon rod electrode, the external circuit voltage is 0.5V, the pressurizing time is 0.5 hours, and the magnetic stirring at 30rpm is carried out in the electrostatic adsorption process; filtering the solution after the adsorption, and placing the filtered substance in a gas flow N of 200sccm 2 And (5) carrying out high-temperature annealing for 1 hour in a muffle furnace at 150 ℃ under the protection of gas. The mass activity of the prepared three-dimensional carbon structure supported GaN catalyst is 81mA/mg, and after 10000 times of aging test, the mass activity of the catalyst is attenuated by 24.7%.
Example 2
Only the proportion of the three-dimensional carbon structure raw material in the step 1 is changed into: 1.5g of carbon nano tube, 1.5g of graphene, 1.5g of fullerene and 10g of carbon black are prepared into uniform mixed powder, other conditions are unchanged, the mass activity of the prepared three-dimensional carbon structure supported GaN catalyst is 87.4mA/mg, and after 10000 times of aging test, the mass activity is attenuated by 23.9%.
Example 3
The process in the step 1 is changed into the following steps: 10g of 10wt% nitric acid solution was added to the powder, stirred at 80℃for 10 hours, the resulting mixture was water-washed, suction-filtered and dried at 80℃for 10 hours, the dried product was ball-milled at 400rpm for 2 hours, the other conditions were unchanged, the mass activity of the prepared three-dimensional carbon structure-supported GaN catalyst was 90mA/mg, and after 10000 cycles of aging test, the mass activity was attenuated by 24.6%.
Example 4
Except that the process in the step 2 is changed into: the thickness of the powder is 1mm, the rotation speed of the crucible is 10rpm, and O is introduced 2 The air flow is 5sccm, the radio frequency power is 150W, the heat preservation temperature is 300 ℃, the plasma treatment is carried out for 3 hours, other conditions are unchanged, the mass activity of the prepared three-dimensional carbon structure supported GaN catalyst is 112mA/mg, and the mass activity of the three-dimensional carbon structure supported GaN catalyst is attenuated by 22.4% after 10000 times of aging test.
Example 4
Only the process in the step 3 is changed into: weighing 1g of gallium oxide powder and 2g of activated carbon powder to prepare mixed powder, and introducing N with the flow rate of 10sccm 2 Maintaining the cavity pressure of 1Torr and microwave power of 300W, growing at 900 deg.C for 60 min, and keeping the other conditions unchanged, as in example 1, to obtainThe mass activity of the three-dimensional carbon structure supported GaN catalyst is 94mA/mg, and after 10000 times of aging test, the mass activity of the three-dimensional carbon structure supported GaN catalyst is attenuated by 20.1%.
Example 5
Only the process in the step 4 is changed into: the external circuit voltage was 1V, the pressurizing time was 3 hours, 60rpm magnetic stirring was performed during the electrostatic adsorption, and other conditions were unchanged, the mass activity of the prepared three-dimensional carbon structure supported GaN catalyst was 104.2mA/mg, and after 10000 cycles of aging test, the mass activity was attenuated by 24.8%.
Example 6
Except that the process in step 5 is modified as follows: the muffle furnace temperature is 400 ℃, the high temperature is annealed for 3 hours, other conditions are not changed, the mass activity of the prepared three-dimensional carbon structure supported GaN catalyst is 107.5mA/mg, and the mass activity of the three-dimensional carbon structure supported GaN catalyst is attenuated by 18.4% after 10000 times of aging test.

Claims (5)

1. The preparation method of the three-dimensional carbon structure supported GaN catalyst is characterized by comprising the following steps of:
step 1: preparation of three-dimensional carbon structures
Mixing 0.5-1.5 parts by weight of zero-dimensional carbon material, 0.5-1.5 parts by weight of one-dimensional carbon material, 0.5-1.5 parts by weight of two-dimensional carbon material and 1-10 parts by weight of carbon black, dissolving in 20-100 parts by weight of 10wt% nitric acid solution, stirring at 60-80 ℃ for 5-10 hours, washing and filtering the obtained mixture with water, drying at 60-80 ℃ for 5-10 hours, and ball-milling the dried product at 250-400rpm for 1-2 hours to obtain three-dimensional carbon structure powder;
step 2: surface modification of three-dimensional carbon structures
Carrying out surface modification on the three-dimensional carbon structure powder prepared in the step 1 by adopting a plasma enhanced chemical vapor deposition system, placing the powder in a rotatable ceramic crucible, fixing the crucible by a rotary rod, and introducing N 2 Or O 2 The gas, the radio frequency power is 150W, the heat preservation temperature is 100-300 ℃, and the plasma treatment time is 1-3 hours;
step 3: gaN nanomaterial preparation
Mixing 1 part of gallium oxide and 0.5 to 2 parts of activated carbon powder according to parts by weightForming uniform powder, placing the uniform powder into a crucible of a microwave plasma chemical vapor deposition system, and preparing SiO with Au catalyst sputtered on the surface in advance 2 Placing Si substrate right above the crucible, introducing 5-10sccm N 2 Maintaining cavity pressure at 1-5Torr and microwave power at 300W, and growing at 850-900 deg.C for 20-60 min to obtain Ga-rich GaN nanomaterial, and placing it in HNO with concentration of 70wt% 3 And 50wt% HF in the volume ratio of 2-10 to 1 for 30 min, and filtering to obtain Ga-rich GaN nanometer material;
step 4: preparation of three-dimensional carbon structure supported GaN material
Dispersing 1 part of the Ga-rich GaN nanomaterial prepared in the step 3 into 100 parts of ethanol according to parts by weight, coating the mixture on the surface of a foam nickel electrode after ultrasonic treatment for 20 minutes, and volatilizing the ethanol for later use; 1 part of the surface modified three-dimensional carbon structure prepared in the step 2 and 20 parts of deionized water are subjected to ultrasonic dispersion for 30 minutes and then placed in an electrolytic cell for electrostatic adsorption; the anode of the electrolytic cell is a foam nickel electrode coated with Ga-rich GaN nano material, the cathode is a carbon rod electrode, the external circuit voltage is 0.5-1V, the pressurizing time is 0.5-3 hours, and magnetic stirring at 30-60rpm is carried out in the electrostatic adsorption process; filtering the solution after the electrostatic adsorption is finished;
step 5: three-dimensional carbon structure supported GaN material post-treatment
The product prepared in the step 4 is subjected to gas flow N of 200sccm 2 And (3) placing the mixture in a muffle furnace at 150-400 ℃ under the protection gas for high-temperature annealing for 1-3 hours, and obtaining the final product, namely the three-dimensional carbon structure supported GaN catalyst.
2. The method of claim 1, wherein the zero-dimensional carbon material is nanodiamond or fullerene; the one-dimensional carbon material is a carbon nano tube or a carbon nano fiber; the two-dimensional carbon material is graphene.
3. The method of claim 1, wherein the rotatable ceramic crucible has a square hollow barrel structure, a powder thickness of no more than 2mm, and a rotation speed of 1-10 rpm.
4. The preparation method according to claim 1, wherein N is introduced in step 2 2 The air flow is 5-15sccm, the cavity pressure is 10-20Pa, and O is introduced 2 The air flow is 20-30sccm, and the cavity pressure is 20-40 Pa.
5. A catalyst prepared using the preparation method of claim 1.
CN202110997157.6A 2021-08-27 2021-08-27 Three-dimensional carbon structure supported GaN catalyst and preparation method thereof Active CN113764688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110997157.6A CN113764688B (en) 2021-08-27 2021-08-27 Three-dimensional carbon structure supported GaN catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110997157.6A CN113764688B (en) 2021-08-27 2021-08-27 Three-dimensional carbon structure supported GaN catalyst and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113764688A CN113764688A (en) 2021-12-07
CN113764688B true CN113764688B (en) 2024-02-06

Family

ID=78791668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110997157.6A Active CN113764688B (en) 2021-08-27 2021-08-27 Three-dimensional carbon structure supported GaN catalyst and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113764688B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3389862T3 (en) 2015-12-16 2024-03-04 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
KR20220002998A (en) 2019-04-30 2022-01-07 6케이 인크. Mechanically alloyed powder feedstock
JP2023512391A (en) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド Unique feedstock and manufacturing method for spherical powders
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN116034496A (en) 2020-06-25 2023-04-28 6K有限公司 Microcosmic composite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
JP2023548325A (en) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド System and method for the synthesis of spheroidized metal powders

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611439A (en) * 2017-08-02 2018-01-19 曲靖师范学院 A kind of preparation method of metal complex lithium ion battery electrode material
CN108611679A (en) * 2018-04-11 2018-10-02 北京工业大学 A kind of method that green prepares gallium nitride nano-wire without catalyst method
CN108615891A (en) * 2018-04-18 2018-10-02 曲靖师范学院 A kind of preparation method of zinc-base complex lithium ion battery negative material
CN111206236A (en) * 2020-01-10 2020-05-29 北京工业大学 Preparation method of Mg-doped GaN nanowire structure
CN111740014A (en) * 2020-06-16 2020-10-02 湖北文理学院 Two-dimensional/one-dimensional/zero-dimensional composite SnO for solar cell2Preparation method of nanocrystalline electron transport layer
CN112221524A (en) * 2020-09-16 2021-01-15 西安近代化学研究所 Preparation method of supported gallium nitride catalyst with large specific surface area

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611439A (en) * 2017-08-02 2018-01-19 曲靖师范学院 A kind of preparation method of metal complex lithium ion battery electrode material
CN108611679A (en) * 2018-04-11 2018-10-02 北京工业大学 A kind of method that green prepares gallium nitride nano-wire without catalyst method
CN108615891A (en) * 2018-04-18 2018-10-02 曲靖师范学院 A kind of preparation method of zinc-base complex lithium ion battery negative material
CN111206236A (en) * 2020-01-10 2020-05-29 北京工业大学 Preparation method of Mg-doped GaN nanowire structure
CN111740014A (en) * 2020-06-16 2020-10-02 湖北文理学院 Two-dimensional/one-dimensional/zero-dimensional composite SnO for solar cell2Preparation method of nanocrystalline electron transport layer
CN112221524A (en) * 2020-09-16 2021-01-15 西安近代化学研究所 Preparation method of supported gallium nitride catalyst with large specific surface area

Also Published As

Publication number Publication date
CN113764688A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN113764688B (en) Three-dimensional carbon structure supported GaN catalyst and preparation method thereof
CN110890558B (en) Supported platinum-based core-shell catalyst and preparation method thereof
CN106000439B (en) A kind of sulphur, the preparation of nitrogen co-doped three-dimensional grapheme/manganese sulfide composite material and its electro-catalysis applied to oxygen restore
CN107570192B (en) Nickel-filled nitrogen-doped carbon nanotube and preparation method and application thereof
CN112495408B (en) Preparation method of electrocatalytic hydrogen evolution nano material
CN110404567B (en) Photocatalytic energy conversion material and preparation method and application thereof
CN111437841B (en) Tungsten telluride-tungsten boride heterojunction electrocatalyst and preparation method and application thereof
CN111477891B (en) Preparation method of nitrogen-doped porous hollow carbon sphere compound with low platinum loading capacity, product and application thereof
CN110048134A (en) A kind of universality method preparing porous nitrogen fluorine codope carbon oxygen reduction catalyst
CN109482214A (en) The catalyst and preparation method of a kind of graphene-supported ruthenium metal and application
CN106492863B (en) The method for preparing base metal molybdenum carbide catalyst using cold plasma
CN111974377B (en) High-activity high-stability tungsten oxide hydrogen production catalyst with carbon-coated defects and preparation method thereof
CN111477887A (en) Co3O4Composite oxygen reduction catalyst loaded with hollow carbon microspheres and preparation method thereof
CN103259023A (en) Preparation method of hydrogen cell electrode material
CN109546166B (en) Pt/metallic carbide/carbon nano material catalyst and preparation method thereof
CN113652708B (en) Pt/Ni alloy 3 N@Mo 2 Preparation method of C hydrogen hydroxide precipitation electrocatalyst
CN110649276A (en) Based on N2Plasma-etched three-dimensional porous nitrogen-doped carbon nanotube electrocatalyst and preparation method thereof
CN106848338B (en) preparation method of graphene-supported Ni-based oxide catalyst
CN113410480A (en) Nickel polyphenol network modified composite triazine-based copolymer carbon nano electro-catalyst material and preparation method and application thereof
CN110055556A (en) Evolving hydrogen reaction catalyst and its preparation method and application
CN111342060A (en) Preparation method of platinum-nickel/nitrogen-doped reduced graphene oxide
CN114784303B (en) Preparation and application of rare earth-based organic framework anode material modified by copper polyphenol supermolecular network interface
CN113881964B (en) Preparation method of non-acid medium of flaky nickel phosphide array electrode material
CN105060272A (en) Method for preparation of carbon nanotube with artemia cyst shell as carbon source at low temperature
CN113903926A (en) Pt-Cu alloy catalyst loaded with three-dimensional carbon structure and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant