CN113642212A - 针对大型超高强钢壳体精细化热处理工艺设计方法及*** - Google Patents

针对大型超高强钢壳体精细化热处理工艺设计方法及*** Download PDF

Info

Publication number
CN113642212A
CN113642212A CN202110922924.7A CN202110922924A CN113642212A CN 113642212 A CN113642212 A CN 113642212A CN 202110922924 A CN202110922924 A CN 202110922924A CN 113642212 A CN113642212 A CN 113642212A
Authority
CN
China
Prior art keywords
heat treatment
parameters
steel shell
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110922924.7A
Other languages
English (en)
Other versions
CN113642212B (zh
Inventor
李敬民
周文凤
汪德武
滕宇
陈金明
贺员吉
黄姝珂
汤光平
成丽蓉
兰成均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
24th Branch Of Pla 96901
Institute of Mechanical Manufacturing Technology of CAEP
Original Assignee
24th Branch Of Pla 96901
Institute of Mechanical Manufacturing Technology of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 24th Branch Of Pla 96901, Institute of Mechanical Manufacturing Technology of CAEP filed Critical 24th Branch Of Pla 96901
Priority to CN202110922924.7A priority Critical patent/CN113642212B/zh
Publication of CN113642212A publication Critical patent/CN113642212A/zh
Application granted granted Critical
Publication of CN113642212B publication Critical patent/CN113642212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

本发明公开了针对大型超高强钢壳体精细化热处理工艺设计方法及***,该方法包括:S1:利用仿真软件对圆柱形旋转体的G50钢壳体进行有限元处理,得到G50钢壳体热处理有限元模型;并在有限元模型内设置其模型参数;S2:根据优选的参数区间设置G50钢壳体的热处理工艺参数及仿真参数,结合热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;S3:以零件整体变形量和微观组织分布为依据,对得到的多个不同工艺过程进行比较,得到最优的热处理工艺过程。本发明为壳体热处理过程参数精确化控制、变形和微观组织预测提供了技术支撑。

Description

针对大型超高强钢壳体精细化热处理工艺设计方法及***
技术领域
本发明涉及钢壳体热处理工艺技术领域,具体涉及针对大型超高强钢壳体精细化热处理工艺设计方法及***。
背景技术
28CrMnSiNi4MoNb钢是我国自行研发的新型低合金超高强度钢,既有普通低合金超高强度钢(30CrMnNi2A、D6AC等)价格低的特点,又有含钴钢如9Ni-5Co钢的高强高韧特征,属无钴高强高韧钢,是侵彻类壳体主要材料。
作为承受高载荷冲击的侵彻类壳体,其热处理后的强韧性匹配的稳定性以及壳体整体力学性能的均匀性是保证其成功的关键。然而热处理过程本身属于特殊过程,要保证壳体的综合力学性能的稳定性和一致性需要对热处理过程壳体热处理各个因素实现精确化控制。但目前一方面受材料成份波动等众多因素的影响,使得壳体热处理后力学性能存在较大的波动。同时针对热处理过程的保温时间等参数大都基于经验估算法;热处理后壳体力学性能评估主要采用随炉试样,缺少有效的方法建立热处理工艺和壳体使用力学性能的之间的联系。
发明内容
鉴于以上所述现有技术的缺点,本发明目的在于提供针对大型超高强钢壳体精细化热处理工艺设计方法及***,从而解决现有大型超高强度钢热处理后强韧性匹配不稳定,以及热处理过程参数以及热处理后性能评价基于经验估算法等问题。
本发明通过下述技术方案实现:
第一方面,本发明提供了一种针对大型超高强钢壳体精细化热处理工艺设计方法,该方法包括以下步骤:
S1:利用仿真软件,根据壳体实际热处理工况,建立G50钢壳体热处理有限元模型;并在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件等;
S2:设置G50钢壳体的热处理工艺参数及仿真参数(合理设置热处理工艺仿真过程步长等仿真软件参数,保证模拟计算过程收敛),结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;
S3:以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
进一步地,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件,其中:
所述零件的材料参数是在不同温度、不同物相下的各类参数,所述零件的材料参数包括热物理参数、机械参数;热物理参数包括比热、密度、热交换系数等,机械参数包括屈服强度、杨氏模量、应变强化值等;
所述相变模型包括珠光体—〉奥氏体,马氏体—〉奥氏体,贝氏体—〉奥氏体,奥氏体—〉贝氏体,奥氏体—〉珠光体,奥氏体—〉马氏体,奥氏体—〉铁素体等相变模型;
所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数。
进一步地,所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数;所述换热系数为一个重要的边界条件,其作为该模拟仿真的前提条件;其包括:
在G50钢壳体本体或者缩比试样的特征区域钻孔,布置若干热电偶,利用相应的数据采集装置采集加热和淬火过程的温度随着时间变化的数据;淬火冷却数据导入反求模块,计算换热系数;所述加热过程换热系数的计算公式为:H=Hk+Hs,对流换热系数,Hs为辐射换热系数;
对流换热系数计算过程如下:
Figure BDA0003208099380000021
式中,λ0为介质导热率;h为工件尺寸(m),以轴件为例,垂直时取轴长,水平时取直径;Nu为Nusselt数;
辐射换热系数Hs计算过程如下:
Figure BDA0003208099380000022
式中,ε由下面公式进行计算:
Figure BDA0003208099380000023
而ε0为炉膛耐火材料辐射率,一般取0.82;εw由下面公式确定
Figure BDA0003208099380000031
其中AW,A0相应为工件、炉膛表面面积。
进一步地,步骤S1中的利用仿真软件对G50钢壳体进行有限元建模,得到G50钢壳体热处理有限元模型;其中:
所述G50钢壳体热处理有限元模型是根据零件热处理前的状态而建立的能够反映出实际零件结构特征的有限元模型;为了便于计算,需要合理设置模型网格大小和数量。
进一步地,步骤S2中的所述工艺过程是分为两个阶段进行工艺处理过程,其中,粗加工前阶段进行正火+高温回火热处理,粗加工后阶段进行淬火+回火热处理。
G50钢的化学成份见表1所示:
表1.G50钢主要化学成分,wt%
C Si Mn S P Ni Cr Mo Nb
0.26~0.3 1.70~2.10 0.40~0.75 ≤0.005 ≤0.010 4.30~4.60 0.90~1.20 0.50~0.70 0.02~0.04
进一步地,考虑到人工选取工艺参数区间,耗时费力;本发明设计通过选择通过试样验证的工艺区间来实现;具体地:步骤S2中在不同工艺参数区间进行工艺过程仿真,得到不同工艺过程及其对应的零件整体变形量和微观组织分布;所述工艺过程仿真通过选择不同的正火和高温回火以及淬火和回火各步仿真值组合进行仿真,得到多个不同工艺过程;仿真值组合即为采用正交实验法对正火、高温回火、淬火和回火各工序热处理参数按照如下事先规则进行选择,得到多个不同工艺过程,其中:
正火:正火温度910℃~930℃,热透后保温1小时左右(一般为(1.2~2.5)*D分钟,其中D壳体的有效厚度),保温结束后空冷至200℃以下;
高温回火:高温回火温度为660℃~690℃,热透后保温不少于2小时(一般为(1.8~3)*D分钟,其中D壳体的有效厚度),保温结束后采用空冷或者随炉冷却方式。
淬火:淬火温度840℃~900℃,热透后保温1小时(一般为(1~2.5)*D分钟,其中D壳体的有效厚度),保温结束后采用油冷;一般油冷至100℃以下后出油空冷;
回火:回火温度200℃~300℃,热透后保温不少于2小时(一般为(1.8~3)*D分钟,其中D壳体的有效厚度),保温结束后可以采用空冷或者油冷的方式。
具体实施时,选择正火范围内的一个正火温度不变来调高温回火的温度范围,以淬火温度范围内的一个淬火温度不变来调回火的温度范围。
进一步地,步骤S3中以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程;其中,最优的热处理工艺过程如下:
正火工艺:正火温度920℃±10℃,保温880分钟,保温结束后空冷至200℃以下;
高温回火工艺:高温回火温度为680℃±10℃,保温960分钟,保温结束后采用空冷或者随炉冷却方式;
淬火工艺:淬火温度880℃±10℃,保温580分钟,保温结束后采用油冷;油冷至100℃以下后出油空冷;
回火工艺:回火温度280℃,保温700分钟,保温结束后空冷。
第二方面,本发明还提供了一种针对大型超高强钢壳体精细化热处理工艺设计***,该***包括:
构建有限元模型单元,用于利用仿真软件,根据壳体实际热处理工况,建立G50钢壳体热处理有限元模型;
模型参数设置单元,用于在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件;
热处理工艺参数设置单元,用于设置G50钢壳体的热处理工艺参数;
仿真软件参数设置单元,用于设置仿真参数;
仿真单元,用于结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;
最优结果单元,用于以零件整体变形量和微观组织分布为依据,对得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
进一步地,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件,其中:
所述零件的材料参数是在不同温度、不同物相下的各类参数,所述零件的材料参数包括热物理参数、机械参数;热物理参数包括比热、密度、热交换系数,机械参数包括屈服强度、杨氏模量、应变强化值;
所述相变模型包括珠光体—〉奥氏体,马氏体—〉奥氏体,贝氏体—〉奥氏体,奥氏体—〉贝氏体,奥氏体—〉珠光体,奥氏体—〉马氏体,奥氏体—〉铁素体相变模型;
所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数。
进一步地,所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数;其包括:
在G50钢壳体本体或者缩比试样的特征区域钻孔,布置若干热电偶,利用相应的数据采集装置采集加热和淬火过程的温度随着时间变化的数据;淬火冷却数据导入deform-inverse模块或者其它反求模块,计算换热系数;所述换热系数的计算公式为:H=Hk+Hs,对流换热系数,Hs为辐射换热系数。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明中合理选择S2中所列工艺参数,G50钢壳体热处理后机械性能稳定,强韧比较佳,可以通过调整回火温度参数等获得不同屈强比的壳体力学性能。
2、本发明中建立了针对大型壳体淬火、回火仿真方法,提升了仿真效果的真实性和仿真结果的准确性。
3、本发明考虑到人工选取工艺参数,验证耗时费力的问题,本发明借助数值模拟方法来减少试验次数;具体地:步骤S2中在不同工艺参数区间进行工艺过程仿真,得到不同工艺过程及其对应的零件整体变形量和微观组织分布;所述工艺过程仿真选择不同的正火和高温回火以及淬火和回火各步仿真值组合进行仿真,得到多个不同工艺过程;这样解决了人工选取工艺参数,耗时费力的问题。
4、本发明为壳体热处理过程参数精确化控制、变形和微观组织预测提供了技术支撑。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明一种针对大型超高强钢壳体精细化热处理工艺设计方法流程图。
图2为本发明加热过程换热系数示意图。
图3为本发明壳体换热面设置示意图。
图4为本发明换热系数计算结果示意图(双点差分法)。
图5为本发明换热系数计算结果示意图(优化后的换热系数)。
图6为本发明壳体热处理模型图。
图7为本发明G50钢的TTT和CCT曲线图。
图8为本发明各载荷下试样总径向应变量随温度变化的曲线(a)和相变塑性参数K的拟合结果(b)。
图9为不同工艺条件下G50力学性能图(用于工艺参数区间设定)。
具体实施方式
在下文中,可在本发明的各种实施例中使用的术语“包括”或“可包括”指示所发明的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的增加。此外,如在本发明的各种实施例中所使用,术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本发明的各种实施例中,表述“或”或“A或/和B中的至少一个”包括同时列出的文字的任何组合或所有组合。例如,表述“A或B”或“A或/和B中的至少一个”可包括A、可包括B或可包括A和B二者。
在本发明的各种实施例中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施例中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施例的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:如果描述将一个组成元件“连接”到另一组成元件,则可将第一组成元件直接连接到第二组成元件,并且可在第一组成元件和第二组成元件之间“连接”第三组成元件。相反地,当将一个组成元件“直接连接”到另一组成元件时,可理解为在第一组成元件和第二组成元件之间不存在第三组成元件。
在本发明的各种实施例中使用的术语仅用于描述特定实施例的目的并且并非意在限制本发明的各种实施例。如在此所使用,单数形式意在也包括复数形式,除非上下文清楚地另有指示。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施例中被清楚地限定。
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
如图1至图9所示,本发明一种针对大型超高强钢壳体精细化热处理工艺设计方法,如图1所示,该仿真方法包括以下步骤:
S1:利用仿真软件,根据壳体实际热处理工况,对圆柱形旋转体的G50钢壳体进行有限元处理,得到G50钢壳体热处理有限元模型;并在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件等;
S2:设置G50钢壳体的热处理工艺参数及仿真参数(合理设置热处理工艺仿真过程步长等仿真软件参数,保证模拟计算过程收敛),结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;
S3:以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
具体地,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件,其中:
所述零件的材料参数是在不同温度、不同物相下的各类参数,所述零件的材料参数包括热物理参数、机械参数;热物理参数包括比热、密度、热交换系数等,机械参数包括屈服强度、杨氏模量、应变强化值等;
所述相变模型包括珠光体—〉奥氏体,马氏体—〉奥氏体,贝氏体—〉奥氏体,奥氏体—〉贝氏体,奥氏体—〉珠光体,奥氏体—〉马氏体,奥氏体—〉铁素体等相变模型;
所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数。
具体地,所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数;所述换热系数为一个重要的边界条件,其作为该模拟仿真的前提条件;其包括:
在G50钢壳体本体或者缩比试样的特征区域钻孔,布置若干热电偶,利用相应的数据采集装置采集加热和淬火过程的温度随着时间变化的数据;淬火冷却数据导入deform-inverse模块或者其它反求模块,计算换热系数;所述换热系数的计算公式为:H=Hk+Hs,对流换热系数,Hs为辐射换热系数;
对流换热系数计算过程如下:
Figure BDA0003208099380000071
式中,λ0为介质导热率;h为工件尺寸(m),以轴件为例,垂直时取轴长,水平时取直径;Nu为Nusselt数;
辐射换热系数Hs计算过程如下:
Figure BDA0003208099380000081
式中,ε由下面公式进行计算:
Figure BDA0003208099380000082
而ε0为炉膛耐火材料辐射率,一般取0.82;εw由下面公式确定
Figure BDA0003208099380000083
其中AW,A0相应为工件、炉膛表面面积。
具体地,步骤S1中的利用仿真软件对圆柱形旋转体的G50钢壳体进行有限元处理,得到G50钢壳体热处理有限元模型;其中:
所述G50钢壳体热处理有限元模型是根据零件热处理前的状态而建立的能够反映出实际零件结构特征的有限元模型;为了便于计算,需要合理设置模型网格大小和数量。
具体地,步骤S2中的所述工艺过程是一个根据G50钢的化学成份,按照粗加工前阶段和粗加工后两个阶段进行工艺处理过程,其中,粗加工前阶段进行正火+高温回火热处理,粗加工后阶段进行淬火+回火热处理。
具体地,考虑到人工选取工艺参数,耗时费力;本发明设计通过仿真软件中的一个选择插件任意选择组合来实现;具体地:步骤S2中在不同工艺参数区间进行工艺过程仿真,得到不同工艺过程及其对应的零件整体变形量和微观组织分布;所述工艺过程仿真通过一个选择插件选择不同的正火、高温回火、淬火和回火各步仿真值组合进行仿真,得到多个不同工艺过程;仿真值组合即为采用正交实验法对正火、高温回火、淬火和回火各工序热处理参数按照如下规则进行选择,得到多个不同工艺过程,其中:
正火:正火温度910℃~930℃,热透后保温1小时左右(一般为(1.2~2.5)*D分钟,其中D壳体的有效厚度),保温结束后空冷至200℃以下;
高温回火:高温回火温度为660℃~690℃,热透后保温不少于2小时(一般为(1.8~3)*D分钟,其中D壳体的有效厚度),保温结束后采用空冷或者随炉冷却方式。
淬火:淬火温度840℃~900℃,热透后保温1小时(一般为(1~2.5)*D分钟,其中D壳体的有效厚度),保温结束后采用油冷;一般油冷至100℃以下后出油空冷;
回火:回火温度200℃~300℃,热透后保温不少于2小时(一般为(1.8~3)*D分钟,其中D壳体的有效厚度),保温结束后可以采用空冷或者油冷的方式。
注意:具体实施时,选择正火范围内的一个正火温度不变来调高温回火的温度范围,以淬火温度范围内的一个淬火温度不变来调回火的温度范围。
具体地,步骤S3中以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程;其中,最优的热处理工艺过程如下:
正火工艺:正火温度920℃±10℃,保温880分钟,保温结束后空冷至200℃以下;
高温回火工艺:高温回火温度为680℃±10℃,保温960分钟,保温结束后采用空冷或者随炉冷却方式;
淬火工艺:淬火温度880℃±10℃,保温580分钟,保温结束后采用油冷;油冷至100℃以下后出油空冷;
回火工艺:回火温度280℃,保温700分钟,保温结束后空冷。
本发明中合理选择S2中所列工艺参数,G50钢壳体热处理后机械性能稳定,强韧比较佳,可以通过调整回火温度参数等获得不同屈强比的壳体力学性能;本发明中建立了针对大型壳体淬火、回火仿真方法,提升了仿真效果的真实性和仿真结果的准确性;本发明为壳体热处理过程参数精确化控制、变形和微观组织预测提供了技术支撑。
实施例2
如图1至图9所示,本实施例与实施例1的区别在于,本发明所建立材料相变模型具有通用性,后续使用相同材料的壳体均可以使用。本发明所获得的加热和冷却过程换热系数,应采用与所处理壳体具有类似结构的缩比试验件。
具体实施如下:
G50钢壳体长约2600mm,直径为450mm,有效厚度为300mm。采用棒料粗加工后进行热处理。热处理淬火介质为N32淬火油。下面按照实施例1提供的步骤详述实现过程。
1、实测壳体或者缩比试样的加热和淬火过程换热系数
1)加热过程
加热过程的换热系数采用实施1中的计算公式进行计算,计算结果见图2。
2)淬火过程
G50钢壳体换热面设置示意图如图3所示,
图3为壳体换热面设置示意图,由于壳体采用较为复杂的防护,为了降低建立模型的复杂程度,如图3所示的办法进行简化,即采用分段设定换热系数的方法进行简化。换热系数采用缩比试样采用近表面双点差分法计算并经优化后获得,见图4、图5所示。其中换热面6经计算可做绝热面处理。
2、建立G50钢壳体热处理有限元模型
图6为壳体热处理模型图,由于壳体属于圆柱形旋转体,为了减少计算工作量,建模采用其旋转截面进行建模,采用2D有限元模型。
3、在G50钢壳体热处理有限元模型内设置零件的材料参数、相变模型、边界条件等参数
用热膨胀方法研究了无外加应力作用下G50钢的固态相变,测量了G50钢的CCT曲线与TTT曲线。结果如图7所示。用K-M公式描述马氏体相变动力学,由小试样的热膨胀曲线拟合出的马氏体相变动力学方程:ξ(T)=1-exp[-0.03342×(290-T)],马氏体相变开始点为290℃。等温贝氏体相变的相变动力学用JMAK公式来表示:ξ=1-exp[-b(t-ts)n]。由等温贝氏体相变的热膨胀曲线,得到贝氏体相变的孕育时间,拟合出相变动力学公式中的参数b和n,如表2所示。
表2G50钢等温贝氏体相变动力学的参数
温度/℃ 310 330 350
B 6.8316E-11 1.0010E-9 1.0411E-8
n 3.003 2.683 2.178
孕育期/(t<sub>s</sub>/S) 272.5 271.9 344.4
相变塑性的一般表达式为:εtp=Kσf(ξ)当ξ=1时,f(ξ)=1,εtp=Kσ,测量不同应力水平下的
Figure BDA0003208099380000101
可以得到εtp max与σ的关系,从而拟合出相变塑性参数K:
Figure BDA0003208099380000102
图8为各载荷下试样总径向应变量随温度变化的曲线(a)和相变塑性参数K的拟合结果(b)。
不同应力作用下测量到的K值如图8(b)所示,在所施加的应力范围内,相变塑性参数K可以取常数,K=4.7212×10-5MPa-1
4、设定热处理工艺区间
从前期研究过程来看正火对后续的综合机械性能影响有限,壳体的机械性能主要取决于淬火、回火过程。图7为不同淬火工艺条件下的力学性能。根据图9以及实施例1中相关方法设定壳体热处理工艺为:
正火工艺:正火温度920℃±10℃,保温880分钟,保温结束后空冷至200℃以下。
高温回火工艺:高温回火温度为680℃±10℃,保温960分钟,保温结束后采用空冷或者随炉冷却方式。
淬火工艺:淬火温度860℃~900℃,保温300~750分钟,保温结束后采用油冷。一般油冷至100℃以下后出油空冷。
回火工艺:回火温度200℃~300℃,保温540~900分钟,保温结束后可以采用空冷或者油冷的方式。
5、进行热处理仿真和调整优化
针对设定的工艺区间,分别开展相应的热处理过程数值模拟技术。以变形量和获得的微观组织为依据,最终确定一个优化后的热处理工艺。
最终优化的热处理工艺:
正火工艺:正火温度920℃±10℃,保温880分钟,保温结束后空冷至200℃以下。
高温回火工艺:高温回火温度为680℃±10℃,保温960分钟,保温结束后采用空冷或者随炉冷却方式。
淬火工艺:淬火温度880℃±10℃℃,保温580分钟,保温结束后采用油冷。油冷至100℃以下后出油空冷。
回火工艺:回火温度280℃,保温700分钟,保温结束后空冷。
壳体变形模拟结果与实测结果对比,以及壳体力学性能分别见表3和表4。
表3最优工艺模拟结果与实测结果
Figure BDA0003208099380000111
表4壳体力学性能表
R<sub>p0.2</sub>(MPa) R<sub>m</sub>(MPa) R<sub>p0.2</sub>/R<sub>m</sub> α<sub>ku2</sub>(J/cm<sup>2</sup>) A(%) Z(%)
要求 ≥1330 ≥1660 ≤0.86 65 10 45
实测 1400.6 1763.9 0.79 84.8 11.4 49.0
本发明针对应用在侵彻类壳体的G50材料,提出了获得较佳强韧性组合,且机械性能稳定性较好;同时应用所列工艺区间组合,可以获得不同屈强比力学性能组合。
本发明获得比热熔、TTT曲线、CCT曲线等关键热物性参数变化规律,以及G50钢相变塑性机制,采用分段设定换热系数方法建立了G50钢壳体淬火过程中的温度-组织-应力三场耦合模型,提出了一种可以实现热处理工艺参数精确化控制的方法。
实施例3
如图1至图9所示,本实施例与实施例1的区别在于,本实施例提供了一种针对大型超高强钢壳体精细化热处理工艺设计***,该***包括:
构建有限元模型单元,用于利用仿真软件,根据壳体实际热处理工况,建立G50钢壳体热处理有限元模型;
模型参数设置单元,用于在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件;
热处理工艺参数设置单元,用于设置G50钢壳体的热处理工艺参数;
仿真软件参数设置单元,用于设置仿真参数;
仿真单元,用于结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;
最优结果单元,用于以零件整体变形量和微观组织分布为依据,对得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
***中每个单元的执行过程按照实施例1中所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法执行即可,在本实施例中不在一一赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,该方法包括以下步骤:
S1:利用仿真软件,根据壳体实际热处理工况,建立G50钢壳体热处理有限元模型;并在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件;
S2:设置G50钢壳体的热处理工艺参数及仿真参数,结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件变形量和微观组织分布;
S3:以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
2.根据权利要求1所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件,其中:
所述零件的材料参数是在不同温度、不同物相下的各类参数,所述零件的材料参数包括热物理参数、机械参数;热物理参数包括比热、密度、热交换系数,机械参数包括屈服强度、杨氏模量、应变强化值;
所述相变模型包括珠光体—〉奥氏体,马氏体—〉奥氏体,贝氏体—〉奥氏体,奥氏体—〉贝氏体,奥氏体—〉珠光体,奥氏体—〉马氏体,奥氏体—〉铁素体相变模型;
所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数。
3.根据权利要求2所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数;其包括:
在G50钢壳体本体或者缩比试样的特征区域钻孔,布置若干热电偶,利用相应的数据采集装置采集加热和淬火过程的温度随着时间变化的数据;淬火冷却数据导入反求模块,计算换热系数;所述加热换热系数的计算公式为:H=Hk+Hs,对流换热系数,Hs为辐射换热系数;
对流换热系数计算过程如下:
Figure FDA0003208099370000011
式中,λ0为介质导热率;h为工件尺寸;Nu为Nusselt数;
辐射换热系数Hs计算过程如下:
Figure FDA0003208099370000021
式中,ε由下面公式进行计算:
Figure FDA0003208099370000022
而ε0为炉膛耐火材料辐射率;εw由下面公式确定
Figure FDA0003208099370000023
其中AW,A0相应为工件、炉膛表面面积。
4.根据权利要求1所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,步骤S1中的利用仿真软件对圆柱形旋转体的G50钢壳体进行有限元处理,得到G50钢壳体热处理有限元模型;其中:
所述G50钢壳体热处理有限元模型是根据零件热处理前的状态而建立的能够反映出实际零件结构特征的有限元模型;且设置模型网格大小和数量。
5.根据权利要求1所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,步骤S2中的所述工艺过程是分为两个阶段进行工艺处理过程,其中,第一阶段进行正火+高温回火热处理,第二阶段进行淬火+回火热处理。
6.根据权利要求5所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,步骤S2中在给定的工艺参数区间进行工艺过程仿真,得到不同工艺过程及其对应的零件整体变形量和微观组织分布;所述工艺过程仿真通过选择不同的正火、高温回火以及淬火和回火各步仿真值组合进行仿真,得到多个不同工艺过程;其中给定的工艺参数为采用试样优选的工艺区间:
正火:正火温度910℃~930℃,热透后保温1.2~2.5小时,即(1.2~2.5)*D分钟,其中D壳体的有效厚度,保温结束后空冷至200℃以下;
高温回火:高温回火温度为660℃~690℃,热透后保温不少于2小时,即(1.8~3)*D分钟,其中D壳体的有效厚度,保温结束后采用空冷或者随炉冷却方式;
淬火:淬火温度840℃~900℃,热透后保温1~2.5小时,即(1~2.5)*D分钟,其中D壳体的有效厚度,保温结束后采用油冷;油冷至100℃以下后出油空冷;
回火:回火温度200℃~300℃,热透后保温不少于2小时,即(1.8~3)*D分钟,其中D壳体的有效厚度,保温结束后采用空冷或者油冷的方式。
7.根据权利要求6所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法,其特征在于,步骤S3中以零件整体变形量和微观组织分布为依据,对步骤S2得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程;其中,最优的热处理工艺过程如下:
正火工艺:正火温度920℃±10℃,保温880分钟,保温结束后空冷至200℃以下;
高温回火工艺:高温回火温度为680℃±10℃,保温960分钟,保温结束后采用空冷或者随炉冷却方式;
淬火工艺:淬火温度880℃±10℃,保温580分钟,保温结束后采用油冷;油冷至100℃以下后出油空冷;
回火工艺:回火温度280℃,保温700分钟,保温结束后空冷。
8.如权利要求1至7中任一所述的一种针对大型超高强钢壳体精细化热处理工艺设计方法的***,其特征在于,该***包括:
构建有限元模型单元,用于利用仿真软件,根据壳体实际热处理工况,建立G50钢壳体热处理有限元模型;
模型参数设置单元,用于在所述G50钢壳体热处理有限元模型内设置其模型参数,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件;
热处理工艺参数设置单元,用于设置G50钢壳体的热处理工艺参数;
仿真软件参数设置单元,用于设置仿真参数;
仿真单元,用于结合所述热处理工艺参数、仿真参数及模型参数,在不同工艺参数区间进行工艺过程仿真,得到多个不同工艺过程及其对应的零件整体变形量和微观组织分布;
最优结果单元,用于以零件整体变形量和微观组织分布为依据,对得到的多个不同工艺过程进行比较,选择零件整体变形量最小,微观组织分布最优的工艺过程,得到最优的热处理工艺过程。
9.根据权利要求8所述的***,其特征在于,G50钢壳体热处理有限元模型的模型参数包括零件的材料参数、相变模型、边界条件,其中:
所述零件的材料参数是在不同温度、不同物相下的各类参数,所述零件的材料参数包括热物理参数、机械参数;热物理参数包括比热、密度、热交换系数,机械参数包括屈服强度、杨氏模量、应变强化值;
所述相变模型包括珠光体—〉奥氏体,马氏体—〉奥氏体,贝氏体—〉奥氏体,奥氏体—〉贝氏体,奥氏体—〉珠光体,奥氏体—〉马氏体,奥氏体—〉铁素体相变模型;
所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数。
10.根据权利要求9所述的***,其特征在于,所述边界条件包括换热系数,所述换热系数为通过实测壳体或者缩比试样的加热和淬火过程的换热系数;其包括:
在G50钢壳体本体或者缩比试样的特征区域钻孔,布置若干热电偶,利用相应的数据采集装置采集加热和淬火过程的温度随着时间变化的数据;淬火冷却数据导入deform-inverse模块或者其它反求模块,计算换热系数;所述换热系数的计算公式为:H=Hk+Hs,对流换热系数,Hs为辐射换热系数。
CN202110922924.7A 2021-08-12 2021-08-12 针对大型超高强钢壳体精细化热处理工艺设计方法及*** Active CN113642212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110922924.7A CN113642212B (zh) 2021-08-12 2021-08-12 针对大型超高强钢壳体精细化热处理工艺设计方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110922924.7A CN113642212B (zh) 2021-08-12 2021-08-12 针对大型超高强钢壳体精细化热处理工艺设计方法及***

Publications (2)

Publication Number Publication Date
CN113642212A true CN113642212A (zh) 2021-11-12
CN113642212B CN113642212B (zh) 2023-08-04

Family

ID=78421030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110922924.7A Active CN113642212B (zh) 2021-08-12 2021-08-12 针对大型超高强钢壳体精细化热处理工艺设计方法及***

Country Status (1)

Country Link
CN (1) CN113642212B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114861509B (zh) * 2022-07-07 2022-10-18 苏州翔楼新材料股份有限公司 一种特钢热处理工艺数据处理方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099579A (ja) * 2000-09-22 2002-04-05 Bridgestone Corp シミュレーション方法及び設計方法
CN106529005A (zh) * 2016-10-28 2017-03-22 南昌航空大学 一种基于有限元仿真的超高强度钢螺纹类工件局部回火感应线圈的设计方法
CN108563835A (zh) * 2018-03-21 2018-09-21 北京科技大学 一种材料成形虚拟仿真平台构建方法
CN110032767A (zh) * 2019-03-15 2019-07-19 四川九洲电器集团有限责任公司 一种热处理时效温度确定方法及装置
CN110863169A (zh) * 2018-08-28 2020-03-06 河南科技大学 一种渗碳钢轴承套圈热处理优化方法
CN111753453A (zh) * 2020-06-29 2020-10-09 湖南大学 一种高强度钢模锻件成形工艺的高精度模拟方法
CN112380750A (zh) * 2020-11-18 2021-02-19 内蒙古第一机械集团股份有限公司 一种热处理与机加工连续的应力耦合仿真方法
CN112862952A (zh) * 2021-01-29 2021-05-28 中国工程物理研究院机械制造工艺研究所 一种合金型金属材料的三维重建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099579A (ja) * 2000-09-22 2002-04-05 Bridgestone Corp シミュレーション方法及び設計方法
CN106529005A (zh) * 2016-10-28 2017-03-22 南昌航空大学 一种基于有限元仿真的超高强度钢螺纹类工件局部回火感应线圈的设计方法
CN108563835A (zh) * 2018-03-21 2018-09-21 北京科技大学 一种材料成形虚拟仿真平台构建方法
CN110863169A (zh) * 2018-08-28 2020-03-06 河南科技大学 一种渗碳钢轴承套圈热处理优化方法
CN110032767A (zh) * 2019-03-15 2019-07-19 四川九洲电器集团有限责任公司 一种热处理时效温度确定方法及装置
CN111753453A (zh) * 2020-06-29 2020-10-09 湖南大学 一种高强度钢模锻件成形工艺的高精度模拟方法
CN112380750A (zh) * 2020-11-18 2021-02-19 内蒙古第一机械集团股份有限公司 一种热处理与机加工连续的应力耦合仿真方法
CN112862952A (zh) * 2021-01-29 2021-05-28 中国工程物理研究院机械制造工艺研究所 一种合金型金属材料的三维重建方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NATRAJ MISHRA等: "Modeling and simulation of an expert heat treatment system for plain carbon steels", pages 1 - 6 *
张永皞等: "热处理对G50超高强度钢力学性能的影响", no. 01, pages 54 - 56 *
王瑞: "M50钢热处理过程残余应力演化与控制", no. 01, pages 022 - 550 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114861509B (zh) * 2022-07-07 2022-10-18 苏州翔楼新材料股份有限公司 一种特钢热处理工艺数据处理方法及***

Also Published As

Publication number Publication date
CN113642212B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN100582253C (zh) 可获得可控和均匀硬度的铸铁类模具材料热处理方法
Powar et al. Modeling of microstructure and mechanical properties of heat treated components by using Artificial Neural Network
CN112149333B (zh) 轴承滚道激光-感应复合淬火工艺参数优化方法
Krot et al. Simulation of backup rolls quenching with experimental study of deep cryogenic treatment
Pola et al. Simulation and validation of spray quenching applied to heavy forgings
CN101220403B (zh) 一种球墨铸铁贝氏体等温处理方法
CN113642212B (zh) 针对大型超高强钢壳体精细化热处理工艺设计方法及***
CN105969945A (zh) 一种泵用20Cr13中段的调质工艺
CN100469903C (zh) 6CrNiSiMnMoV钢硬度梯度热处理回火工艺方法
CN104745787B (zh) 一种能直接冷轧的工具钢的生产方法
CN114134292A (zh) 一种控制和防止厚大断面718h预硬性塑料模具钢淬火开裂的热处理工艺
CN106248715A (zh) 热模拟试验确定淬火冷却速度的试验方法
WO2009064234A1 (en) A process for forming steel
CN111445960A (zh) 14Cr17Ni2钢的锻造工艺参数的优化方法
CN109500099A (zh) 一种对低碳钢dsit轧制工艺进行优化的实验方法
CN107130088B (zh) 一种波动式回火工艺方法
CN105755266A (zh) 一种齿轮淬火工艺
CN105256242B (zh) 一种海洋石油开采设备用锻件毛坯的制造方法
CN105838869A (zh) 一种钢板淬火炉加热工艺在线调整方法
Zuo et al. Timed quenching process for large-scale AISI 4140 steel shaft
Li et al. Gas quenching process optimization to minimize distortion of a thin-wall ring gear by simulation
CN102649993B (zh) 一种细化大型低合金铸件晶粒的方法
CN105112625A (zh) 一种压水堆核电站屏蔽泵叶轮锻件的制造方法
Anelli et al. Microstructural Prediction of Heat Treated Steel Forgings for Severe Applications
US11306371B1 (en) Gas quenching system and method for minimizing distortion of heat treated parts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant