CN113746340A - 具有快速负载瞬态检测的反激转换器 - Google Patents

具有快速负载瞬态检测的反激转换器 Download PDF

Info

Publication number
CN113746340A
CN113746340A CN202010870251.0A CN202010870251A CN113746340A CN 113746340 A CN113746340 A CN 113746340A CN 202010870251 A CN202010870251 A CN 202010870251A CN 113746340 A CN113746340 A CN 113746340A
Authority
CN
China
Prior art keywords
voltage
side controller
response
output
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010870251.0A
Other languages
English (en)
Inventor
刘梦飞
陈一民
D·阮
尹株永
李韬
冯光
K-W·金
Y·X·林
姚建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor GmbH
Dialog Semiconductor Inc
Original Assignee
Dialog Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor Inc filed Critical Dialog Semiconductor Inc
Publication of CN113746340A publication Critical patent/CN113746340A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/001Analogue/digital/analogue conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/802Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections for isolation, e.g. using optocouplers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45601Indexing scheme relating to differential amplifiers the IC comprising one or more passive resistors by feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明题为“具有快速负载瞬态检测的反激转换器。”本发明提供了一种反激转换器,所述反激转换器可检测负载瞬态变化所产生的输出电流增加,从而更快地响应于所述负载瞬态。

Description

具有快速负载瞬态检测的反激转换器
技术领域
本申请涉及开关电源转换器,并且更具体地讲,涉及具有快速负载瞬态检测和响应功能的反激转换器。
背景技术
为了调节输出电压,反激转换器包括反馈回路,该反馈回路基于输出电压与期望输出电压之间的差值(误差)来生成误差信号。反馈回路包括补偿电路,该补偿电路向误差信号施加增益以生成控制信号。关于控制信号的生成,应当注意,其可在反激转换器的变压器的初级侧或次级侧上发生。如果反馈回路在次级侧上生成控制信号,则所得的输出电压的调节称为次级侧调节(SSR)。相反,如果反馈回路在初级侧上生成控制信号,则输出电压调节被表示为仅靠初级调节或初级侧调节(PSR)。
输出电压通过变压器与反激转换器的初级侧隔离。为了检测PSR反激转换器中的输出电压,初级侧控制器通常在变压器重置时间内检测辅助绕组电压。该变压器重置时间从初级侧电源开关的关断延伸到次级绕组电流已斜降到零时。可以通过辅助绕组上的反馈电压来对输出电压进行间接检测,并对初级侧电源开关晶体管进行控制。因此,在PSR反激转换器中常规的作法是,如果输出电压小于阈值电压,则次级侧控制器触发欠压警报。然后,次级侧控制器通过隔离信号通道(例如,光耦合器)将欠压警报传输到初级侧控制器以触发初级侧控制器,使电源开关晶体管开通。然后,电源开关晶体管的这种开通使得初级侧控制器能够检测辅助绕组上的反馈电压以间接检测输出电压。但应当注意,对输出电压的间接检测存在一些误差。相比之下,SSR反激转换器中的次级侧控制器可以直接检测输出电压。因此,所得的SSR反激转换器中的误差信号生成通常比PSR反激转换器中的对应误差信号生成更准确。在补偿误差信号以形成控制信号之后,SSR反激转换器中的次级侧控制器通过隔离信号通道(诸如光隔离器)将控制信号传输到初级侧控制器。然后,初级侧控制器通过改变脉冲宽度调制或频率脉冲调制来调整电源开关晶体管的周期以调节输出电压。在SSR反激转换器的另一个变体中,次级侧控制器自身处理控制信号以确定电源开关调制。在这种SSR变体中,次级侧控制器通过光隔离器将电源开关控制命令(诸如接通命令和/或关断命令)传输到初级侧。
尽管SSR反激转换器可以提供改进的输出电压调节,但其使用通常在对负载瞬态进行响应时会有较大延迟。例如,在轻负载或无负载的状况下,电源开关频率降低到非常慢的速率。由于电源开关实际上不再动作,因此输出电压由输出电容器支持。但该输出电容器在突然施加负载时会迅速放电,使得输出电压开始失调。为了检测SSR反激中的负载施加状况,常规上次级侧控制器包括模数转换器(ADC),该模数转换器会将输出电压转换成数字信号,然后对该数字信号进行处理以形成误差信号并最终形成控制信号电压。取决于SSR具体实施,控制信号电压或电源开关命令通过光耦合器传输到初级侧,于是电源开关频率被加速以使输出电压恢复调节。但通过ADC的数字化通常需要采样保持延迟和ADC比较器延迟。数字化延迟可以被表示为基于Vout的检测延迟。现在将连同一些其他示例性波形一起讨论该检测延迟。
在图1中示出了常规SSR反激转换器的一些示例性波形。电源开关的周期由出现在与电源开关晶体管串联的初级侧检测电阻器上的初级检测电阻器电压(Vipk)表示。在时间T0之前,SSR反激转换器处于低负载状态,因此初级检测电阻器电压的脉冲以相对较慢的速率进行。因此,在时间T0之前,输出电压Vout由输出电容器支持。在时间T0,负载的突然施加(例如,消费者将其移动设备***包括SSR反激转换器的充电器)致使输出电流Iout突然增加。由于输出电压Vout仅由输出电容器被动地支持,因此输出电压Vout在时间T0开始下降。由于基于Vout的检测延迟,因此直到时间T1,次级侧控制器才传输信号到光耦合器。取决于实施方案,该传输可以是控制信号电压或电源开关周期命令的传输。因此,在时间T1,次级侧光耦合器驱动电流开始增加。从时间T1开始发生初级响应延迟,该初级响应延迟在电源开关晶体管开关周期的时间T2结束,从而致使电压Vipk开始斜升。继而,次级侧光耦合器驱动电流也继续增加。电源开关晶体管的后续周期使输出电压上升回到设定电压。但应当注意,存在可接受的最小输出电压(Vout_min)的电压裕度要求。从时间T0到时间T2的延迟可以使得输出电压下降到低于该可接受的最小输出电压。在PSR反激转换器中也会发生类似的处理延迟。
因此,在本领域中需要具有更快负载瞬态检测和响应的反激转换器。
发明内容
根据本公开的第一方面,提供了一种用于反激转换器的次级侧控制器,所述次级侧控制器包括:次级侧检测电阻器,所述次级侧检测电阻器用于响应于输出电流来产生次级侧检测电阻器电压;补偿电路,所述补偿电路用于将误差信号乘以增益以产生控制信号;以及输出电流检测电路,所述输出电流检测电路被配置为响应于检测到所述次级侧检测电阻器电压大于阈值来命令所述补偿电路增加所述增益。
根据本公开的第二方面,提供了一种用于反激转换器的次级侧控制器,所述次级侧控制器包括:次级侧检测电阻器,所述次级侧检测电阻器用于响应于所述反激转换器的输出电流来产生次级侧检测电阻器电压;输出电流检测电路,所述输出电流检测电路被配置为响应于检测到所述次级侧检测电阻器电压大于阈值来发出输出信号;欠压阈值控制电路,所述欠压阈值控制电路被配置为响应于所述输出信号的所述控制来将阈值电压从默认值增加到更高的值;以及欠压比较器,所述欠压比较器被配置为响应于所述反激转换器的输出电压大于所述阈值电压来发出输出信号。
根据本公开的第三方面,提供了一种检测反激转换器的负载的增加的方法,所述方法包括:处理次级侧检测电阻器电压以检测所述负载的所述施加;以及响应于检测到所述负载的所述施加来触发电源开关晶体管的动作。
通过阅读下面的具体实施方式,将会更全面地理解本发明的这些和其他方面。在结合附图阅读以下对具体示例性实施方案的描述时,其他方面、特征和实施方案对于本领域普通技术人员而言将变得显而易见。尽管可以相对于某些实施方案和以下附图讨论特征,但所有实施方案可以包括本文所讨论的有利特征中的一个或多个。换句话说,尽管可以将一个或多个实施方案讨论为具有某些有利特征,但根据本文所讨论的各种实施方案,也可以使用此类特征中的一个或多个。以类似的方式,尽管下文可以将示例性实施方案讨论为设备、***或方法实施方案,但应当理解,此类示例性实施方案可以在各种设备、***和方法中实现。
附图说明
图1示出了常规反激转换器的一些操作波形,该常规反激转换器通过模数转换器对输出电压进行的数字化来检测负载瞬态。
图2A示出了根据本公开的一个方面的反激转换器,其中次级侧控制器通过输出电流的增加来检测负载的施加。
图2B是根据本公开的一个方面的针对其中反激转换器使用次级侧调节的实施方案的图2A的次级侧控制器的更详细视图。
图3示出了图2B的反激转换器的一些操作波形。
图4是根据本公开的一个方面的针对其中反激转换器使用初级侧调节的实施方案的图2A的次级侧控制器的更详细视图。
图5是根据本公开的一个方面的图4的反激转换器中的初级侧控制器的一部分的更详细视图。
图6示出了根据本公开的一个方面的图5的反激转换器的第一实施方案的一些操作波形。
图7示出了根据本公开的一个方面的图5的反激转换器的第二实施方案的一些操作波形。
通过参考以下具体实施方式来最好地理解本公开的实施方案及其优点。应当理解,类似的附图标号用于标识附图中的一个或多个附图中示出的类似元件。
具体实施方式
本发明提供了反激转换器,其中输出电流用于检测负载瞬态。与常规的基于输出电压(基于Vout)的检测相比,所得的对负载瞬态的检测将会更快。因为输出电流变化相对于输出电压变化超前近90度。此外,响应时间也得到了改善。本发明可为具有SSR和PSR两者的反激转换器提供了这些负载瞬态检测和响应改进。
如前文所讨论,常规上反激转换器反馈回路基于输出电压与期望输出电压之间的差值(误差)来生成误差信号。反馈回路包括补偿电路,该补偿电路向误差信号施加增益以生成控制信号电压。在SSR反激转换器中,在变压器的次级侧上进行控制信号电压生成。相反,在PSR反激转换器中,在变压器的初级侧上进行控制信号电压生成。
在图2A中示出了具有改进的瞬态负载检测和响应的示例性反激转换器100。反激转换器100可以具有PSR或SSR。当初级侧控制器105在电源开关晶体管S1上驱动时,诸如通过对来自AC干线的AC电压的全桥整流而提供的输入电压Vin驱动初级绕组电流通过变压器T1。检测电阻器Rsense耦接在电源开关晶体管S1的漏极和接地之间。当检测电阻器Rsense上的电压等于或高于期望峰值电压Vipk时,初级侧控制器105关断电源开关晶体管S1。
如反激领域中已知的,变压器T1中的次级绕组电流被整流以便在初级绕组电流传导时导通。该整流可以由输出二极管D1执行。另选地,次级绕组可以与由次级侧控制器115控制的同步整流器开关晶体管串联以管理对次级绕组电流的整流。次级侧控制器115可以直接检测连接到次级绕组的输出端上的输出电压。如前文所讨论,常规上次级侧控制器将ADC中的输出电压数字化以用于检测输出电压中的负载瞬态(负载的突然施加)。在低负载状态期间,电源开关晶体管S1相对较慢地进行开关,使得输出电压由连接在输出端和次级侧接地之间的输出电容器Cout被动地支持。输出电压的该被动支持使输出电压响应于负载施加而迅速减小。为了增加负载瞬态检测速度,次级侧控制器115通过与次级绕组串联的次级侧检测电阻器RS(例如,次级侧检测电阻器Rs可以***次级侧接地端中)来检测负载瞬态。次级侧控制器115监测次级侧检测电阻器Rs上的电压以检测响应于负载的突然施加而发生的输出电流增加。有利的是,该输出电流增加相对于输出电压变化超前90度,使得次级侧控制器115可以快速响应于负载瞬态。
次级侧控制器115对于负载瞬态检测的相对于驱动隔离信号通道110的响应速度取决于反激转换器使用SSR还是PSR来调节输出电压,该隔离信号通道提供变压器T1的次级侧和初级侧之间的电气隔离。将首先讨论SSR实施方案,接着是PSR实施方案的讨论。此外,下面的讨论将假定隔离信号通道110中的电气隔离由光隔离器提供。然而,应当理解,可以在另选实施方案中使用数字隔离器。
在图2B中更详细地示出了用于SSR实施方案的次级侧控制器115。输出电流检测电路201包括差分放大器205,该差分放大器通过电阻R的两个输入电阻器来感测次级侧检测电阻器RS上的电压。差分放大器205的闭环增益取决于反馈电阻器的电阻与输入电阻R的比较。在图2B的实施方案中,反馈电阻为23R,使得其比输入电阻R大23倍,但应当理解,可以在另选的实施方案中改变差分放大器205的闭环增益。差分放大器205放大次级侧检测电阻器电压以驱动输出电流检测电路201中的低通滤波器(LPF)210。LPF 210用于平滑差分放大器205的输出以减小噪声灵敏度。输出电流检测电路201中的比较器220将来自LPF 210的已滤波输出电压与阈值电压进行比较。为了提供阈值电压的可调节性,诸如由逻辑电路215控制的多路复用器225可以从多个候选阈值电压中选择该阈值电压。作为示例,候选阈值电压可以是0.2V、0.3V、0.4V和0.5V。在另选的实施方案中,阈值电压也可以是固定的。当比较器220感测到已滤波和放大的感测电阻器电压大于阈值电压时,检测到负载瞬态。
为了传送该负载瞬态检测,次级侧控制器115可以调整反馈增益。例如,次级侧控制器115可以包括将输出电压数字化以形成数字值V的ADC。数字加法器240通过从数字值V中减去数字参考Vref来生成数字误差信号Verror。在正常操作期间,补偿器电路230通过将误差信号Verror与增益相乘以产生控制信号Vcom来补偿误差信号Verror。数模转换器(DAC)235将控制信号Vcom转换成控制电压。基于控制电压,次级侧控制器115驱动光耦合器200中的次级侧光耦合器驱动电流以将控制电压传输到初级侧控制器105。应当注意,在正常操作中,由补偿电路230施加的增益可以相对较小以防止输出电压因不稳定的反馈回路而振荡。但响应于来自比较器220的输出信号所指示的瞬态检测,补偿器230施加增加的增益以生成控制信号Vcom。因此,初级侧控制器105可以快速响应于通过光耦合器200(或在另选实施方案中,通过另一种类型的隔离信号通道(诸如数字隔离器))接收到的所得的增加的控制电压。
在图3中示出了次级侧控制器115的SSR实施方案的一些示例性波形。在时间T0之前,反激转换器处于低负载状态,因此如初级侧感测电阻器电压Vipk的脉冲所证实的,电源开关周期相对较慢。输出电流Iout基本上为零,而输出Vout处于调节状态。刚好在时间T0之前突然施加负载,这致使对于电源供电电压来检测的比较器220的输出(表示为Comp_Iout输出)。作为响应,与关于图1讨论的常规的基于Vout的检测延迟相比,次级侧光耦合器驱动电流在时间T0开始斜升而几乎没有延迟。从时间T0到T1是初级响应延迟,于是输出电压通过电源开关晶体管的控制而增加。因此,即使突然施加负载,输出电压也不会下降到低于可接受的电压裕度。
现在转到图4,示出了用于PSR的次级侧控制器115。Isense放大器415和比较器420以简化形式示出,但可以如关于差分放大器205、LPF210和比较器220所讨论的那样布置以响应于通过检测输出电流的阈值增加而进行的负载瞬态检测来发出比较器输出信号。在正常操作(无轻负载)期间,欠压(UV)比较器400通过将输出电压与参考电压Vref(诸如由VrefDAC 405生成的参考电压Vref)进行比较来起作用,该Vref DAC将来自UV阈值控制电路410的数字值数字化。在正常操作期间,参考电压应当比输出电压小某个电压裕度。但响应于来自比较器420的比较器输出信号(表示检测到负载瞬态),UV阈值控制电路410增加数字值以使得来自Vref DAC 405的参考电压Vref增加。因此,比较器400可以更快地响应负载瞬态,因为使得期望的输出电压和增加的参考电压Vref之间的电压裕度减小。如本文所用,如果二进制信号为真,则认为该二进制信号(诸如由比较器产生)被发出,而不管该二进制信号是高电平有效还是低电平有效。因此,如果在本文中认为比较器输出信号被发出并且它是高电平有效,则该有效信号是针对正电压(诸如电源电压)的。相反,如果信号是低电平有效,则该有效信号是针对接地指示。
通过对比较器400的输出信号的发出而得出的UV警报通过隔离信号通道110(例如,光隔离器或数字隔离器)传输到初级侧。为了增加初级侧控制器105对所得UV警报的响应速度,如图5所示,初级侧控制器105可以包括比较器505,该比较器响应于来自隔离信号通道110的接收信号超过阈值电压Vth来发出输出信号。在正常操作期间,初级侧控制器105通过隔离信号通道110接收小于阈值电压的控制信号电压。然后,初级侧控制器105将通过反馈回路处理该控制信号电压,以诸如通过控制峰值检测电阻器电压Vipk来控制电源开关晶体管S1的开关。但这种闭环处理需要一些延迟。因此,初级侧控制器105包括开关驱动器510,该开关驱动器以开环方式响应于对来自比较器505的输出信号以便接通电源开关晶体管S1,直到检测电阻器电压达到某个预定义的阈值。除响应于电源开关晶体管S1的该控制电路,初级侧控制器105中的用于闭环控制的其余功能模块可在低功耗模式期间掉电以节省功率。
在图6中示出了这种开环控制的一些示例性操作波形。在时间T0之前,反激转换器以低负载状态操作,使得电源开关的开关(如通过峰值检测电阻器电压Vipk来判断)相对不频繁。刚好在时间T0之前发生负载施加,使得输出电流增加。如关于图4所讨论的,检测到输出电流的该增加,使得来自比较器420的输出信号升高以使参考电压Vref增加,UV比较器400将该参考电压与输出电压进行比较。该增加的参考电压在图6中由阈值620指示。输出电压在时间T1越过阈值620,使得次级侧光耦合器驱动电流(在光耦合器实施方案中)开始增加。然后在时间T2,来自光耦合器(或来自另一种形式的隔离信道110)的初级侧接收信号(例如,信号电压)超过比较器505的阈值电压。该阈值电压在图6中由阈值电压610表示。然后,发出比较器505的输出信号以使开关驱动器510对电源开关晶体管S1施加脉冲,直到初级侧检测电阻器电压增加到阈值605。然后,电源开关晶体管S1的该脉冲使得初级侧控制器105能够使用初级侧反馈技术来测量输出电压,从而使得初级侧检测电阻器峰值电压的后续值由反馈回路确定。
在图7中示出了该初级侧调节的变化的一些波形。在正常操作期间,UV比较器(图4)使用默认欠压阈值电压710。在时间T0之前,反激转换器以轻负载状态操作,使得电源开关晶体管S1相对不频繁地进行开关,如通过初级侧检测电阻器电压(初级Vipeak)的脉冲指示。在该低负载状态期间,输出电流Iout基本上为零。但刚好在时间T0之前,负载的突然施加致使输出电流增加,这使比较器420的输出信号被发出。继而,来自比较器420的输出信号使欠压阈值电压增加到更高值715。在时间T1,输出电压Vout下降到715。然后通过增加次级侧光耦合器驱动电流来传送所得欠压警报(在光耦合器实施方案中)。因此,从时间T2开始,初级侧接收信号电压开始增加,直到其在时间T3越过阈值电压705。因此,比较器505发出输出信号以触发从时间T3开始的电源开关晶体管接通时间。
因此,初级侧检测电阻器电压在时间T3开始上升。初级侧控制器105可以包括比较器,该比较器将初级侧检测电阻器电压与相对较低的阈值电压720进行比较。可在时间T3唤醒初级侧控制器中的数字时钟测量从时间T3直到超过阈值电压720的经过时间。该经过时间可以被指定为Tinit。为了确定在时间T3之后何时关断电源开关晶体管S1,初级侧控制器105可以在从时间T3经过Tinit*n的延迟周期之后触发关断事件。变量n可以是固定值或者可以由用户设置。在时间T4的初始电源开关周期结束之后,以如关于图6所讨论的闭环方式控制后续电源开关晶体管S1的开关。
本领域的一些技术人员现在将意识到,在不脱离本公开的范围的前提下,可以对本发明的设备的材料、装置、配置和使用方法进行多种修改、替换和变化。鉴于此,本公开的范围不应限于本文所示和所述的具体实施方案的范围,因为它们仅作为其一些示例,而是应与下文所附权利要求书及其功能等同物的范围完全相称。

Claims (20)

1.一种用于反激转换器的次级侧控制器,所述次级侧控制器包括:
次级侧检测电阻器,所述次级侧检测电阻器用于响应于输出电流来产生次级侧检测电阻器电压;
补偿电路,所述补偿电路用于将误差信号乘以增益来产生控制信号;以及
输出电流检测电路,所述输出电流检测电路被配置为响应于检测到所述次级侧检测电阻器电压大于阈值来命令所述补偿电路增加所述增益。
2.根据权利要求1所述的次级侧控制器,其中所述输出电流检测电路包括:
差分放大器,所述差分放大器用于放大所述次级侧检测电阻器电压以提供已放大电压;
滤波器,所述滤波器用于对所述已放大电压进行滤波以提供已滤波电压;以及
比较器,所述比较器用于将所述已滤波电压与所述阈值进行比较。
3.根据权利要求2所述的次级侧控制器,其中所述滤波器是低通滤波器。
4.根据权利要求2所述的次级侧控制器,还包括:
多路复用器,所述多路复用器用于从多个候选阈值电压中进行选择以提供所述阈值电压。
5.根据权利要求4所述的次级侧控制器,还包括用于控制所述多路复用器的逻辑电路。
6.根据权利要求1所述的次级侧控制器,还包括:
模数控制电路,所述模数控制电路用于将所述输出电压数字化成数字值;
加法器,所述加法器用于响应于所述数字值与参考值之间的差值来形成数字误差,其中所述误差信号是所述数字误差并且所述控制信号是数字控制信号;以及
数模转换器,所述数模转换器用于将所述数字控制信号转换成电压信号,其中所述次级侧控制器被配置为响应于所述电压信号来驱动隔离信号通道以向初级侧控制器警告负载的施加。
7.根据权利要求6所述的次级侧控制器,其中所述隔离信号通道包括光耦合器。
8.根据权利要求7所述的次级侧控制器,其中所述次级侧控制器被配置为利用次级侧光耦合器驱动电流来驱动所述光耦合器。
9.根据权利要求2所述的次级侧控制器,其中所述差分放大器具有通过第一输入电阻器连接到所述次级侧检测电阻器的第一端子的第一输入端,并且具有通过第二输入电阻器连接到所述次级侧检测电阻器的第二端子的第二输入端。
10.根据权利要求9所述的次级侧控制器,其中所述差分放大器还包括连接在所述差分放大器的输出端和所述第二输入端之间的反馈电阻器。
11.一种次级侧控制器,所述次级侧控制器包括:
次级侧检测电阻器,所述次级侧检测电阻器用于响应于所述反激转换器的输出电流来产生次级侧检测电阻器电压;
输出电流检测电路,所述输出电流检测电路被配置为响应于检测到所述次级侧检测电阻器电压大于阈值来发出输出信号;
欠压阈值控制电路,所述欠压阈值控制电路被配置为响应于所述输出信号的所述输出来将阈值电压从默认值增加到更高的值;以及
欠压比较器,所述欠压比较器被配置为响应于所述反激转换器的输出电压大于所述阈值电压来发出欠压输出信号。
12.根据权利要求11所述的次级侧控制器,其中所述输出电流检测电路包括:
差分放大器,所述差分放大器用于放大所述次级侧检测电阻器电压以提供已放大电压;
滤波器,所述滤波器用于对所述已放大电压进行滤波以提供已滤波电压;以及
比较器,所述比较器用于将所述已滤波电压与所述阈值进行比较。
13.根据权利要求12所述的次级侧控制器,其中所述滤波器是低通滤波器,所述次级侧控制器还包括:
多路复用器,所述多路复用器用于从多个候选阈值电压中进行选择以提供所述阈值电压;以及
逻辑电路,所述逻辑电路用于控制所述多路复用器。
14.根据权利要求12所述的次级侧控制器,其中所述次级侧控制器被配置为响应于所述欠压输出信号的所述输出来驱动隔离信号通道以向初级侧控制器警告负载的施加。
15.根据权利要求14所述的次级侧控制器,其中所述隔离信号通道包括光耦合器。
16.根据权利要求14所述的次级侧控制器,还包括初级侧控制器,所述初级侧控制器包括:
初级侧比较器,所述初级侧比较器被配置为将来自所述隔离信号通道的接收信号与阈值进行比较以检测所述负载的所述施加;以及
开关驱动器,所述开关驱动器被配置为响应于对来自所述初级侧比较器的输出信号来决定电源开关晶体管持续开通时间。
17.一种检测反激转换器的负载的施加的方法,所述方法包括:
处理次级侧检测电阻器电压以检测所述负载的所述施加;以及
响应于检测到所述负载的所述施加来触发电源开关晶体管的控制。
18.根据权利要求17所述的方法,其中对所述次级侧检测电阻器电压进行的所述处理包括:
放大所述次级侧检测电阻器电压以提供已放大电压;
对所述已放大电压进行滤波以提供已滤波电压;以及
将所述已滤波电压与阈值电压进行比较以检测所述负载的所述施加。
19.根据权利要求18所述的方法,还包括:
响应于检测到所述负载的所述施加来增加次级侧补偿电路的所述增益以提供增加的增益;
响应于输出电压与参考电压之间的差值来生成误差信号;
将所述误差信号乘以所述增加的增益以提供控制信号;以及
通过隔离信道将所述控制信号传输到初级侧控制器以触发所述电源开关晶体管的所述控制。
20.根据权利要求18所述的方法,还包括:
响应于检测到所述负载的所述施加来增加欠压阈值电压以提供增加的欠压阈值电压;以及
响应于输出电压小于所述欠压阈值电压来发出欠压警报。
CN202010870251.0A 2020-05-29 2020-08-26 具有快速负载瞬态检测的反激转换器 Pending CN113746340A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/888,437 US11736026B2 (en) 2020-05-29 2020-05-29 Flyback converter with fast load transient detection
US16/888,437 2020-05-29

Publications (1)

Publication Number Publication Date
CN113746340A true CN113746340A (zh) 2021-12-03

Family

ID=78705632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010870251.0A Pending CN113746340A (zh) 2020-05-29 2020-08-26 具有快速负载瞬态检测的反激转换器

Country Status (2)

Country Link
US (1) US11736026B2 (zh)
CN (1) CN113746340A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527962B2 (en) * 2020-09-14 2022-12-13 Dialog Semiconductor Inc. Power adapter having ultra low standby power
CN115051577B (zh) * 2022-08-17 2022-11-11 杭州飞仕得科技有限公司 一种反激变换器和igbt驱动电源

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866367A (en) * 1988-04-11 1989-09-12 Virginia Tech Intellectual Properties, Inc. Multi-loop control for quasi-resonant converters
DE602007014195D1 (de) * 2007-06-28 2011-06-09 Lem Liaisons Electron Mec Rogowski-Stromsensor
US8143845B2 (en) * 2008-12-17 2012-03-27 Fairchild Semiconductor Corporation Cable voltage drop compensation for battery chargers
US8199537B2 (en) * 2009-02-19 2012-06-12 Iwatt Inc. Detecting light load conditions and improving light load efficiency in a switching power converter
JP5573454B2 (ja) * 2009-11-26 2014-08-20 富士電機株式会社 力率改善型スイッチング電源装置
US8451628B2 (en) * 2010-04-01 2013-05-28 Analog Devices, Inc. Switching converter systems with isolating digital feedback loops
TWI425754B (zh) * 2010-04-20 2014-02-01 Neoenergy Microelectronics Inc 返馳轉換系統及其回授控制裝置與方法
US9101015B2 (en) * 2012-03-13 2015-08-04 Dialog Semiconductor Inc. Adaptive bipolar junction transistor gain detection
US8972762B2 (en) * 2012-07-11 2015-03-03 Blackberry Limited Computing devices and methods for resetting inactivity timers on computing devices
US9882497B2 (en) * 2012-09-28 2018-01-30 Microchip Technology Incorporated Soft switching synchronous quasi resonant converter
CN103051177B (zh) * 2012-12-20 2015-03-11 矽力杰半导体技术(杭州)有限公司 一种快速响应的控制电路及其控制方法
US9184668B2 (en) * 2013-03-15 2015-11-10 Flextronics Ap, Llc Power management integrated circuit partitioning with dedicated primary side control winding
KR20150025935A (ko) * 2013-08-30 2015-03-11 삼성전기주식회사 컨버터 스위치 피크전류 제어용 기준신호 생성회로, 절연 컨버터 및 컨버터 스위치 피크전류 제어용 기준신호 생성 방법
JP6336784B2 (ja) * 2014-03-03 2018-06-06 ローム株式会社 デジタル制御電源回路の制御回路、制御方法およびそれを用いたデジタル制御電源回路、ならびに電子機器および基地局
KR101607506B1 (ko) * 2014-03-25 2016-03-30 주식회사 에이디텍 Ac-dc 변환 회로
US9614444B2 (en) * 2014-09-11 2017-04-04 Infineon Technologies Austria Ag Dynamic voltage transition control in switched mode power converters
TWI559666B (zh) * 2014-11-18 2016-11-21 立錡科技股份有限公司 返馳式電源供應電路及其中之二次側控制電路與其控制方法
CN104578799B (zh) * 2014-12-25 2017-04-12 成都芯源***有限公司 一种开关电源***及其控制电路和控制方法
FR3036896B1 (fr) * 2015-05-27 2018-06-15 Thales Convertisseur de puissance et reseau electrique associe
JP6575176B2 (ja) * 2015-07-02 2019-09-18 Tdk株式会社 電源装置の制御装置および制御方法
TWI556564B (zh) * 2015-09-18 2016-11-01 強弦科技股份有限公司 電路轉換器控制系統
TWI575837B (zh) * 2015-12-29 2017-03-21 律源興業股份有限公司 切換式電源供應器及使用其之電源供應設備
JP6583002B2 (ja) * 2016-01-08 2019-10-02 富士通株式会社 電源回路、電源回路の異常検出プログラム及び電源回路の異常検出方法
US9906145B2 (en) * 2016-06-16 2018-02-27 Nxp B.V. Power converter with load switch fault protection
CN106160418B (zh) * 2016-08-19 2019-04-30 苏州博创集成电路设计有限公司 一种开关电源的控制方法
CN110073584B (zh) * 2017-01-12 2022-06-14 戴泺格半导体股份有限公司 混合次级侧调节
US9966832B1 (en) * 2017-05-09 2018-05-08 Linear Technology Corporation Predictive ripple-cancelling signal into error amplifier of switch mode power supply
US10033285B1 (en) * 2017-06-19 2018-07-24 Dialog Semiconductor Inc. Secondary controller for a flyback converter including a sense resistor fault detection
US9979309B1 (en) * 2017-07-19 2018-05-22 Infineon Technologies Austria Ag Synchronous rectification controller
US10175278B1 (en) * 2018-04-23 2019-01-08 Linear Technology Holding Llc Detecting value of output capacitor in switching regulator
JP7161102B2 (ja) * 2018-10-03 2022-10-26 ミツミ電機株式会社 スイッチング電源装置
US10666150B1 (en) * 2018-12-10 2020-05-26 Dialog Semiconductor Inc. Flyback converter with output current calibration
US10958177B2 (en) * 2019-05-31 2021-03-23 Dialog Semiconductor Inc. Optocoupler current transfer ratio compensation
US10811978B1 (en) * 2019-06-24 2020-10-20 Dialog Semiconductor Inc. Multi-mode control for multi-output voltage power converter
US20210296994A1 (en) * 2020-03-17 2021-09-23 Semiconductor Components Industries, Llc Circuit for controlling flickering and method therefor
IT202100003368A1 (it) * 2021-02-15 2022-08-15 St Microelectronics Srl Circuito di controllo per controllare uno stadio di commutazione di un convertitore elettronico, convertitore elettronico e procedimento corrispondenti

Also Published As

Publication number Publication date
US20210376742A1 (en) 2021-12-02
US11736026B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
EP2639951B1 (en) Flyback converter
US9812972B2 (en) Wake up management circuit for a switching converter and related wake up method
US20140078789A1 (en) Switching power converter with secondary-side dynamic load detection and primary-side feedback and control
US9954450B2 (en) Control circuit, control method and primary-controlled flyback converter using the same
US9337739B2 (en) Power controller with over power protection
US8665613B2 (en) Switched mode power converter and method of operation thereof
US8897038B2 (en) Switching power converter dynamic load detection
KR101912211B1 (ko) 소프트 스타트 회로 및 기술
US20140085938A1 (en) Primary feedback switching power converter controller with intelligent determination of and response to output voltage drops due to dynamic load conditions
US8520415B1 (en) Multi-function feedback using an optocoupler
US7116564B2 (en) Switching power supply unit and semiconductor device for switching power supply
US7609533B2 (en) Light-load efficiency improving method and apparatus for a flyback converter
TWI437803B (zh) 電源供應器及其控制方法
US9184667B2 (en) Switching power converter with primary-side dynamic load detection and primary-side feedback and control
CN102118111A (zh) 初级侧调节器集成控制电路、方法及开关电源
KR20120072800A (ko) 공진 컨버터
CN112134461A (zh) 用于多输出电压功率转换器的多模式控制
CN113746340A (zh) 具有快速负载瞬态检测的反激转换器
KR20120136133A (ko) 피드백 회로 및 이를 포함하는 전원 공급 장치
US8441816B2 (en) Controller for a switched mode power supply (SMPS), a SMPS, and a method of controlling a SMPS
US20130077357A1 (en) Adaptive biasing for integrated circuits
US20230107131A1 (en) Switching mode power supply with stable zero crossing detection, the control circuit and the method thereof
US20200412254A1 (en) Flyback converter with improved dynamic load response
KR101005269B1 (ko) 1차측 제어 파워 서플라이의 효율을 개선하기 위해오프-타임 변조를 갖는 스위칭 제어 회로
TWI824802B (zh) 返馳式電源轉換器及其二次側控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination