CN113726137A - 变换装置 - Google Patents

变换装置 Download PDF

Info

Publication number
CN113726137A
CN113726137A CN202010456292.5A CN202010456292A CN113726137A CN 113726137 A CN113726137 A CN 113726137A CN 202010456292 A CN202010456292 A CN 202010456292A CN 113726137 A CN113726137 A CN 113726137A
Authority
CN
China
Prior art keywords
converter
load
electrically connected
inductor
filter network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010456292.5A
Other languages
English (en)
Other versions
CN113726137B (zh
Inventor
刘腾
应建平
乔理峰
王欣
肖宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Shanghai Co Ltd
Original Assignee
Delta Electronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Shanghai Co Ltd filed Critical Delta Electronics Shanghai Co Ltd
Priority to CN202010456292.5A priority Critical patent/CN113726137B/zh
Priority to EP21170736.9A priority patent/EP3916980A1/en
Priority to US17/314,663 priority patent/US11515806B2/en
Publication of CN113726137A publication Critical patent/CN113726137A/zh
Priority to US18/050,062 priority patent/US20230068564A1/en
Application granted granted Critical
Publication of CN113726137B publication Critical patent/CN113726137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

本发明实施例提供一种变换装置,连接于交流电网和负载之间,变换装置包括:电感,与交流电网电连接;第一级变换器,其第一端与电感电连接且第二端电连接至母线;第二级变换器,其第一端与母线电连接且第二端与负载电连接;滤波网络,滤波网络具有第一端、第二端和第三端,其中滤波网络的第一端和第三端之间设置有第一阻容电路,滤波网络的第二端和第三端之间设置有第二阻容电路,滤波网络的第一端与交流电网电连接,滤波网络的第二端电连接于母线端或第二级变换器的第二端,滤波网络的第三端通过第一电容接地。本发明的技术方案可以降低变换装置的母线对地电压、降低变换器原副边绝缘耐压、减少变换装置对外界的共模干扰。

Description

变换装置
技术领域
本发明涉及电力电子技术领域,具体而言,涉及一种变换装置。
背景技术
近年来,相比传统的交流配电***,以直流为代表的输电方式越来越受到业界的重视。随着新能源技术的发展和直流负载的增多,直流输电结合新能源发电优势愈加突出。直流输电节省了直流(DC)到交流(AC)相互转换的环节,降低了***成本。在用户端,随着互联网技术的发展,数据中心的规模达到了几兆瓦、甚至几十兆瓦。电动汽车产业蓬勃发展,中国电动汽车保有量迅速增大,电动汽车增长前景广阔,电动汽车的发展对大功率充电桩要求逐步扩大。
传统的变换装置在大功率应用中存在诸多问题。如图1所示为电动汽车104提供充电电源103的变换装置的拓扑结构中,中压变压器101原边连接中压(MV)电网,副边多绕组提供低压(LV)交流输出,中压变压器101可以实现中压隔离,所以后级电力电子变换器102可以采用非隔离方案。此方案具有满载效率高(98%),技术成熟、可靠性高的优点,但其采用的变压器体积大,且在轻载输出的情况下,存在效率低,谐波含量(THD)高等缺点。例如,在***功率2.4MW时,如果轻载100kW输出时,效率仅为92.5%。实际应用中,满载的情况较少,大部分情况是工作在轻载和半载的情况。
如图2所示,采用中压传统方案为负载201供电的变换装置中,采用模块202的结构,该方案的优点是技术成熟、可靠,但是因为模块202的直流母线电容位于每个单相桥臂中,每相的相电流单独流过每相的电容会使得功率出现二倍频的波动,所以需要配置大量的电容来降低电容的纹波电压,这将导致功率模块的功率密度降低和***的体积增大。
基于以上的问题,中压直流微网的概念被提出,直流电网结合新能源、储能技术,适应数据中心、大功率汽车充电站迅速发展的需要,可以实现本地发电、就近用电,降低了线缆的损耗。此外,直流不会产生无功损耗,没有无功功率平衡和稳定问题,可以提高***效率和电网运行可靠性。
中压直流微网的基本拓扑架构包括与交流电网连接的AC/DC变换器,AC/DC变换器工作时,因为采用PWM(Pulse Width Modulation,脉冲宽度调制)调制技术,会产生***共模电压,共模电压叠加差模电压,会造成AC输入端、母线中点等位置对地电压升高,并且由于共模环路的存在,在共模环路中,会产生共模电流,如果不加以处理,共模电流会产生绝缘和干扰、散热等问题,较高的共模电流将导致变换装置损耗较高、效率降低。
综上,如何降低转变换电路的共模电流是当前亟需解决的技术问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种变换装置,进而至少在一定程度上降低变换装置的共模电流。
根据本发明实施例提供的一种变换装置,连接于交流电网和负载之间,所述变换装置包括:电感,与所述交流电网电连接;第一级变换器,其第一端与所述电感电连接且第二端电连接至母线,用以根据所述交流电网输出母线电压;第二级变换器,其第一端与所述母线电连接且第二端与所述负载电连接,用以将所述母线电压转换为输出电压以给负载提供能量;滤波网络,所述滤波网络具有第一端、第二端和第三端,其中所述滤波网络的所述第一端和所述第三端之间设置有第一阻容电路,所述滤波网络的所述第二端和所述第三端之间设置有第二阻容电路,所述滤波网络的所述第一端与所述交流电网电连接,所述滤波网络的所述第二端电连接于所述母线端或所述第二级变换器的所述第二端,所述滤波网络的所述第三端通过第一电容接地。
在一些实施例中,所述母线间连接有串联的第二电容和第三电容,所述滤波网络的所述第二端电连接于所述第二电容和所述第三电容之间。
在一些实施例中,所述母线间连接有第四电容。
在一些实施例中,所述电感包括共模和差模集成的电感,所述电感设置于所述交流电网和所述第一级变换器之间。
在一些实施例中,所述电感包括差模电感和共模电感,所述差模电感连接在所述交流电网和所述第一级变换器之间,所述共模电感设置于所述交流电网和所述第二级变换器的第二端之间。
在一些实施例中,所述电感包括差模电感和共模电感,所述差模电感连接在所述交流电网和所述第一级变换器之间,所述共模电感设置于所述滤波网络的所述第一端和和所述第二端之间。
在一些实施例中,所述第一阻容电路包含串联连接的所述第一电阻和所述第五电容,所述第二阻容电路包含串联连接的所述第二电阻和所述第六电容。
在一些实施例中,所述第一级变换器包括N电平的交流-直流变换器,且所述N电平的交流-直流变换器包括复数个开关桥臂,其中所述交流-直流变换器的每一开关桥臂的上桥臂和下桥臂均包含复数个串联的半导体器件,且每一半导体器件的额定耐压值Vsemi大于等于(Vbus*δ)/((N-1)*Nseries*λ),其中,Vbus代表所述母线电压,δ代表母线波动,N代表所述第一级变换器器的电平数,λ代表半导体器件的电压降额系数,且λ≤1,Nseries代表半导体器件串联的数目,且Nseries≥2。
在一些实施例中,所述负载包括直流负载或交流负载,其中所述第二级变换器对应包括直流-直流变换器或直流-交流变换器,所述直流-直流变换器或所述直流-交流变换器与所述负载电连接。
在一些实施例中,所述变换装置还包括控制器和直流断路器,所述直流断路器设置在所述第一级变换器和所述第二级变换器之间,其中所述直流断路器与所述控制器电连接,并根据所述控制器发送的控制所述直流断路器工作。
在一些实施例中,所述第一级变换器包括至少两个并联的交流-直流变换器。
在一些实施例中,所述第二级变换器包括至少两个直流-直流变换器或直流-交流变换器,所述直流-直流变换器或所述直流-交流变换器串联或并联。
在一些实施例中,所述变换装置还包括控制器,所述控制器检测所述负载的功率,并根据负载的功率控制所述至少两个并联的交流-直流变换器的工作状态。
在一些实施例中,当负载为满载情况下,全部所述交流-直流变换器均工作。
在一些实施例中,当负载为轻载或半载情况下,所述控制器控制所述至少两个并联的交流-直流变换器中其中之部分交流-直流变换器工作,且其他之交流-直流变换器不工作。
在一些实施例中,所述第一级变换器包括以下任一种交流-直流变换器:两电平整流器、三电平维也纳整流器和三电平中点钳位式变换器。
本发明实施例的变换装置中,通过设置滤波网络,并在滤波网络中设置第一阻容电路701和第二阻容电路702,可以减少变换装置中的共模电流。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出相关技术中一种采用中压变压器的变换装置的结构示意图;
图2示意性示出相关技术中一种采用级联H桥结构的变换装置的结构示意图;
图3示意性示出本发明实施例中另一种变换装置的结构示意图;
图4示意性示出本发明实施例中又一种变换装置的结构示意图;
图5示意性示出本发明实施例中又一种变换装置的结构示意图;
图6示意性示出本发明实施例中又一种变换装置的结构示意图;
图7示意性示出本发明实施例中又一种变换装置的结构示意图;
图8示意性示出本发明实施例中又一种变换装置的结构示意图;
图9示意性示出本发明实施例中又一种变换装置的结构示意图;
图10示意性示出本发明实施例中又一种变换装置的结构示意图;
图11示意性示出本发明实施例中一种AC/DC拓扑结构的示意图;
图12示意性示出本发明实施例中另一种AC/DC拓扑结构的示意图;
图13示意性示出本发明实施例中又一种AC/DC拓扑结构的示意图;
图14示意性示出本发明实施例中一种DC/DC拓扑结构的示意图;
图15示意性示出本发明实施例中另一种DC/DC拓扑结构的示意图;
图16示意性示出本发明实施例中又一种DC/DC拓扑结构的示意图;
图17示意性示出本发明实施例中又一种DC/DC拓扑结构的示意图;
图18示意性示出本发明实施例中又一种DC/DC拓扑结构的示意图;
图19示意性示出本发明实施例中又一种变换装置的结构示意图;
图20示意性示出本发明实施例中又一种变换装置的结构示意图;
图21示意性示出本发明实施例中又一种变换装置的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本发明将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
相关技术中,中压直流微网中的AC/DC(Alternating Current/Direct Current)变换器将交流电网的电能转换为直流母线输出。按照当前业界习惯,中压交流电压≥1kVAC,中压直流电压≥1.5kVDC。
AC/DC变换器工作时产生的***共模电压叠加差模电压,会造成AC输入端、母线中点等位置对地电压升高,并产生共模电流,导致变换装置损耗较高、效率降低。
本示例实施方式中提供了一种变换装置,以降低变换装置的共模电流。
如图3所示,本发明实施例提供一种变换装置,连接于AC(Alternating Current,交流)电网和负载301之间,该变换装置包括:电感Lf,与交流电网电连接;第一级变换器302,其第一端与电感Lf电连接且第二端电连接至DC BUS(Direct Current BUS,直流母线)即母线,用以根据交流电网输出母线电压;以及第二级变换器303,其第一端与母线电连接且第二端与负载301电连接,用以将母线电压转换为输出电压以给负载301提供能量。
如图3所示,变换装置还可以包含滤波网络,其中滤波网络具有第一端、第二端和第三端,滤波网络的第一端和第三端之间设置有第一阻容电路701,滤波网络的第二端和第三端之间设置有第二阻容电路702,滤波网络的第一端与交流电网电连接,滤波网络的第三端通过第一电容C71接地。
其中,第一阻容电路701包含串联连接的第一电阻R71和第五电容C75,第二阻容电路702包含串联连接的第二电阻R72和第六电容C76。如图12所示,滤波网络的第一端为三相接入端,其每一相均包含第一阻容电路701。三相第一阻容电路701的一端分别对应交流电网的三相输入,三相第一阻容电路701的另一端均与滤波网络的第三端连接。滤波网络的第二端为单相接入端,其中,第二阻容电路702的一端连接滤波网络的第二端,第二阻容电路702的另一端连接滤波网络的第三端。
如图3所示,滤波网络的第二端电连接于母线端。具体地,母线间连接有串联的第二电容C72和第三电容C73,滤波网络的第二端电连接于第二电容C72和第三电容C73之间。
在变换装置工作时,由于采用PWM调制技术,会产生***共模电压,共模电压叠加差模电压,会造成AC输入端、母线中点等位置对地电压升高,并且由于共模环路的存在,在环路中,会产生共模电流,如果不加以处理,会产生绝缘和干扰、散热等问题。
本发明实施例中,滤波网络具有三个端口,通过在滤波网络中设置第一阻容电路701和第二阻容电路702,可以减少变换装置中的共模电流。
如图4所示,与图3的区别在于:滤波网络的第三端还可以分别通过第一电容C71和第七电容C77接地。
如图5所示,与图3的区别在于:母线间可以连接有第四电容C74。滤波网络的第二端电连接于第二级变换器的第二端。具体地,第二变换器的第二端之间还连接有第八电容C78。第二阻容电路的一端与第二变换器的第二端中的其中一端电连接。于一实施例中,第二阻容电路的一端与第二变换器的第二端中的接地端电连接。
在本发明实施例中,如图3、图4、图5所示,电感可以为共模和差模集成的电感Lf。如图6、图7、图8、图9、图10所示,电感可以包括独立的共模电感Lcm和差模电感Ldiff。
此外,本发明实施例中,在滤波网络中采用共模电感,形成共模滤波网络。
如图3、图4和图5所示,电感Lf是差共模集成的电抗器,既可以对差模信号进行滤波,同时对共模信号进行滤波。如图3所示的共模滤波网络的一端接母线中点即第二电容C72和第三电容C73的连接点,另一端和交流电网相互连接,并通过安规电容C71接地。这样,母线中点的电压被强制拉到和大地接近的电位。其电网侧也通过阻容和大地连接,降低电网侧对地的电压。
该共模滤波网络的设计可以有效降低母线中点电压和电网侧对地电压,并且限制共模电流的幅值。
降低电网侧和直流母线中点对地电压的具体指标如下:额定工况下,AC输入对地电压≤1.5*相电压峰值,共模电压跳变≤1500V/uS。
在本发明实施例中,电感包括差模电感和共模电感时,差模电感Ldiff连接在交流电网和第一级变换器之间,共模电感Lcm设置于差模电感和负载之间。
具体地,如图6和图7所示,变换装置中包含差模电感Ldiff和三相共模电感Lcm,每相中差模电感Ldiff和共模电感Lcm串联,且电连接在交流电网和第一级变换器之间。这里,共模电感和差模电感独立设计,串联后设置在交流电网的接入端。
如图8、图9和图10所示,共模电感Lcm和差模电感Ldiff可以独立设计,三相差模电感Ldiff电连接在交流电网和第一级变换器之间。两相共模电感Lcm分别设置于直流母线的两相,即交流电网和第二级变换器的第二端之间,更进一步可位于滤波网络的第一端和第二端之间。
其中,图8中,共模电感Lcm设置于第一级变换器的第二端与串联的第二电容C72和第三电容C73构成的串联支路之间。图9和图10中,共模电感Lcm设置于第四电容C74与串联的第二电容C72和第三电容C73构成的串联支路之间。此时,第四电容C74可以对共模电感的漏感进行漏感能量吸收,解决共模电抗器漏感影响。
在本发明实施例中,第一级变换器302可以为N电平的交流-直流变换器,N电平的交流-直流变换器包括多个开关桥臂,其中交流-直流变换器的每一开关桥臂的上桥臂和下桥臂均包含多个串联的半导体器件,且每一半导体器件的额定耐压值Vsemi大于等于(Vbus*δ)/((N-1)*Nseries*λ),其中,Vbus代表母线电压,δ代表母线波动,N代表第一级变换器的电平数,λ代表半导体器件的电压降额系数,且λ≤1,Nseries代表半导体器件串联的数目,且Nseries≥2。
在中压直流微网的基本拓扑架构包括与交流电网连接的AC/DC变换器,AC/DC变换器控制输出直流母线。AC/DC变换器通常采用高压半导体器件,高压半导体器件工作的频率较低,需要设计滤波器具有较低的截止频率,导致滤波器的体积和成本的增加,进而导致交流电网和负载间的变换装置的体积和成本的增加。
采用多个半导体器件串联的结构时,可使用开关频率高的半导体器件串联。例如,可采用耐压值为1700V的IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)开关串联替代耐压值为4500V的IGBT。因为耐压值为1700V的IGBT的开关频率可达到最高的开关频率3kHz,远大于耐压值为4500V的IGBT的最高开关频率。因此,变换器就可以工作在比较高的开关频率下,从而可以提高滤波器截止频率,减小滤波器的体积,降低滤波器的成本。
在本发明实施例中,第一级变换器可以为两电平或三电平的AC/DC变换器,且并不局限于此。如图11、图12和图13所示,AC/DC变换器的拓扑结构包括但不限于:两电平整流器、三电平维也纳整流器和三电平中点钳位式变换器。
如图11所示的三相两电平整流器中,每一相的上桥臂和下桥臂各自包含两个串联的半导体器件即功率管S401。如图11所示的功率管为IGBT,但是在实际应用中并不局限于此。
现有技术中,三相三电平维也纳整流器的每一相桥臂包括一个功率管和四个二极管构成的双向开关和起续流作用的上下两个二极管。如图12所示的三相三电平维也纳(VIENNA)整流器中,现有技术中的三相三电平维也纳整流器的每一相桥臂的功率管被两个串联的功率管S402替换,现有技术中的三相三电平维也纳整流器的每个桥臂的每个二极管被两个串联的二极管D401替换。
现有技术中,三相三电平中点钳位式变换器的每一相的桥臂包括四个功率管和两个二极管。
如图13所示,三相三电平中点钳位式(Neutral Point Clamped,简称NPC)变换器中,现有技术中的三相三电平中点钳位式变换器的每一相桥臂的功率管被两个串联的功率管S403替换,现有技术中的三相三电平中点钳位式变换器的每个桥臂的每个二极管被两个串联的二极管D402替换。
在本发明示例性实施例中,负载可以为直流负载,对应地,第二级变换器可以为直流-直流变换器,直流-直流变换器与直流负载电连接。此外,负载也可以为交流负载,对应地,第二级变换器可以为直流-交流变换器,直流-交流变换器与交流负载电连接。
在第二级变换器可以为直流-直流变换器即DC/DC(Direct Current/DirectCurrent)变换器时,直流-直流变换器可以具有多种拓扑结构,直流-直流变换器的原边的单个模块可以采用两电平或多电平拓扑,直流-直流变换器的半导体器件可以采用单个半导体器件,也可以采用多个半导体器件串联、并联或串并联的结构,直流-直流变换器的副边与原边可以采用隔离输出或非隔离输出的输出模式,直流-直流变换器的副边可以根据负载的需要,进行并联或者串联或者串并联连接。
具体地,本发明实施例的直流-直流变换器可以为:如图14所示的原边串联的全桥LLC DC/DC变换器,如图15所示的包含原边串联的半桥LLC电路的DC/DC变换器,如图16所示的包含原边串联的三电平半桥LLC电路的DC/DC变换器,如图17所示的包含原边串联的DAB(Dual-Active-Bridge,双有源桥)电路的DC/DC双向变换器,如图18所示的非隔离DC/DC双向变换器。
在本发明实施例中,变换装置还包括控制器(图中未示出),控制器检测负载的功率,并根据负载的功率控制至少两个并联的交流-直流变换器的工作状态。
如图19所示,变换装置还包括直流断路器801,直流断路器设置在第一级变换器和第二级变换器之间,其中直流断路器801与控制器电连接,并根据控制器发送的控制信号控制直流断路器801动作。
在中压直流微网***中,新能源体接入更简便、线路成本低、损耗小,没有无功功率平衡和稳定性问题,电网运行可靠性更高。基于直流微网的优点,如图19所示,在本发明实施例的直流微网***中,可以接入直流负载802以及电池803、光伏板804等新能源体,实现直流微网的发电、用电功能,能量双向流动。
直流电网具有惯性小,发生短路时短路电流上升快,峰值电流高等缺点。针对直流微网短路故障,提出在能源体的接入端串联直流断路器801,当发生短路故障的情况下,实现可靠的断开。
本发明实施例中的中压直流微网的架构中,电池、光伏板等新能源体和中压直流母线通过直流断路器801进行连接和断开,直流断路器801可以自行检测运行工况,当发生故障时,断开故障点,同时将信息传输给控制器,控制器根据上传的信号进行统筹管理。统筹管理可为:由控制器设定故障优先级,如短路为第一优先级,过流为第二优先级,当故障处于第一优先级时,由直流断路器于发现该故障时自行切除;而当故障处于第二优先级或更靠后优先级时,控制器根据直流断路器的信息,发送切除信号控制直流断路器的开关和断开。
如图19所示的拓扑架构,集合了电网、负载、发电、储能等结构。控制所在的中央控制***可接收监控***的控制指令对电池进行充放电、利用电池所在的储能***快速吸收或释放能源,平滑光伏并网发电电压波动,改善***的有功功率、无功功率平衡水平,增强稳定性。利用储能***提高光伏发电的调度性,可通过当地电力峰谷时间分布情况和电价进行分析,制定充放电控制模式,低吸高抛,达到经济效益的最大化。储能***配合光伏发电站将进一步提高光伏发电与电网间的良好匹配,通过平滑电力输出,并实现“削峰填谷”,缓解光伏发电“装机量大,发电量小”的问题,大大降低了常规光伏电站对电网的输电容量的要求,从而避免了电网建设不足对光伏电站发电的制约。
如图20和图21所示,第一级变换器可以包括两个或两个以上并联的交流-直流变换器。第二级变换器可以包括两个或两个以上直流-直流变换器。如图20所示,第二级变换器中的M个以上直流-直流变换器,其中,M为大于等于2的自然数。如图21所示,第二级变换器中的M个以上直流-直流变换器串联,其中,M为大于等于2的自然数。此外,第二级变换器中也可以包括两个或两个以上直流-交流变换器,两个或两个以上直流-交流变换器可以并联也可以串联。
在本发明实施例中,当负载为满载情况下,全部交流-直流变换器均工作。当负载为轻载或半载情况下,控制器控制至少两个并联的交流-直流变换器中其中之部分交流-直流变换器工作,且其它之交流-直流变换器不工作。
具体地,如图20所示,变换装置中AC/DC变换器采用多机并联,DC/DC变换器输出侧采用多机并联的方式,当负载端满载的情况下,AC/DC多机工作,当负载端轻载或半载的情况下,中压控制器会根据负载的功率,关闭一部分AC/DC变换器,让其余部分的AC/DC变换器工作在额定负载或者最佳效率工作点,达到效率最大化的目的。
如图21所示,变换装置中AC/DC变换器采用多机并联的方式,DC/DC变换器输出侧根据负载的电压需求,可以采用多机副边输出串联供电的方式,当负载端满载的情况下,AC/DC多机工作,当负载端轻载或半载的情况下,控制器会根据负载的功率,关闭一部分AC/DC变换器,让其余部分的AC/DC变换器工作在额定负载或者最佳效率工作点,达到效率最大化的目的。
另外,在很多实际应用中,用电端所在的楼层可能不方便搬运设备。如果将整个变换装置放在用电端,不仅存在搬运的问题,还会占用较大的楼板面积,增加楼板的承重。本发明实施例的变换装置,第一级变换器和第二级变换器可以分开放置,第一级变换器可以放在地下室等远端。第二级变换器靠近用电端,两者通过中压直流电网连接。
本发明实施例的变换装置中,通过设置滤波网络,并在滤波网络中设置第一阻容电路701和第二阻容电路702,可以减少变换装置中的共模电流。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (16)

1.一种变换装置,连接于交流电网和负载之间,其特征在于,所述变换装置包括:
电感,与所述交流电网电连接;
第一级变换器,其第一端与所述电感电连接且第二端电连接至母线,用以根据所述交流电网输出母线电压;
第二级变换器,其第一端与所述母线电连接且第二端与所述负载电连接,用以将所述母线电压转换为输出电压以给负载提供能量;
滤波网络,所述滤波网络具有第一端、第二端和第三端,其中所述滤波网络的所述第一端和所述第三端之间设置有第一阻容电路,所述滤波网络的所述第二端和所述第三端之间设置有第二阻容电路,所述滤波网络的所述第一端与所述交流电网电连接,所述滤波网络的所述第二端电连接于所述母线端或所述第二级变换器的所述第二端,所述滤波网络的所述第三端通过第一电容接地。
2.根据权利1所述的变换装置,其特征在于,所述母线间连接有串联的第二电容和第三电容,所述滤波网络的所述第二端电连接于所述第二电容和所述第三电容之间。
3.根据权利要求1所述的变换装置,其特征在于,所述母线间连接有第四电容。
4.根据权利要求1所述的变换装置,其特征在于,所述电感包括共模和差模集成的电感,所述电感设置于所述交流电网和所述第一级变换器之间。
5.根据权利要求1所述的变换装置,其特征在于,
所述电感包括差模电感和共模电感,所述差模电感连接在所述交流电网和所述第一级变换器之间,所述共模电感设置于所述交流电网和所述第二级变换器的第二端之间。
6.根据权利要求1所述的变换装置,其特征在于,
所述电感包括差模电感和共模电感,所述差模电感连接在所述交流电网和所述第一级变换器之间,所述共模电感设置于所述滤波网络的所述第一端和和所述第二端之间。
7.根据权利要求1所述的变换装置,其特征在于,
所述第一阻容电路包含串联连接的所述第一电阻和所述第五电容,所述第二阻容电路包含串联连接的所述第二电阻和所述第六电容。
8.根据权利要求1所述的变换装置,其特征在于,所述第一级变换器包括N电平的交流-直流变换器,且所述N电平的交流-直流变换器包括复数个开关桥臂,其中所述交流-直流变换器的每一开关桥臂的上桥臂和下桥臂均包含复数个串联的半导体器件,且每一半导体器件的额定耐压值Vsemi大于等于(Vbus*δ)/((N-1)*Nseries*λ),其中,Vbus代表所述母线电压,δ代表母线波动,N代表所述第一级变换器器的电平数,λ代表半导体器件的电压降额系数,且λ≤1,Nseries代表半导体器件串联的数目,且Nseries≥2。
9.根据权利要求8所述的变换装置,其特征在于,所述负载包括直流负载或交流负载,其中所述第二级变换器对应包括直流-直流变换器或直流-交流变换器,所述直流-直流变换器或所述直流-交流变换器与所述负载电连接。
10.根据权利要求1所述的变换装置,其特征在于,所述变换装置还包括控制器和直流断路器,所述直流断路器设置在所述第一级变换器和所述第二级变换器之间,其中所述直流断路器与所述控制器电连接,并根据所述控制器发送的控制所述直流断路器工作。
11.根据权利1所述的变换装置,其特征在于,所述第一级变换器包括至少两个并联的交流-直流变换器。
12.根据权利11所述的变换装置,其特征在于,所述第二级变换器包括至少两个直流-直流变换器或直流-交流变换器,所述直流-直流变换器或所述直流-交流变换器串联或并联。
13.根据权利要求11所述的变换装置,其特征在于,所述变换装置还包括控制器,所述控制器检测所述负载的功率,并根据负载的功率控制所述至少两个并联的交流-直流变换器的工作状态。
14.根据权利要求13所述的变换装置,其特征在于,当负载为满载情况下,全部所述交流-直流变换器均工作。
15.根据权利要求13所述的变换装置,其特征在于,当负载为轻载或半载情况下,所述控制器控制所述至少两个并联的交流-直流变换器中其中之部分交流-直流变换器工作,且其他之交流-直流变换器不工作。
16.根据权利1所述的变换装置,其特征在于,所述第一级变换器包括以下任一种交流-直流变换器:
两电平整流器、三电平维也纳整流器和三电平中点钳位式变换器。
CN202010456292.5A 2020-05-26 2020-05-26 变换装置 Active CN113726137B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010456292.5A CN113726137B (zh) 2020-05-26 2020-05-26 变换装置
EP21170736.9A EP3916980A1 (en) 2020-05-26 2021-04-27 Conversion device
US17/314,663 US11515806B2 (en) 2020-05-26 2021-05-07 Conversion device having reduced common-mode current
US18/050,062 US20230068564A1 (en) 2020-05-26 2022-10-27 Conversion system and conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010456292.5A CN113726137B (zh) 2020-05-26 2020-05-26 变换装置

Publications (2)

Publication Number Publication Date
CN113726137A true CN113726137A (zh) 2021-11-30
CN113726137B CN113726137B (zh) 2023-11-03

Family

ID=75728590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010456292.5A Active CN113726137B (zh) 2020-05-26 2020-05-26 变换装置

Country Status (3)

Country Link
US (2) US11515806B2 (zh)
EP (1) EP3916980A1 (zh)
CN (1) CN113726137B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022201188A1 (de) 2022-02-04 2023-08-10 Vitesco Technologies GmbH Fahrzeugseitige Wechselstrom-Ladeschaltung mit Hochpass-Fehlerschutzimpedanz zwischen Gleichrichter-Sternpunkt und Schutzleiter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203933369U (zh) * 2014-05-26 2014-11-05 西安理工大学 一种用于ac/ac开关变换器的共模电磁干扰滤波器
CN205212696U (zh) * 2015-12-25 2016-05-04 哈尔滨理工大学 Pwm变频电机驱动***电磁干扰输入/输出无源抑制装置
CN106099948A (zh) * 2016-08-30 2016-11-09 国网河南省电力公司电力科学研究院 一种电力电子软连接开关拓扑及其控制方法
US20180041110A1 (en) * 2016-08-05 2018-02-08 Delta Electronics (Shanghai) Co.,Ltd. Power conversion system and method for suppressing the common-mode voltage thereof

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229897B2 (ja) * 1992-04-13 2001-11-19 三菱電機株式会社 3レベル3相インバータ装置
US5644483A (en) * 1995-05-22 1997-07-01 Lockheed Martin Energy Systems, Inc. Voltage balanced multilevel voltage source converter system
DE19736786A1 (de) * 1997-08-23 1999-02-25 Asea Brown Boveri U-Umrichter
ATA49098A (de) * 1998-03-20 1999-09-15 Lutz Erhartt Verfahren und vorrichtung zur entstörung von umrichtern
US6209009B1 (en) 1998-04-07 2001-03-27 Phone.Com, Inc. Method for displaying selectable and non-selectable elements on a small screen
US6385057B1 (en) 2001-01-31 2002-05-07 Bartronics, Inc. Power conversion system and method of power conversion
DK174717B1 (da) * 2002-05-22 2003-10-06 Danfoss Drives As Motorstyring indeholdende et elektronisk kredsløb til beskyttelse mod inrushstrømme
AU2002368340A1 (en) * 2002-11-11 2004-06-03 The Circle For The Promotion Of Science And Engineering Filter device
US8174853B2 (en) * 2007-10-30 2012-05-08 Johnson Controls Technology Company Variable speed drive
US7957166B2 (en) * 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
KR20090100655A (ko) * 2008-03-20 2009-09-24 엘에스산전 주식회사 멀티 레벨 인버터
ES2581427T3 (es) * 2008-12-12 2016-09-05 Vestas Wind Systems A/S Método y aparato de control
US8598741B2 (en) * 2008-12-23 2013-12-03 Samsung Electro-Mechanics Co, Ltd. Photovoltaic and fuel cell hybrid generation system using single converter and single inverter, and method of controlling the same
US8860236B2 (en) * 2009-10-19 2014-10-14 Uwm Research Foundation, Inc. Wind energy power conversion system reducing gearbox stress and improving power stability
US8994202B2 (en) * 2010-12-10 2015-03-31 Vestas Wind Systems A/S Method and system for operating a wind turbine during an overvoltage event
CN108134450A (zh) 2011-06-09 2018-06-08 东芝三菱电机产业***株式会社 不间断电源***
CN103001573B (zh) * 2011-09-13 2016-03-23 台达电子企业管理(上海)有限公司 中压变频驱动***
CN102377192B (zh) 2011-10-31 2013-11-06 清华大学 一种直驱型海浪发电储能装置及控制方法
CN103427622B (zh) * 2012-05-18 2016-08-03 台达电子工业股份有限公司 改善滤波器性能的方法及功率变换装置
CN103825474B (zh) * 2012-11-16 2016-08-31 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用***
CN103973128A (zh) * 2013-01-30 2014-08-06 通用电气能源电能变换科技有限公司 无变压器式电能变换***以及相关方法
CN104038085B (zh) 2013-03-08 2016-07-06 台达电子工业股份有限公司 三电平变流器
CN104065259B (zh) * 2013-03-18 2016-08-03 台达电子工业股份有限公司 滤波装置、功率转换器及共模噪声抑制方法
CN103311944B (zh) * 2013-05-16 2016-04-20 国家电网公司 一种采用模块化结构的统一潮流控制器及其启动方法
CN103401467A (zh) 2013-06-26 2013-11-20 许继集团有限公司 一种交直流混合微型电网的双向变流功率控制器
CN104767442B (zh) * 2014-01-03 2018-05-08 台达电子工业股份有限公司 多相发电机的并联式电源转换***及其操作方法
KR102431991B1 (ko) * 2015-03-13 2022-08-16 삼성전자주식회사 모터 구동 장치
KR102437471B1 (ko) * 2015-03-13 2022-09-01 삼성전자주식회사 모터 구동 장치
WO2016172617A1 (en) * 2015-04-24 2016-10-27 Epc Power Corporation Power converter with controllable dc offset
US9742185B2 (en) 2015-04-28 2017-08-22 General Electric Company DC circuit breaker and method of use
US9887616B2 (en) * 2015-07-01 2018-02-06 Hella Corporate Center Usa, Inc. Electric power conversion apparatus with active filter
US10411619B2 (en) * 2015-08-28 2019-09-10 Regal Beloit America, Inc. Motor controller, drive circuit, and methods for combined electric motor control
CN106921299A (zh) * 2015-12-25 2017-07-04 通用电气公司 功率变换***
CN107689734B (zh) * 2016-08-05 2020-01-31 台达电子企业管理(上海)有限公司 大功率变换***
CN108063547B (zh) * 2016-11-08 2019-09-20 台达电子工业股份有限公司 预充电装置及变频器
US10686385B2 (en) * 2017-03-23 2020-06-16 HELLA GmbH & Co. KGaA Apparatus to realize fast battery charging and motor driving for electric vehicles using one AC/DC converter
CN109391166B (zh) * 2017-08-11 2020-07-28 华为数字技术(苏州)有限公司 一种变换电路、控制方法和供电设备
US11152780B2 (en) * 2017-08-31 2021-10-19 Eaton Intelligent Power Limited Adjustable speed drive with integrated solid-state circuit breaker and method of operation thereof
CN110350483B (zh) * 2018-04-04 2022-03-08 台达电子工业股份有限公司 具有接地故障检测功能的功率变流装置以及故障检测方法
US10940813B2 (en) * 2018-05-03 2021-03-09 Hamilton Sunstrand Corporation Universal platform architecture for hybrid more electric aircraft
US10770987B2 (en) * 2018-05-11 2020-09-08 Hamilton Sunstrand Corporation Motor drive architecture for variable frequency alternating current loads
CN108988447A (zh) 2018-07-02 2018-12-11 国电南瑞科技股份有限公司 一种用于超级电容储能式有轨电车的供电方法及充电装置
NL2022950B1 (en) * 2019-04-15 2020-10-22 Prodrive Tech Bv Electrical Converter
CN112930644A (zh) * 2019-06-28 2021-06-08 华为技术有限公司 具有用于大功率的二极管整流器和作为功率因数校正的有源桥的混合馈电设备
CN110492769A (zh) * 2019-08-14 2019-11-22 深圳威迈斯新能源股份有限公司 带功率因数校正功能的单级ac-dc变换器电路
EP3828557B1 (en) * 2019-11-28 2024-01-24 ABB Schweiz AG Determining thevenin equivalent model for a converter
CN113765427A (zh) * 2020-06-03 2021-12-07 台达电子企业管理(上海)有限公司 模块化多电平变换器***及其电压检测方法、开路故障诊断方法
US11476792B2 (en) * 2020-06-16 2022-10-18 Rockwell Automation Technologies, Inc. Method and apparatus for electrical component life estimation with corrosion compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203933369U (zh) * 2014-05-26 2014-11-05 西安理工大学 一种用于ac/ac开关变换器的共模电磁干扰滤波器
CN205212696U (zh) * 2015-12-25 2016-05-04 哈尔滨理工大学 Pwm变频电机驱动***电磁干扰输入/输出无源抑制装置
US20180041110A1 (en) * 2016-08-05 2018-02-08 Delta Electronics (Shanghai) Co.,Ltd. Power conversion system and method for suppressing the common-mode voltage thereof
CN106099948A (zh) * 2016-08-30 2016-11-09 国网河南省电力公司电力科学研究院 一种电力电子软连接开关拓扑及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANTOS,F.V. 等: "Design considerations for high-power converters interfacing 10 MW superconducting wind power generators", 《IET POWER ELECTRONICS》 *

Also Published As

Publication number Publication date
US11515806B2 (en) 2022-11-29
CN113726137B (zh) 2023-11-03
US20230068564A1 (en) 2023-03-02
EP3916980A1 (en) 2021-12-01
US20210376753A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US20230108992A1 (en) Transformerless multi-level medium-voltage uninterruptable power supply (ups) systems and methods
CN108574420B (zh) 电力电子变换单元及***
CN113452070B (zh) 一种电流源型多端口柔性并网接口装置及控制方法
CN107834602B (zh) 一种微源半桥变流器串联型微电网***
CN104638940A (zh) 基于级联模块化多电平的电力电子变压器
CN107888073B (zh) 一种全方位软开关的交直流混合能量路由器
Dharmasena et al. Bidirectional ac/dc converter topologies: A review
EP3916975A2 (en) Conversion device
CN103427658A (zh) 一种基于多绕组变压器的高压直流-直流变换装置
Tan et al. A bipolar-DC-bus EV fast charging station with intrinsic DC-bus voltages equalization and minimized voltage ripples
Kolli et al. Design considerations of three phase active front end converter for 13.8 kv asynchronous microgrid power conditioning system enabled by series connection of gen-3 10 kv sic mosfets
CN103036449A (zh) 四象限三电平功率单元及高压变频器
CN114024462A (zh) 三电平控制电路、功率变换装置及其控制方法
US20230068564A1 (en) Conversion system and conversion device
Viktor et al. Intelligent transformer: Possibilities and challenges
CN114977859B (zh) 一种三相n模块级联式单向能流多电平变频器及控制方法
CN216414195U (zh) 三电平控制电路及其功率变换装置
CN115036907A (zh) 一种电池储能中压直流并网***及方法
WO2022006737A1 (zh) 一种电源***
Hou et al. Topologies and operations of hybrid-type DC–DC converters interfacing DC-current bus and DC-voltage bus
Saravanan et al. Z Source Inverter Topologies-A Survey
CN217259658U (zh) 一种共直流母线的电动汽车充电站***
CN116780606B (zh) 交直流混合汇集直流串联送出主接线***及其启动方法
CN217741315U (zh) 一种电池储能中压直流并网***
CN114710015B (zh) 一种多输出模式逆变器及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant