CN113682305B - 一种车路协同自适应巡航控制方法及装置 - Google Patents

一种车路协同自适应巡航控制方法及装置 Download PDF

Info

Publication number
CN113682305B
CN113682305B CN202010422824.3A CN202010422824A CN113682305B CN 113682305 B CN113682305 B CN 113682305B CN 202010422824 A CN202010422824 A CN 202010422824A CN 113682305 B CN113682305 B CN 113682305B
Authority
CN
China
Prior art keywords
vehicle
driving
far
adaptive cruise
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010422824.3A
Other languages
English (en)
Other versions
CN113682305A (zh
Inventor
张进
冯其高
张莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Automobile Group Co Ltd
Original Assignee
Guangzhou Automobile Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Automobile Group Co Ltd filed Critical Guangzhou Automobile Group Co Ltd
Priority to CN202010422824.3A priority Critical patent/CN113682305B/zh
Publication of CN113682305A publication Critical patent/CN113682305A/zh
Application granted granted Critical
Publication of CN113682305B publication Critical patent/CN113682305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/26Incapacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供一种车路协同自适应巡航控制方法,用于在道路行驶过程中通过C‑V2X技术对远车实时监测的主车上,所述方法包括以下步骤:主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对主车与远车之间的碰撞风险进行检测;若检测到主车与远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***。实施本发明,基于C‑V2X技术对任何道路进行目标车辆实时监测来降低碰撞风险,还能提高驾驶安全性和乘坐舒适性。

Description

一种车路协同自适应巡航控制方法及装置
技术领域
本发明涉及汽车技术领域,尤其涉及一种车路协同自适应巡航控制方法及装置。
背景技术
随着车联网技术C-V2X(Cellular Vehicle to Everything,车用无线通信)的迅速发展,汽车基于C-V2X技术感知外界的能力,越来越强。相比于DSRC(Dedicated ShortRange Communication,专用短程通信)技术,C-V2X具有高可靠性、低延时、更好的远距离传输可达性特点,因此基于C-V2X的汽车主动安全越来越受到重视。比起摄像头、雷达等传统的车辆环境感知方案,C-V2X受环境变化影响小,在视线遮挡、雨天雾天等恶劣环境下仍能稳定工作。
目前,自适应巡航控制方面主要依靠雷达和摄像头进行目标车辆的识别,在天气不佳的情况下或者弯曲道路行驶时容易造成目标车辆的丢失,且所涉及的控制算法需要准确的道路曲率作为输入,导致适用场景具有极大的局限性,尤其是转弯、并道等场景。例如,在前车转弯时,易被***误判为目标消失而产生危险的加速;又如,在相邻车道车辆并入主车车道时,因车距突然降低而增加了碰撞风险,且急减速也会降低车辆稳定性和乘坐的舒适性。
因此,亟需一种自适应巡航控制方法,不仅能针对任何道路实时监测目标车辆来降低碰撞风险,还能提高驾驶安全性和乘坐舒适性。
发明内容
本发明实施例所要解决的技术问题在于,提供一种车路协同自适应巡航控制方法及装置,基于C-V2X技术对任何道路进行目标车辆实时监测来降低碰撞风险,还能提高驾驶安全性和乘坐舒适性。
为了解决上述技术问题,本发明实施例提供了一种车路协同自适应巡航控制方法,用于在道路行驶过程中通过C-V2X技术对远车实时监测的主车上,其特征在于,所述方法包括以下步骤:
所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***。
其中,所述方法进一步包括:
所述主车在开启所述主车自适应巡航***后,若确定所述远车为同车道前方远车,则结合所述同车道前方远车的V2V信息及所述主车的V2V信息,计算所述主车与所述同车道前方远车之间的跟车距离;
在所述主车与所述同车道前方远车之间的实际车距小于等于所述跟车距离时,将所述主车自适应巡航***的跟随目标设为所述同车道前方远车,并根据预设目标函数输出的期望目标,以控制主车跟随所述同车道前方远车行驶。
其中,所述方法进一步包括:
所述主车在跟随所述同车道前方远车行驶时,若接收到至少一个相邻车道前方远车提供的转向信号,则根据同车道前方远车、提供转向信号的各相邻车道前方远车以及主车的V2V信息,计算所述主车与所述同车道前方远车的跟车距离,以及计算所述主车与提供转向信号的各相邻车道前方远车之间的跟车距离,并进一步筛选出最小跟车距离及其对应的远车;
在判定最小跟车距离的远车为提供转向信号的相邻车道前方远车,且所述最小跟车距离的远车驶入所述主车的同车道时,将所述主车自适应巡航***的跟随目标设为所述最小跟车距离的远车,并根据所述预设目标函数输出新的期望目标,以控制跟随所述最小跟车距离的远车行驶。
其中,计算最小跟车距离的步骤具体为:
根据预设的最小停车距离、两车变车头时距以及所述主车的车速在两车距离方向上的矢量投影,对所述主车与任一车道前方远车之间的跟车距离进行计算。
其中,所述计算最小跟车距离的步骤包括:
根据公式DACC_safe=dmin+th*V′HV,计算所述主车与任一车道前方远车之间的跟车距离DACC_safe
其中,dmin为预设的最小停车距离;V′HV为主车的车速在两车距离方向上的投影;th为变车头时距,其通过饱和函数来表示,V′RV为远车的车速在两车距离方向上的投影;t0为两车基准车头时距;tmax为预设的车头时距最大值;tmin为预设的车头时距最小值;cv为预设的参数常量。
其中,根据预设目标函数输出的期望目标的步骤具体为:
基于车辆运动学模型构建以期望加速度最小为目标的目标函数;其中,
所述车辆运动学模型公式为:
y=Cx
m=[Δd Δv ax]',u=ades,w=arv
y=[Δd Δv]';
所述目标的目标函数为:
其中,Δd为两车实际车距与跟车距离的差值;Δv为两车的速度差;arv为前方车辆的加速度在两车距离方向上的投影;ades为主车在两车距离方向上的期望加速度。
其中,所述方法进一步包括:
若判定所述最小跟车距离的远车为同车道前方远车,则让所述车自适应巡航***维持主车跟随所述同车道前方远车行驶。
其中,所述对所述主车与所述远车之间的碰撞风险进行检测的步骤,具体包括:
所述主车根据所接收的V2I信息和V2V信息,并结合所述主车的V2V信息,通过矢量法迭代计算两车相对距离的矢量投影值及预警距离阈值的矢量投影值;
若某次迭代计算得到的两车相对距离的矢量投影值小于等于预警距离阈值的矢量投影值,则终止迭代计算,并认定所述主车与所述远车存在碰撞风险,且得到所述主车与所述远车存在碰撞风险的碰撞时间;
若每次迭代计算得到的两车相对距离的矢量投影值均大于预警距离阈值的矢量投影值,在迭代计算执行完毕后,认定所述主车与所述远车不存在碰撞风险。
其中,所述根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***的步骤,具体包括:
所述主车根据所述主车驾驶员的脸部、眼部特征图像来识别驾驶专注情况;其中,所述驾驶专注情况为驾驶状态或其与视线区域的组合;所述驾驶状态为正常驾驶、疲劳驾驶、分神驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种;所述视线区域位于中控区域、前挡风区域、外后视镜区域之中一个;
所述主车若识别出所述主车驾驶员的驾驶状态为正常驾驶时,则认定所述主车驾驶员为规范驾驶,并开启所述主车自适应巡航***;或
若识别出所述主车驾驶员的驾驶状态为分神驾驶,且所述视线区域位于中控区域或前挡风区域时,则认定所述主车驾驶员为规范驾驶,并开启所述主车自适应巡航***。
其中,所述方法进一步包括:
所述主车若识别出所述主车驾驶员的驾驶状态为疲劳驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种,则认定所述主车驾驶员为非规范驾驶,关断所述主车自适应巡航***,并对所述主车驾驶员进行安全提醒;或
若识别出所述主车驾驶员的驾驶状态为分神驾驶,且所述视线区域位于外后视镜区域,则认定所述主车驾驶员为非规范驾驶,关断所述主车自适应巡航***,并对所述主车驾驶员进行安全提醒。
其中,所述主车驾驶员的驾驶状态和视线区域通过下述方式获得:
通过主车驾驶员前方仪表上方的视觉传感器提取所述主车驾驶员的脸部以及眼部特征图像先,再通过卷积神经网络模型进行图像数据处理,获得主车驾驶员的驾驶状态和视线区域信息。
本发明实施例还提供了一种车路协同自适应巡航控制装置,用于在道路行驶过程中通过C-V2X技术对远车实时监测的主车上,包括碰撞风险检测单元和自适应巡航控制单元;其中,
所述碰撞风险检测单元,用于所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
所述自适应巡航控制单元,用于若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***。
实施本发明实施例,具有如下有益效果:
1、本发明基于C-V2X技术并结合路测单元RSU(Road Side Unit)提供的V2I信息,对与远车之间的碰撞风险进行实时监测,且在不存在碰撞风险情况下,实现对车辆的自适应巡航功能,包括自动跟随驾驶,从而不仅降低了碰撞风险,还提高了车辆行驶稳定性与舒适性;
2、本发明的自适应巡航功能启用是基于视觉传感器识别驾驶员行驶状态和视线区域,从而提高了驾驶的安全性;
3、本发明对车辆的识别受天气等因素影响较小,只依赖于车辆状态数据而不依赖于道路曲率信息,从而提高了行车安全性与舒适性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为本发明实施例提供的车路协同自适应巡航控制方法的流程图;
图2为本发明实施例提供的车路协同自适应巡航控制方法中对弯道行驶的主车与远车进行碰撞风险计算的一矢量分析图;
图3为本发明实施例提供的车路协同自适应巡航控制方法中对弯道行驶的主车与远车进行碰撞风险计算的另一矢量分析图;
图4为本发明实施例提供的车路协同自适应巡航控制方法中对弯道行驶的主车跟随远车进行跟车距离计算的矢量分析图;
图5为本发明实施例提供的车路协同自适应巡航控制方法中远车相对于主车的相对方位的矢量坐标图;
图6为本发明实施例提供的车路协同自适应巡航控制装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1所示,为本发明实施例中,提供的一种车路协同自适应巡航控制方法,用于在道路行驶(如直道、弯道等)过程中通过C-V2X技术对远车实时监测的主车上,所述方法包括以下步骤:
步骤S1、所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
具体过程为,首先,主车周期性(如120S)接收预设路侧单元(如移动通信基站等)发送的V2I信息以及远车发送的V2V信息,并结合主车自身的V2V信息,通过矢量法迭代计算两车相对距离的矢量投影值及预警距离阈值的矢量投影值;其中,V2I信息包括但不限于行驶道路周边路口信息、道路信息和红绿灯信息等,因此在V2I信息中可以提取主车及远车的车道信息;V2V信息包括但不限于位置坐标、航向角、横摆角、方向盘转角、车速、加速度;
其次,主车若判断出某次迭代计算得到的两车相对距离的矢量投影值小于等于预警距离阈值的矢量投影值,则终止迭代计算,并认定主车与远车存在碰撞风险,且得到与远车存在碰撞风险的碰撞时间;或若判断出每次迭代计算得到的两车相对距离的矢量投影值均大于预警距离阈值的矢量投影值,在迭代计算执行完毕后,则认定主车与远车不存在碰撞风险。
在一个实施例中,如图2和图3所示,以弯道行驶的主车和远车为例,通过矢量法对二者的碰撞风险进行计算,具体如下:
弯道行驶中的远车RV(Remote Vehicle)与主车HV(Host Vehicle)同车道并位于主车HV前方,且主车HV和远车RV的车速分别VHV、VRV,方向盘转角StHV、StRV,车头方向角为HHV,HRV(车头方向角以车头前进方向与大地坐标系Y轴的夹角,逆时针为正),αHV、αRV为主车HV与远车RV的转向角(转向角以顺时针方向为正,逆时针方向为负),将矢量车速在B1为起始点,αHV转动。此时,主车HV和远车RV之间的碰撞风险检测,其目的就是找到远车RV相对于主车HV在单位时间内距离主车HV的距离,即在图2和图3中找到两车相对距离的矢量投影值DCPAi;其中,i=1~n;n为迭代计算总次数。
若n=1,则在图2中,远车RV相对于主车HV行驶车速为两车相对距离矢量在/>的矢量投影为/>其中,投影/>的计算公式如下:
其中,θ1为矢量与/>的夹角,A1为投影点;
这里
因此
因此,为找到主车HV到远车RV的最近距离,那么此时就是一个典型的数学问题,即线段外一点主车HV到线段的最短距离。
由于无论主车HV在线段的哪一个位置,公式(4)都成立,因此
可设定系数
其中,B1点坐标表示为:
则P1坐标表示为:
表示的物理意义是:如果A1在向量上,那么该点即为在第一次循环n=1时,远车RV相对于主车HV最近距离点为CPA1为向量/>即为DCPA1;如果A1点在/>的延长线上,用/>表示DCPA1;如果A1在-/>的延长线上,那么用/>表示DCPA1
同时,得到前向碰撞的预警距离阈值dw,1=3Vrel+0.4905VHV;其中Vrel为主车HV与远车RV的相对车速。
若DCPA1≤dw,1,则认定主车HV与远车RV存在碰撞风险,即前向碰撞风险,并计算出碰撞时间Twarning;否则,若DCPA1>dw,1,则认定主车HV与远车RV不存在碰撞风险。
可以理解的是,根据公式(7)~(8),可以得到推导出Bn点基于GPS坐标系(全局坐标系)的坐标:
其中,
为远车RV初始状态的速度矢量;/>为远车RV初始状态的加速度矢量;αRV,0为远车RV初始状态的转向角,由于V2X应用层国标中规定了可以从整车总线上获得远车RV方向盘转角StRV,则远车RV车轮转向角/>其中,iRV为远车RV的转向传动比。
同时,得到Pn点基于GPS坐标系(全局坐标系)的坐标:
其中: 为主车HV初始状态的速度矢量;/>为主车HV初始状态的加速度矢量;αHV,0为主车HV初始状态的转向角,由于V2X应用层国标中规定了可以从整车总线上获得主车HV方向盘转角StHV,则主车HV车轮转向角/>其中,iHV为主车HV的转向传动比。
若n=3,则在图3中,远车RV相对于主车HV最近距离点为CPA3,其中表示的是与主车HV在n=3,也即单位时间间隔Δt=1s时,矢量/>与/>大小相等,方向相反。
图3中,远车RV相对于主车HV的合速度为在n=1时,为n=2时,为/>n=3时,为/>将/>分别投影到矢量/>上;由于与主车HV的车速矢量/>大小相等,方向相反
因此在每一个时间间隔Δt内(设置Δt=1s)时,每一步的预警距离阈值dw,1、dw,2、dw,3分别为:
则在n=n时,
其中为/>与/>的夹角;/>为/>与/>的夹角;
若DCPA3≤dw,3,则认定主车HV与远车RV存在碰撞风险,即前向碰撞风险,并计算出碰撞时间否则,若DCPA3>dw,3,则认定主车HV与远车RV不存在碰撞风险。
以此类推,若在矢量计算的迭代总次数n内,如果DCPAn≤dw,n,则停止迭代计算,此时可以得出主车HV在未来Twarning时间后,与远车RV存在碰撞风险,即有前向碰撞风险;反之,则不存在碰撞风险。
其中根据公式(5)(6)可知,第n次迭代计算时,
即若cosθn≤0,则主车HV与远车RV之间不存在碰撞风险,若cosθn>0,则主车HV与远车RV之间存在碰撞风险。
步骤S2、若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***。
具体过程为,在检测到主车与远车不存在碰撞风险后,主车根据主车驾驶员的脸部、眼部特征图像来识别主车驾驶员的驾驶专注情况;其中,驾驶专注情况为驾驶状态或其与视线区域的组合;驾驶状态为正常驾驶、疲劳驾驶、分神驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种;视线区域位于中控区域、前挡风区域、外后视镜区域之中一个。在一个实施例中,将主车驾驶员的脸部、眼部特征图像先通过主车驾驶员前方仪表上方的视觉传感器(如摄像头)提取送入ECU***中,再通过预先写入ECU***中的卷积神经网络模型进行图像数据处理,得到主车驾驶员的驾驶状态或者驾驶状态和视线区域作为识别结果输出。
主车若识别出主车驾驶员的驾驶状态为正常驾驶时,则认定主车驾驶员为规范驾驶,并开启主车自适应巡航***来提高车辆行驶的稳定性与舒适性;或若识别出主车驾驶员的驾驶状态为分神驾驶,且视线区域位于中控区域或前挡风区域时,则也认定主车驾驶员为规范驾驶,并开启主车自适应巡航***来提高车辆行驶的稳定性与舒适性。
当然,为了确保在自适应巡航过程中驾驶员的行驶安全,需要对主车驾驶员的非规范驾驶进行安全提醒。因此,所述方法进一步包括:主车若识别出主车驾驶员的驾驶状态为疲劳驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种,则认定主车驾驶员为非规范驾驶,关断主车自适应巡航***,并对主车驾驶员进行安全提醒,如通过语音或表盘仪器亮红来安全提醒;或若识别出主车驾驶员的驾驶状态虽然为分神驾驶,且视线区域位于外后视镜区域,则也认定主车驾驶员为非规范驾驶,关断主车自适应巡航***,并对主车驾驶员进行安全提醒,如通过语音或表盘仪器亮红来安全提醒。
在本发明实施例中,主车自适应巡航***更适用于跟车行驶模式来进一步提高车辆行驶的舒适性,即跟随的远车为主车的同车道前方车辆,尤其是在弯道行驶下。因此,主车自适应巡航***跟车行驶模式的具体实现步骤如下:
主车在开启主车自适应巡航***后,若确定远车为同车道前方远车,则结合同车道前方远车的V2V信息及主车的V2V信息,计算对主车与同车道前方远车之间的跟车距离;
在主车与同车道前方远车之间的实际车距小于等于跟车距离时,将主车自适应巡航***的跟随目标设为所述同车道前方远车,并根据预设目标函数输出的期望目标,以控制主车跟随同车道前方远车行驶。
应当说明的是,主车若判定主车与同车道前方远车之间的实际车距大于跟车距离,则让主车自适应巡航***维持原有行驶模式,即不开启跟随行驶模式。
在一个实施例中,如图4所示,以同车道弯道行驶的主车和远车为例,通过矢量法对二者的跟车距离进行计算,具体如下:
自适应巡航***安全跟车车距是最基本的要求,其值应该保证最小安全跟车车距,以免发生碰撞,保证乘坐人员的安全性。
此时,跟车距离计算公式为:
DACC_safe=dmin+th*V′HV (19);
其中,dmin为最小停车距离,一般为5~10m;V′HV如图5所示,为HV的车速VHV在两车距离方向上的投影th为变车头时距:
其中,V′RV为远车RV的车速在两车距离方向上的投影t0为基准车头时距,为了保证该车间时距的最大值和最小值还需要引入饱和函数。
若主车HV和远车RV之间的实际车距HVRV≤跟车距离DACC_safe,则将追踪目标设置为同车道前方远车RV,并用MPC算法根据车辆运动学模型(如公式(21)所示)构建以期望加速度最小为目标的目标函数(如公式(22)所示)来控制跟随目标,若不满足则维持车辆原有行驶模式。
其中,车辆运动学模型定义为:
y=Cx
m=[Δd Δv ax]',u=ades,w=arv
y=[Δd Δv]' (21);
目标的目标函数定义为:
其中,Δd为两车实际间距与跟踪间距的差值Δd=HVRV-DACC_safe;Δv为两车的速度差Δv=V′HV-V′RV;arv为前方车辆的加速度在两车距离方向上的投影;ades为主车在距离方向上的期望加速度。因此,图4中主车的实际车辆输入的加速度为
目标函数的优化目标为在预测域p内的值在满足输入输出约束的前提下得到最小,即期望加速度ades最小;p为时间间隔Δt的总次数;Qt和/>分别是输出跟随误差、控制输入的变化率和控制输入大小的权值正半定矩阵。
在本发明实施例中,若相邻车道前方车辆(如左前方远车和/或右前方远车)变道,主车自适应巡航***可以根据变道后驶入主车同车道的前方车辆来调节主车的跟随目标及跟随行驶模式。因此,所述方法进一步包括:
主车在跟随同车道前方远车行驶时,若接收到至少一个相邻车道前方远车提供的转向信号,则根据同车道前方远车、提供转向信号的各相邻车道前方远车以及主车的V2V信息,计算主车与同车道前方远车的跟车距离,以及计算主车与提供转向信号的各相邻车道前方远车之间的跟车距离进行计算,并进一步筛选出最小跟车距离及其对应的远车;应当说明的是,对相邻车道左前方远车和/或右前方远车之间的跟车距离计算可以根据公式(19)来实现,从而在所计算出的跟车距离(至少两个)中找到最小跟车距离及其对应的远车;
主车在判定最小跟车距离的远车为提供转向信号的相邻车道前方远车,且最小跟车距离的远车驶入主车的同车道时,将主车自适应巡航***的跟随目标设为最小跟车距离的远车,并根据预设目标函数输出新的期望目标,以控制跟随最小跟车距离的远车行驶。可以理解的是,此时主车与最小跟车距离的远车之间的实际车距应小于等于最小跟车距离。
应当说明的是,若在最小跟车距离的远车为提供转向信号的相邻车道前方远车,但主车与最小跟车距离的远车之间的实际车距却大于最小跟车距离时,主车自适应巡航***跟随目标会丢失,即主车自适应巡航***退出跟随同车道前方远车行驶模式。
可以理解的是,主车若判定最小跟车距离的远车还是同车道前方远车,则不需调整跟随目标及目标函数输出的期望目标,即保持原有的跟车行驶模式。
在本发明实施例中,为了区别远车与主车的相对方位,则在一个实施例中,如图5所示,通过公式(23)来判定二者的相对方位关系;
其中,XHV表示主车质心在全局坐标下的横坐标值;XRV表示远车质心在全局坐标下的横坐标值;YHV表示主车质心在全局坐标下的纵坐标值;YRV表示远车质心在全局坐标下的纵坐标值;xRV>HV表示远车相对于主车在全局坐标下的横坐标值;yRV>HV表示远车相对于主车在全局坐标下的纵坐标值;θ为主车从全球导航卫星***定位GNSS上获得的罗盘角,以逆时针为正方向。
中国车道宽度一般是2.75m~3.5m,取平均值,车道宽度设为3.125m。车辆的长度,以乘用车为例,大约在4m~5m,取平均4.5m;因此具体的远车RV相对于主车HV的方位为:
如图6所示,为本发明实施例中,提供的一种车路协同自适应巡航控制装置,用于在道路行驶过程中通过C-V2X技术对远车实时监测的主车上,包括碰撞风险检测单元110和自适应巡航控制单元120;其中,
所述碰撞风险检测单元110,用于所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
所述自适应巡航控制单元120,用于若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***。
其中,所述碰撞风险检测单元110包括:
碰撞参数矢量计算模块1101,用于所述主车根据所接收的V2I信息和V2V信息,并结合所述主车的V2V信息,通过矢量法迭代计算两车相对距离的矢量投影值及预警距离阈值的矢量投影值;
碰撞认定模块1102,用于所述主车若判断出某次迭代计算得到的两车相对距离的矢量投影值小于等于预警距离阈值的矢量投影值,则终止迭代计算,并认定所述主车与所述远车存在碰撞风险,且得到所述主车与所述远车存在碰撞风险的碰撞时间;
碰撞否定模块1103,用于所述主车若判断出每次迭代计算得到的两车相对距离的矢量投影值均大于预警距离阈值的矢量投影值,直至迭代计算执行完毕,则认定所述主车与所述远车不存在碰撞风险。
实施本发明实施例,具有如下有益效果:
1、本发明基于C-V2X技术并结合路测单元RSU(Road Side Unit)提供的V2I信息,对与远车之间的碰撞风险进行实时监测,且在不存在碰撞风险情况下,实现对车辆的自适应巡航功能,包括自动跟随驾驶,从而不仅降低了碰撞风险,还提高了车辆行驶稳定性与舒适性;
2、本发明的自适应巡航功能启用是基于视觉传感器识别驾驶员行驶状态和视线区域,从而提高了驾驶的安全性;
3、本发明对车辆的识别受天气等因素影响较小,只依赖于车辆状态数据而不依赖于道路曲率信息,从而提高了行车安全性与舒适性。
值得注意的是,上述装置实施例中,所包括的各个功能单元模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元模块的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (11)

1.一种车路协同自适应巡航控制方法,用于在道路行驶过程中通过C-V2X技术对远车实时监测的主车上,其特征在于,所述方法包括以下步骤:
所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***;
其中,所述方法进一步包括:
所述主车在开启所述主车自适应巡航***后,若确定所述远车为同车道前方远车,则结合所述同车道前方远车的V2V信息及所述主车的V2V信息,计算所述主车与所述同车道前方远车之间的跟车距离;
在所述主车与所述同车道前方远车之间的实际车距小于等于所述跟车距离时,将所述主车自适应巡航***的跟随目标设为所述同车道前方远车,并根据预设目标函数输出的期望目标,以控制主车跟随所述同车道前方远车行驶。
2.如权利要求1所述的车路协同自适应巡航控制方法,其特征在于,所述方法进一步包括:
所述主车在跟随所述同车道前方远车行驶时,若接收到至少一个相邻车道前方远车提供的转向信号,则根据同车道前方远车、提供转向信号的各相邻车道前方远车以及主车的V2V信息,计算所述主车与所述同车道前方远车的跟车距离,以及计算所述主车与提供转向信号的各相邻车道前方远车之间的跟车距离,并进一步筛选出最小跟车距离及其对应的远车;
在判定最小跟车距离的远车为提供转向信号的相邻车道前方远车,且所述最小跟车距离的远车驶入所述主车的同车道时,将所述主车自适应巡航***的跟随目标设为所述最小跟车距离的远车,并根据所述预设目标函数输出新的期望目标,以控制跟随所述最小跟车距离的远车行驶。
3.如权利要求2所述的车路协同自适应巡航控制方法,其特征在于,计算最小跟车距离的步骤具体为:
根据预设的最小停车距离、两车变车头时距以及所述主车的车速在两车距离方向上的矢量投影,对所述主车与任一车道前方远车之间的跟车距离进行计算。
4.如权利要求3所述的车路协同自适应巡航控制方法,其特征在于,所述计算最小跟车距离的步骤包括:
根据公式DACC_safe=dmin+th*V'HV,计算所述主车与任一车道前方远车之间的跟车距离DACC_safe
其中,dmin为预设的最小停车距离;V'HV为主车的车速在两车距离方向上的投影;th为变车头时距,其通过饱和函数来表示,V'RV为远车的车速在两车距离方向上的投影;t0为两车基准车头时距;tmax为预设的车头时距最大值;tmin为预设的车头时距最小值;cv为预设的参数常量。
5.如权利要求2所述的车路协同自适应巡航控制方法,其特征在于,根据预设目标函数输出的期望目标的步骤具体为:
基于车辆运动学模型构建以期望加速度最小为目标的目标函数;其中,
所述车辆运动学模型公式为:
x=Am+Bu+Gw
y=Cx
m=[Δd Δv ax]',u=ades,w=arv
y=[Δd Δv]';
所述目标的目标函数为:
其中,Δd为两车实际车距与跟车距离的差值;Δv为两车的速度差;arv为前方车辆的加速度在两车距离方向上的投影;ades为主车在两车距离方向上的期望加速度。
6.如权利要求2所述的车路协同自适应巡航控制方法,其特征在于,所述方法进一步包括:
若判定所述最小跟车距离的远车为同车道前方远车,则让所述车自适应巡航***维持主车跟随所述同车道前方远车行驶。
7.如权利要求1至6中任一项所述的车路协同自适应巡航控制方法,其特征在于,所述对所述主车与所述远车之间的碰撞风险进行检测的步骤,具体包括:
所述主车根据所接收的V2I信息和V2V信息,并结合所述主车的V2V信息,通过矢量法迭代计算两车相对距离的矢量投影值及预警距离阈值的矢量投影值;
若某次迭代计算得到的两车相对距离的矢量投影值小于等于预警距离阈值的矢量投影值,则终止迭代计算,并认定所述主车与所述远车存在碰撞风险,且得到所述主车与所述远车存在碰撞风险的碰撞时间;
若每次迭代计算得到的两车相对距离的矢量投影值均大于预警距离阈值的矢量投影值,在迭代计算执行完毕后,认定所述主车与所述远车不存在碰撞风险。
8.如权利要求1至6中任一项所述的车路协同自适应巡航控制方法,其特征在于,所述在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***的步骤,具体包括:
所述主车根据所述主车驾驶员的脸部、眼部特征图像来识别驾驶专注情况;其中,所述驾驶专注情况为驾驶状态或其与视线区域的组合;所述驾驶状态为正常驾驶、疲劳驾驶、分神驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种;所述视线区域位于中控区域、前挡风区域、外后视镜区域之中一个;
所述主车若识别出所述主车驾驶员的驾驶状态为正常驾驶时,则认定所述主车驾驶员为规范驾驶,并开启所述主车自适应巡航***;或
若识别出所述主车驾驶员的驾驶状态为分神驾驶,且所述视线区域位于中控区域或前挡风区域时,则认定所述主车驾驶员为规范驾驶,并开启所述主车自适应巡航***。
9.如权利要求8所述的车路协同自适应巡航控制方法,其特征在于,所述方法进一步包括:
所述主车若识别出所述主车驾驶员的驾驶状态为疲劳驾驶、接打电话、抽烟、情绪激动驾驶、醉酒驾驶之中一种,则认定所述主车驾驶员为非规范驾驶,关断所述主车自适应巡航***,并对所述主车驾驶员进行安全提醒;或
若识别出所述主车驾驶员的驾驶状态为分神驾驶,且所述视线区域位于外后视镜区域,则认定所述主车驾驶员为非规范驾驶,关断所述主车自适应巡航***,并对所述主车驾驶员进行安全提醒。
10.如权利要求9所述的车路协同自适应巡航控制方法,其特征在于,所述主车驾驶员的驾驶状态和视线区域通过下述方式获得:
通过主车驾驶员前方仪表上方的视觉传感器提取所述主车驾驶员的脸部以及眼部特征图像先,再通过卷积神经网络模型进行图像数据处理,获得主车驾驶员的驾驶状态和视线区域信息。
11.一种车路协同自适应巡航控制装置,用于在道路行驶过程中通过C-V2X技术对远车实时监测的主车上,其特征在于,包括碰撞风险检测单元和自适应巡航控制单元;其中,
所述碰撞风险检测单元,用于所述主车周期性接收行驶道路周边预设路侧单元发送的V2I信息以及所述远车发送的V2V信息,并根据所接收的V2I信息和V2V信息,对所述主车与所述远车之间的碰撞风险进行检测;
所述自适应巡航控制单元,用于若检测到所述主车与所述远车不存在碰撞风险时,且在根据主车驾驶员的驾驶专注情况判定主车驾驶员为规范驾驶后,开启主车自适应巡航***;
其中,还包括:自适应跟随行驶单元;
所述自适应跟随行驶单元,用于所述主车在开启所述主车自适应巡航***后,若确定所述远车为同车道前方远车,则结合所述同车道前方远车的V2V信息及所述主车的V2V信息,计算所述主车与所述同车道前方远车之间的跟车距离;以及
在所述主车与所述同车道前方远车之间的实际车距小于等于所述跟车距离时,将所述主车自适应巡航***的跟随目标设为所述同车道前方远车,并根据预设目标函数输出的期望目标,以控制主车跟随所述同车道前方远车行驶。
CN202010422824.3A 2020-05-19 2020-05-19 一种车路协同自适应巡航控制方法及装置 Active CN113682305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010422824.3A CN113682305B (zh) 2020-05-19 2020-05-19 一种车路协同自适应巡航控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010422824.3A CN113682305B (zh) 2020-05-19 2020-05-19 一种车路协同自适应巡航控制方法及装置

Publications (2)

Publication Number Publication Date
CN113682305A CN113682305A (zh) 2021-11-23
CN113682305B true CN113682305B (zh) 2024-06-11

Family

ID=78575735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010422824.3A Active CN113682305B (zh) 2020-05-19 2020-05-19 一种车路协同自适应巡航控制方法及装置

Country Status (1)

Country Link
CN (1) CN113682305B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115223396B (zh) * 2021-12-15 2023-10-20 广州汽车集团股份有限公司 后向碰撞预警方法、装置、控制器、车辆和存储介质
CN114241769A (zh) * 2021-12-20 2022-03-25 新唐信通(浙江)科技有限公司 一种基于c-v2x的自适应最优化车速引导控制方法与***
CN115214649B (zh) * 2022-03-01 2024-01-16 广东省智能网联汽车创新中心有限公司 一种用于驾驶控制的自适应预警方法及***
CN114399906B (zh) * 2022-03-25 2022-06-14 四川省公路规划勘察设计研究院有限公司 一种车路协同辅助驾驶***及方法
CN115063966B (zh) * 2022-05-31 2024-01-26 河南越秀尉许高速公路有限公司 针对acc跟车行驶的高速公路施工区预警***及其方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633359A (zh) * 2008-07-24 2010-01-27 通用汽车环球科技运作公司 具有驾驶风格识别的自适应车辆控制***
CN102592476A (zh) * 2010-12-28 2012-07-18 通用汽车环球科技运作有限责任公司 用于监控汽车启动过程的方法和监控装置
JP2013067302A (ja) * 2011-09-24 2013-04-18 Denso Corp 追従走行制御装置及び追従走行制御システム
CN104627181A (zh) * 2013-11-12 2015-05-20 现代摩比斯株式会社 车辆自动驾驶控制装置及方法
KR101664716B1 (ko) * 2015-06-29 2016-10-10 현대자동차주식회사 Cacc 시스템의 속도 제어 장치 및 그 방법
CN107539314A (zh) * 2017-08-30 2018-01-05 安徽江淮汽车集团股份有限公司 一种汽车自适应巡航控制方法及***
KR20180048097A (ko) * 2016-11-02 2018-05-10 현대자동차주식회사 운전자 상태 기반의 차량 제어 장치 및 그 방법
KR20180078973A (ko) * 2016-12-30 2018-07-10 기아자동차주식회사 목표차량의 운전패턴에 따른 협조 적응 순항 제어 시스템
CN108569296A (zh) * 2017-12-15 2018-09-25 蔚来汽车有限公司 自适应匹配辅助驾驶***的方法及其实现模块
CN109177975A (zh) * 2018-07-23 2019-01-11 威马智慧出行科技(上海)有限公司 集成式巡航***退出方法及装置
CN109466554A (zh) * 2018-11-22 2019-03-15 广州小鹏汽车科技有限公司 自适应巡航加塞预防控制方法、***、装置和存储介质
CN109484480A (zh) * 2018-12-19 2019-03-19 奇瑞汽车股份有限公司 汽车的控制方法、装置及存储介质
CN109656244A (zh) * 2017-10-12 2019-04-19 Lg电子株式会社 自主行驶车辆及其控制方法
CN109733398A (zh) * 2018-12-05 2019-05-10 南京航空航天大学 具有稳定性主动控制的自适应巡航***及控制方法
JP2019196138A (ja) * 2018-05-11 2019-11-14 日立オートモティブシステムズ株式会社 自動車の走行制御装置
EP3585078A1 (en) * 2017-03-23 2019-12-25 LG Electronics Inc. -1- V2x communication device and method for transmitting and receiving v2x message thereof
CN110641467A (zh) * 2018-06-25 2020-01-03 广州汽车集团股份有限公司 一种自适应巡航***车距控制方法及装置
CN110816529A (zh) * 2019-10-28 2020-02-21 西北工业大学 基于可变时距间距策略的车辆协同式自适应巡航控制方法
CN110956810A (zh) * 2019-10-28 2020-04-03 南京市德赛西威汽车电子有限公司 一种基于rsu和v2x的复杂道路前向预警方法
CN111114539A (zh) * 2018-10-29 2020-05-08 长城汽车股份有限公司 车辆及车辆的安全驾驶方法、装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101610544B1 (ko) * 2014-11-21 2016-04-07 현대자동차주식회사 차량의 자율 주행 시스템 및 방법
US20160231746A1 (en) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. System And Method To Operate An Automated Vehicle
JP6453695B2 (ja) * 2015-03-31 2019-01-16 株式会社デンソー 運転支援装置、及び運転支援方法
US9959763B2 (en) * 2016-01-08 2018-05-01 Ford Global Technologies, Llc System and method for coordinating V2X and standard vehicles
KR102039487B1 (ko) * 2016-11-11 2019-11-26 엘지전자 주식회사 차량 주행 제어 장치 및 방법
KR102286007B1 (ko) * 2016-12-01 2021-08-05 한화디펜스 주식회사 추종 주행 제어 방법 및 추종 주행 제어 장치
US10766489B2 (en) * 2017-09-05 2020-09-08 Arizona Board Of Regents On Behalf Of Arizona State University Model predictive adaptive cruise control for reducing rear-end collision risk with follower vehicles
KR102012271B1 (ko) * 2018-05-17 2019-08-20 주식회사 만도 차간 거리 제어 장치 및 이를 이용한 제어 방법
KR20190104474A (ko) * 2019-08-20 2019-09-10 엘지전자 주식회사 차량 주행 제어 장치 및 방법

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633359A (zh) * 2008-07-24 2010-01-27 通用汽车环球科技运作公司 具有驾驶风格识别的自适应车辆控制***
CN102592476A (zh) * 2010-12-28 2012-07-18 通用汽车环球科技运作有限责任公司 用于监控汽车启动过程的方法和监控装置
JP2013067302A (ja) * 2011-09-24 2013-04-18 Denso Corp 追従走行制御装置及び追従走行制御システム
CN104627181A (zh) * 2013-11-12 2015-05-20 现代摩比斯株式会社 车辆自动驾驶控制装置及方法
KR101664716B1 (ko) * 2015-06-29 2016-10-10 현대자동차주식회사 Cacc 시스템의 속도 제어 장치 및 그 방법
KR20180048097A (ko) * 2016-11-02 2018-05-10 현대자동차주식회사 운전자 상태 기반의 차량 제어 장치 및 그 방법
KR20180078973A (ko) * 2016-12-30 2018-07-10 기아자동차주식회사 목표차량의 운전패턴에 따른 협조 적응 순항 제어 시스템
CN108263382A (zh) * 2016-12-30 2018-07-10 现代自动车株式会社 基于目标车辆的驾驶样式的协同自适应巡航控制***
EP3585078A1 (en) * 2017-03-23 2019-12-25 LG Electronics Inc. -1- V2x communication device and method for transmitting and receiving v2x message thereof
CN107539314A (zh) * 2017-08-30 2018-01-05 安徽江淮汽车集团股份有限公司 一种汽车自适应巡航控制方法及***
CN109656244A (zh) * 2017-10-12 2019-04-19 Lg电子株式会社 自主行驶车辆及其控制方法
CN108569296A (zh) * 2017-12-15 2018-09-25 蔚来汽车有限公司 自适应匹配辅助驾驶***的方法及其实现模块
JP2019196138A (ja) * 2018-05-11 2019-11-14 日立オートモティブシステムズ株式会社 自動車の走行制御装置
CN110641467A (zh) * 2018-06-25 2020-01-03 广州汽车集团股份有限公司 一种自适应巡航***车距控制方法及装置
CN109177975A (zh) * 2018-07-23 2019-01-11 威马智慧出行科技(上海)有限公司 集成式巡航***退出方法及装置
CN111114539A (zh) * 2018-10-29 2020-05-08 长城汽车股份有限公司 车辆及车辆的安全驾驶方法、装置
CN109466554A (zh) * 2018-11-22 2019-03-15 广州小鹏汽车科技有限公司 自适应巡航加塞预防控制方法、***、装置和存储介质
CN109733398A (zh) * 2018-12-05 2019-05-10 南京航空航天大学 具有稳定性主动控制的自适应巡航***及控制方法
CN109484480A (zh) * 2018-12-19 2019-03-19 奇瑞汽车股份有限公司 汽车的控制方法、装置及存储介质
CN110816529A (zh) * 2019-10-28 2020-02-21 西北工业大学 基于可变时距间距策略的车辆协同式自适应巡航控制方法
CN110956810A (zh) * 2019-10-28 2020-04-03 南京市德赛西威汽车电子有限公司 一种基于rsu和v2x的复杂道路前向预警方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汽车自适应巡航***的纵向控制策略研究;宋梦石;《工程科技II辑》;全文 *

Also Published As

Publication number Publication date
CN113682305A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN113682305B (zh) 一种车路协同自适应巡航控制方法及装置
CN107054362B (zh) 车辆控制装置、车辆控制方法和存储介质
JP7416176B2 (ja) 表示装置
CN112208533B (zh) 车辆控制***、车辆控制方法及存储介质
US20130049988A1 (en) Device and method for traffic sign recognition
CN111391856A (zh) 汽车自适应巡航的前方弯道检测***及方法
CN109760678A (zh) 一种汽车自适应巡航***的限速方法
US11830364B2 (en) Driving assist method and driving assist device
CN111361564A (zh) 一种考虑效益最大化的车道变更***及综合决策方法
CN112406820B (zh) 多车道增强型自动紧急制动***控制方法
US10882519B2 (en) Apparatus and method for setting speed of vehicle
JP7137332B2 (ja) 車両の走行制御装置
CN113763702A (zh) 一种基于v2v的宜人化的前方碰撞预警***及预警方法
US20220375349A1 (en) Method and device for lane-changing prediction of target vehicle
CN113954827B (zh) 一种考虑定位误差和通信时延的交叉口车辆碰撞概率计算方法及***
JP7211127B2 (ja) 車両の旋回姿勢制御方法及び旋回姿勢制御装置
CN114435376A (zh) 一种控制车辆颠簸路面行驶速度的方法、电子设备及存储介质
CN115140086A (zh) 车辆控制装置、车辆控制方法及存储介质
US11892574B2 (en) Dynamic lidar to camera alignment
CN111746530B (zh) 车辆控制装置、车辆控制方法、及存储介质
US20220388533A1 (en) Display method and system
CN116513194A (zh) 移动体控制装置、移动体控制方法及存储介质
CN113920734B (zh) 一种基于logistics模型的变道预警方法
CN115892024A (zh) 汽车行驶场景识别控制***、方法及存储介质
CN112026774B (zh) 基于自车摄像头、雷达感知信息的周围车辆侧滑识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant