CN113743674A - 基于深度学习的储能出力预测方法、***、设备及介质 - Google Patents

基于深度学习的储能出力预测方法、***、设备及介质 Download PDF

Info

Publication number
CN113743674A
CN113743674A CN202111063012.5A CN202111063012A CN113743674A CN 113743674 A CN113743674 A CN 113743674A CN 202111063012 A CN202111063012 A CN 202111063012A CN 113743674 A CN113743674 A CN 113743674A
Authority
CN
China
Prior art keywords
historical
energy storage
output
predicted
storage output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111063012.5A
Other languages
English (en)
Inventor
李宇轩
闫翠会
毛航银
胡超凡
罗治强
杨军峰
戴赛
崔晖
丁强
燕京华
张传成
李博
于钊
王超
邹精
郑晓雨
董时萌
韩彬
蔡帜
刘芳
胡静
胡晓静
李媛媛
黄国栋
关立
武力
姚伟峰
王扬
张加力
盛灿辉
杨占勇
王磊
潘毅
李立新
***
许丹
李伟刚
门德月
刘升
刘聪
屈富敏
胡晨旭
徐晓彤
李哲
杨晓楠
张瑞雯
苏明玉
常江
李凌昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN202111063012.5A priority Critical patent/CN113743674A/zh
Publication of CN113743674A publication Critical patent/CN113743674A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Development Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种基于深度学习的储能出力预测方法、***、设备及介质,首先获取预测电网数据;然后将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。本发明可以从客观的角度出发,从储能历史参与表现以及电网已知部分来预测储能设施在电网中行为,受主观影响较小,并且减小了人员工作量。

Description

基于深度学习的储能出力预测方法、***、设备及介质
技术领域
本发明属于储能设施在电网中行为分析预测领域,具体涉及一种基于深度学习的储能出力预测方法、***、设备及介质。
背景技术
随着电力市场的开展,市场成员的行为充满自主性,和计划方式下电网运行不同,电网不能预先准确知道所有的市场成员各时段的实时发电或者如何提供辅助服务。因此,对电网的安全管控带来了一些挑战。随着储能技术,特别是分布式储能技术的发展,以及电能量市场、辅助服务市场、容量市场的准入门槛和组织形式等的修改,给参与市场的储能在电网中行为预测带来了不确定性,目前主要依靠计划人员来预测储能未来的表现,受主观影响较大,这不利于电力现货市场组织运营,也给合理的市场规则制定调整增加了一定的困难。
发明内容
本发明提供了一种基于深度学习的储能出力预测方法、***、设备及介质,以克服现有技术存在缺陷,本发明可以支持在储能设施的运营者具有不同参与市场方案和既定策略、或者在不同场景、或者在不同市场规则及组织形式的情况下,从客观的角度出发,从储能历史参与表现以及电网已知部分来预测储能设施在电网中行为,受主观影响较小,并且减小了人员工作量,供电力市场规划运营人员参考。
为达到上述目的,本发明采用如下技术方案:
基于深度学习的储能出力预测方法,包括:
获取预测电网数据;
将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。
进一步地,所述历史电网数据包括历史负荷值、历史网络拓扑结构以及水电、风电、光伏的历史出力值,所述历史网络拓扑结构作为历史输入数据时,将某一历史时间点的历史网络拓扑结构构建为此历史时间点对应的历史关联矩阵;
所述历史储能出力为若干储能设施在历史时间点的储能出力的集合。
进一步地,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据,对多层神经元网络模型进行训练的具体过程为:
将历史输入数据构建成历史输入矩阵;所述历史输入矩阵的每一行对应一历史时间点的历史负荷值,不同水电、风电、光伏的历史出力值,以及历史关联矩阵的不同元素,所述历史关联矩阵的不同元素表示历史网络拓扑结构中不同设备之间的连接关系;
将历史输出数据构建成历史输出矩阵;所述历史输出矩阵的每一行对应一历史时间点不同储能设施的储能出力;
将历史输入矩阵和历史输出矩阵通过历史时间点的对应关系连接,形成历史矩阵,对历史矩阵进行归一化处理;
对归一化处理后的历史矩阵按照预设比例拆分得到训练集和测试集,将训练集分解为历史输入训练集和历史输出训练集,将测试集分解为历史输入测试集和历史输出测试集;
采用历史输入训练集和历史输出训练集对多层神经元网络模型进行训练,采用历史输入测试集和历史输出测试集对训练后的多层神经元网络模型进行测试,若测试结果满足要求,则得到储能出力预测模型,若测试结果不满足要求,则调整训练后的多层神经元网络模型的模型参数后,采用历史输入训练集和历史输出训练集重新训练,并采用历史输入测试集和历史输出测试集重新测试,直至测试结果满足要求。
进一步地,所述采用历史输入测试集和历史输出测试集对训练后的多层神经元网络模型进行测试的具体过程为:
将历史输入测试集输入训练后的多层神经元网络模型,得到输出结果,将输出结果与历史输出测试集进行比较,当准确度大于等于预设阈值时,则测试结果满足要求,否则,测试结果不满足要求。
进一步地,所述模型参数包括多层神经元网络模型的构建形式及训练次数。
进一步地,所述预测电网数据采用预测储能出力对应时间尺度下的预测值,具体包括负荷预测值、当前拓扑叠加检修计划构建的未来网络拓扑结构以及水电、风电、光伏预测值,所述未来网络拓扑结构在输入储能出力预测模型前,将某一未来时间点的未来网络拓扑结构构建为此未来时间点对应的预测关联矩阵。
进一步地,所述的将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力的过程具体为:
将预测输入数据构建成预测输入矩阵;
对预测输入矩阵进行归一化处理;
将归一化处理后的预测输入矩阵输入储能出力预测模型,获得预测输出矩阵;
将预测输出矩阵进行逆归一化处理,获得预测储能出力。
基于深度学习的储能出力预测***,包括:数据获取模块和储能出力预测模块,其中:
数据获取模块:用于获取预测电网数据;
储能出力预测模块:用于将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。
一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述基于深度学习的储能出力预测方法的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现所述基于深度学习的储能出力预测方法的步骤。
与现有技术相比,本发明具有以下有益的技术效果:
本发明利用历史电网数据和历史储能出力对神经元网络模型进行深度学习训练,并利用训练得到的储能出力预测模型对市场环境下的储能出力进行预测,可以为电力机构安全运行提供帮助,根据储能出力预测能够提前做好保障电网运行安全性措施,本发明方法受主观影响较小,需要的人员工作量很少,具有高效便捷的特点。
与传统的利用相似日及利用线性外推法进行储能出力预测,本发明可以发挥多层神经元网络的优势,较好处理输入电网数据和预测储能出力的关系,对其中强关联变量和弱关联变量合理关联,同时在处理非线性关系上具有优势。
附图说明
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明流程示意图;
图2为本发明训练过程流程示意图;
图3为本发明储能出力获取流程示意图;
图4为本发明***的结构示意图。
具体实施方式
以下结合附图及具体实施例对本发明进行进一步详细说明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
一种基于深度学习的储能出力预测方法,参见图1,具体包括:
获取预测电网数据;所述预测电网数据采用预测储能出力对应时间尺度下的预测值,具体包括负荷预测值、当前拓扑叠加检修计划构建的未来网络拓扑结构以及分布式水电、风电、光伏预测值,所述未来网络拓扑结构在输入储能出力预测模型前,将未来网络拓扑结构构建为预测关联矩阵。
将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;所述储能出力预测模型通过对多层神经元网络模型进行训练得到,所述多层神经元网络模型采用RNN(循环神经网络)或者LSTM(长短期记忆神经网络)。
其中,利用历史数据对多层神经元网络模型进行训练,所述历史数据包括历史电网数据以及历史储能出力,在训练过程中,将历史电网数据作为多层神经元网络模型的历史输入数据,将历史储能出力作为多层神经元网络模型的历史输出数据,训练完毕后,得到储能出力预测模型。
所述历史电网数据包括历史负荷值、历史网络拓扑结构以及水电、风电、光伏的历史出力值,所述历史网络拓扑结构作为历史输入数据时,将某一历史时间点的历史网络拓扑结构构建为此历史时间点对应的历史关联矩阵;所述历史储能出力为若干储能设施在历史时间点的储能出力的集合。
在训练时,参见图2,将历史输入数据构建成历史输入矩阵;所述历史输入矩阵的每一行对应一历史时间点的历史负荷值,不同水电、风电、光伏的历史出力值,以及历史关联矩阵的不同元素,所述历史关联矩阵的不同元素表示历史网络拓扑结构中不同设备之间的连接关系;将历史输出数据构建成历史输出矩阵;所述历史输出矩阵的每一行对应一历史时间点不同储能设施的储能出力;将历史输入矩阵和历史输出矩阵通过历史时间点的对应关系连接,形成历史矩阵,对历史矩阵进行归一化处理;再对归一化处理后的历史矩阵按照预设比例(在本实施例中,预设比例为7:3)拆分得到训练集和测试集,将训练集分解为历史输入训练集和历史输出训练集,将测试集分解为历史输入测试集和历史输出测试集;采用历史输入训练集和历史输出训练集对多层神经元网络模型进行训练,然后采用历史输入测试集和历史输出测试集对训练后的多层神经元网络模型进行测试,所述测试的具体过程为:将历史输入测试集输入训练后的多层神经元网络模型,得到输出结果,将输出结果与历史输出测试集进行比较,当准确度大于等于预设阈值(在本实施例中,预设阈值取90%)时,则测试结果满足要求,否则,测试结果不满足要求;若测试结果满足要求,则得到储能出力预测模型,若测试结果不满足要求,则调整训练后的多层神经元网络模型的模型参数(神经元网络模型的构建形式及训练次数)后,采用历史输入训练集和历史输出训练集重新训练,并采用历史输入测试集和历史输出测试集重新测试,循环此过程直至测试结果满足要求。
参见图3,训练完毕后,将预测电网数据作为预测输入数据输入储能出力预测模型,预测输入数据在输入储能出力预测模型之前,首先将预测输入数据构建成预测输入矩阵,预测输入矩阵的每一行对应一未来时间点的负荷预测值,不同水电、风电、光伏预测值,以及预测关联矩阵的不同元素,所述预测关联矩阵的不同元素表示未来网络拓扑结构中不同设备之间的连接关系;然后对预测输入矩阵进行归一化处理;将归一化处理后的预测输入矩阵输入储能出力预测模型,获得预测输出矩阵,将预测输出矩阵进行逆归一化处理,获得预测储能出力。
本发明还提供一种基于深度学习的储能出力预测***,参见图4,包括:数据获取模块和储能出力预测模块,其中:
数据获取模块:用于获取预测电网数据;
储能出力预测模块:用于将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用于说明本发明的技术方案而非对其保护范围的限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:本领域技术人员阅读本发明后依然可对发明的具体实施方式进行种种变更、修改或者等同替换,但这些变更、修改或者等同替换,均在发明待批的权利要求保护范围之内。

Claims (10)

1.基于深度学习的储能出力预测方法,其特征在于,包括:
获取预测电网数据;
将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。
2.根据权利要求1所述的基于深度学习的储能出力预测方法,其特征在于,所述历史电网数据包括历史负荷值、历史网络拓扑结构以及水电、风电、光伏的历史出力值,所述历史网络拓扑结构作为历史输入数据时,将某一历史时间点的历史网络拓扑结构构建为此历史时间点对应的历史关联矩阵;
所述历史储能出力为若干储能设施在历史时间点的储能出力的集合。
3.根据权利要求2所述的基于深度学习的储能出力预测方法,其特征在于,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据,对多层神经元网络模型进行训练的具体过程为:
将历史输入数据构建成历史输入矩阵;所述历史输入矩阵的每一行对应一历史时间点的历史负荷值,不同水电、风电、光伏的历史出力值,以及历史关联矩阵的不同元素,所述历史关联矩阵的不同元素表示历史网络拓扑结构中不同设备之间的连接关系;
将历史输出数据构建成历史输出矩阵;所述历史输出矩阵的每一行对应一历史时间点不同储能设施的储能出力;
将历史输入矩阵和历史输出矩阵通过历史时间点的对应关系连接,形成历史矩阵,对历史矩阵进行归一化处理;
对归一化处理后的历史矩阵按照预设比例拆分得到训练集和测试集,将训练集分解为历史输入训练集和历史输出训练集,将测试集分解为历史输入测试集和历史输出测试集;
采用历史输入训练集和历史输出训练集对多层神经元网络模型进行训练,采用历史输入测试集和历史输出测试集对训练后的多层神经元网络模型进行测试,若测试结果满足要求,则得到储能出力预测模型,若测试结果不满足要求,则调整训练后的多层神经元网络模型的模型参数后,采用历史输入训练集和历史输出训练集重新训练,并采用历史输入测试集和历史输出测试集重新测试,直至测试结果满足要求。
4.根据权利要求3所述的基于深度学习的储能出力预测方法,其特征在于,所述采用历史输入测试集和历史输出测试集对训练后的多层神经元网络模型进行测试的具体过程为:
将历史输入测试集输入训练后的多层神经元网络模型,得到输出结果,将输出结果与历史输出测试集进行比较,当准确度大于等于预设阈值时,则测试结果满足要求,否则,测试结果不满足要求。
5.根据权利要求3所述的基于深度学习的储能出力预测方法,其特征在于,所述模型参数包括多层神经元网络模型的构建形式及训练次数。
6.根据权利要求1所述的基于深度学习的储能出力预测方法,其特征在于,所述预测电网数据采用预测储能出力对应时间尺度下的预测值,具体包括负荷预测值、当前拓扑叠加检修计划构建的未来网络拓扑结构以及水电、风电、光伏预测值,所述未来网络拓扑结构在输入储能出力预测模型前,将某一未来时间点的未来网络拓扑结构构建为此未来时间点对应的预测关联矩阵。
7.根据权利要求1所述的基于深度学习的储能出力预测方法,其特征在于,所述的将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力的过程具体为:
将预测输入数据构建成预测输入矩阵;
对预测输入矩阵进行归一化处理;
将归一化处理后的预测输入矩阵输入储能出力预测模型,获得预测输出矩阵;
将预测输出矩阵进行逆归一化处理,获得预测储能出力。
8.基于深度学习的储能出力预测***,其特征在于,包括:数据获取模块和储能出力预测模块,其中:
数据获取模块:用于获取预测电网数据;
储能出力预测模块:用于将预测电网数据作为预测输入数据输入储能出力预测模型,得到预测储能出力;其中,储能出力预测模型通过对多层神经元网络模型进行训练得到,对多层神经元网络模型进行训练时,将历史电网数据作为历史输入数据,将历史储能出力作为历史输出数据。
9.一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述基于深度学习的储能出力预测方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述基于深度学习的储能出力预测方法的步骤。
CN202111063012.5A 2021-09-10 2021-09-10 基于深度学习的储能出力预测方法、***、设备及介质 Pending CN113743674A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111063012.5A CN113743674A (zh) 2021-09-10 2021-09-10 基于深度学习的储能出力预测方法、***、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111063012.5A CN113743674A (zh) 2021-09-10 2021-09-10 基于深度学习的储能出力预测方法、***、设备及介质

Publications (1)

Publication Number Publication Date
CN113743674A true CN113743674A (zh) 2021-12-03

Family

ID=78737996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111063012.5A Pending CN113743674A (zh) 2021-09-10 2021-09-10 基于深度学习的储能出力预测方法、***、设备及介质

Country Status (1)

Country Link
CN (1) CN113743674A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114548549A (zh) * 2022-02-20 2022-05-27 国网河北省电力有限公司邢台供电分公司 基于Koalas的用电量预测方法及预测***
CN116388279A (zh) * 2023-05-23 2023-07-04 安徽中超光电科技有限公司 太阳能光伏发电***中的电网并网控制方法及其控制***
CN117454121A (zh) * 2023-12-22 2024-01-26 华能济南黄台发电有限公司 一种基于电厂安全预警的数据分析处理方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009673A (zh) * 2017-11-24 2018-05-08 国网北京市电力公司 基于深度学习的新型负荷预测方法和装置
CN111861039A (zh) * 2020-07-31 2020-10-30 广东电网有限责任公司广州供电局 基于lstm和广义预测控制算法的电力负荷预测方法、***、设备及存储介质
CN112215442A (zh) * 2020-11-27 2021-01-12 中国电力科学研究院有限公司 电力***短期负荷预测方法、***、设备及介质
CN113240187A (zh) * 2021-05-26 2021-08-10 合肥工业大学 预测模型生成方法、***、设备、存储介质及预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009673A (zh) * 2017-11-24 2018-05-08 国网北京市电力公司 基于深度学习的新型负荷预测方法和装置
CN111861039A (zh) * 2020-07-31 2020-10-30 广东电网有限责任公司广州供电局 基于lstm和广义预测控制算法的电力负荷预测方法、***、设备及存储介质
CN112215442A (zh) * 2020-11-27 2021-01-12 中国电力科学研究院有限公司 电力***短期负荷预测方法、***、设备及介质
CN113240187A (zh) * 2021-05-26 2021-08-10 合肥工业大学 预测模型生成方法、***、设备、存储介质及预测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114548549A (zh) * 2022-02-20 2022-05-27 国网河北省电力有限公司邢台供电分公司 基于Koalas的用电量预测方法及预测***
CN116388279A (zh) * 2023-05-23 2023-07-04 安徽中超光电科技有限公司 太阳能光伏发电***中的电网并网控制方法及其控制***
CN116388279B (zh) * 2023-05-23 2024-01-23 安徽中超光电科技有限公司 太阳能光伏发电***中的电网并网控制方法及其控制***
CN117454121A (zh) * 2023-12-22 2024-01-26 华能济南黄台发电有限公司 一种基于电厂安全预警的数据分析处理方法及***
CN117454121B (zh) * 2023-12-22 2024-04-05 华能济南黄台发电有限公司 一种基于电厂安全预警的数据分析处理方法及***

Similar Documents

Publication Publication Date Title
CN113743674A (zh) 基于深度学习的储能出力预测方法、***、设备及介质
CN109324291B (zh) 一种针对质子交换膜燃料电池寿命预测的预测方法
CN102707256B (zh) 基于BP-AdaBoost神经网络的电子式电能表故障诊断方法
CN102663412B (zh) 基于最小二乘支持向量机的电力设备载流故障趋势预测方法
CN112651290A (zh) 一种水电机组振动趋势预测方法和***
CN109782124B (zh) 一种基于梯度下降算法的主配用一体化故障定位方法及***
CN112069727B (zh) 具备高可信度的电力***暂态稳定智能化评估***及方法
CN109002781B (zh) 一种储能变流器故障预测方法
CN109873425B (zh) 基于深度学习和用户行为的电力***调整潮流方法及***
CN105547730A (zh) 水轮发电机组故障检测***
CN111062170A (zh) 一种变压器顶层油温预测方法
CN105320987A (zh) 一种基于bp神经网络的卫星遥测数据智能判读方法
CN110865924A (zh) 电力信息***内部服务器健康度诊断方法与健康诊断框架
CN110532314A (zh) 高压电器质量检测的方法及终端设备
CN108767987A (zh) 一种配电网及其微电网保护与控制***
CN109921462B (zh) 一种基于lstm的新能源消纳能力评估方法及***
CN111371088A (zh) 一种基于bp神经网络修正svg控制策略的方法及***
CN113240217A (zh) 一种基于集成预测模型的光伏发电预测方法及装置
CN117236380A (zh) 一种电力***故障预测方法、***、电子设备和介质
CN105741184A (zh) 一种变压器状态评估方法及装置
CN115496234A (zh) 一种直流充电机故障诊断方法、装置及存储介质
CN115184734A (zh) 一种电网线路故障检测方法和***
Liu et al. Intelligent voltage prediction of active distribution network with high proportion of distributed photovoltaics
CN114320773A (zh) 一种基于功率曲线分析与神经网络的风电机组故障预警方法
CN112365024A (zh) 一种基于深度学习的高压直流换流站能效预测方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination