CN113633293A - 混沌检测t波电交替的心源性猝死预警方法 - Google Patents

混沌检测t波电交替的心源性猝死预警方法 Download PDF

Info

Publication number
CN113633293A
CN113633293A CN202110861353.0A CN202110861353A CN113633293A CN 113633293 A CN113633293 A CN 113633293A CN 202110861353 A CN202110861353 A CN 202110861353A CN 113633293 A CN113633293 A CN 113633293A
Authority
CN
China
Prior art keywords
error
wave
sudden cardiac
cardiac death
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110861353.0A
Other languages
English (en)
Other versions
CN113633293B (zh
Inventor
陈丹凤
黎俊生
蔡瑜萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN202110861353.0A priority Critical patent/CN113633293B/zh
Publication of CN113633293A publication Critical patent/CN113633293A/zh
Application granted granted Critical
Publication of CN113633293B publication Critical patent/CN113633293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/355Detecting T-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Power Engineering (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种混沌检测T波电交替的心源性猝死预警方法,包括以下步骤:获取心电数据;对心电数据进行去干扰噪声;对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。本发明能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。

Description

混沌检测T波电交替的心源性猝死预警方法
技术领域
本发明涉及生物医学技术领域,特别涉及一种混沌检测T波电交替的心源性猝死预警方法。
背景技术
心源性猝死(SuddenCardiacDeath,SCD)定义为在没有任何可能致命的先决条件下,出现症状后最多一小时内失去知觉意识,主要临床表现为意识骤然丧失,急速的、致命性的、非外伤性的生理性死亡,且院外救治率极低。近年来知名人士因心源性猝死而抢救无效不幸死亡的案例时有发生,且当前心源性猝死已不再是老年人的专属,逐渐显露出低龄化的迹象,很多90后的年轻人也难免于此,这显然是给人类敲响了警钟。心源性猝死发病急骤,一旦发病,患者往往得不到及时的抢救而丧失生命。此时,若能提前捕捉到心脏猝死的征兆,便能为患者后续的治疗争取充裕的时间,尽可能避免因突发猝死而抢救不及时的状况出现,有效地提高发病者的存活率,因此,对心源性猝死风险的早发现成为了刻不容缓的需求。
心源性猝死发病急骤,一旦发病,患者往往得不到及时的抢救而丧失生命。此时,若能提前捕捉到心脏猝死的征兆,便能为患者后续的治疗争取充裕的时间,尽可能避免因突发猝死而抢救不及时的状况出现,有效地提高发病者的存活率。根据相关文献资料可知,T波电交替(TWaveAlternans,TWA)是一种病理性心电活动,TWA作为预测心源性猝死的一种工具,其研究价值较高和应用前景较广。
发明内容
本发明旨在至少解决现有技术中存在的技术问题。为此,本发明提出一种混沌检测T波电交替的心源性猝死预警方法,能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。
本发明还提出一种具有上述混沌检测T波电交替的心源性猝死预警方法的混沌检测T波电交替的心源性猝死预警***。
本发明还提出一种计算机可读存储介质。
第一方面,本实施例提供了一种混沌检测T波电交替的心源性猝死预警方法,包括以下步骤:
获取心电数据;
对所述心电数据进行去干扰噪声;
对所述心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;
计算得到第一误差和第二误差,所述第一误差为所述关联维数与所述关联维数的平均值之间的差值的绝对值,所述第二误差为所述最大Lyapunov指数与所述最大Lyapunov指数的平均值之间的差值的绝对值;
判断所述第一误差是否小于第一阈值,判断所述第二误差是否小于第二阈值;
当所述第一误差小于第一阈值,或所述第二误差小于第二阈值,发出心源性猝死预警。
根据本发明实施例的混沌检测T波电交替的心源性猝死预警方法,至少具有如下有益效果:
首先获取心电数据,再对心电数据进行预处理以去除干扰噪声,主要包括肌电干扰、工频干扰和基线漂移,肌电信号是一种几乎无法避免的干扰信号,是由人体活动、其他部位肌肉的紧张和颤动所导致,主要为采集心电数据时电极片所在区域的肌肉抽搐引起的干扰,无规律的,是一种高斯白噪声,属于高频干扰,频率一般分布在30Hz~2000Hz之间体现在心电波形上的是一种变化速率快,微小无规则可寻的纹波。工频干扰是由心电采集设备连接的电源及外界电磁场引起的,属于交流信号,主要体现在心电图上有明显的正弦波叠加,具象一点就是心电波形上会有很多细小的毛刺。基线漂移一般是由于人体呼吸、心电图机电极片微小移位、皮肤表面阻抗等因素导致的。基线漂移会使得信号数据段连同基准线上下的浮动或扭曲,变化较为缓慢,频率较低,一般小于1Hz。这种干扰对于后续心电分析研究有着较大的影响,特别是对ST段识别的准确率造成极大的影响。由于T波电交替就出现在心电波形上的ST波段,因此基线漂移一定要尽可能处理掉,减少对TWA检测的影响。
然后对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。本实施例提供的混沌检测T波电交替的心源性猝死预警方法,能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。
根据本发明的一些实施例,在所述对所述心电数据进行预处理去干扰噪声之前,还包括步骤:
选择所述心电数据的导联和采样时刻点;
对所述心电数据做可视化处理。
根据本发明的一些实施例,所述对所述心电数据进行预处理去干扰噪声,包括步骤;
对所述心电数据进行预处理去除肌电干扰、工频干扰和矫正基线漂移。
根据本发明的一些实施例,所述对所述心电数据进行预处理去除肌电干扰、工频干扰和基线漂移,包括步骤;
使用巴特沃斯低通滤波器滤除所述肌电干扰;
使用50Hz或60Hz的工频陷波器滤除所述工频干扰;
使用中值滤波Kaiser窗函数法对所述基线漂移进行矫正。
根据本发明的一些实施例,在所述对所述心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数之前,还包括步骤:
选择功率谱,对时间序列进行相空间重构。
根据本发明的一些实施例,在判断所述第一误差是否小于第一阈值,判断所述第二误差是否小于第二阈值之后,包括步骤:
当所述第一误差大于第一阈值,且所述第二误差大于第二阈值,结束进程。
第二方面,本实施例提供了一种混沌检测T波电交替的心源性猝死预警***,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的混沌检测T波电交替的心源性猝死预警方法。
根据本发明实施例的混沌检测T波电交替的心源性猝死预警***,至少具有如下有益效果:混沌检测T波电交替的心源性猝死预警***应用了如第一方面所述的混沌检测T波电交替的心源性猝死预警方法,能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。
第三方面,本实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面所述的混沌检测T波电交替的心源性猝死预警方法。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中摘要附图要与说明书附图的其中一幅完全一致:
图1是本发明一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的流程图;
图2是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的TWA心电图;
图3是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图;
图4是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图;
图5是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图;
图6是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的相空间重构案例图;
图7是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的TWA心电数据求解关联维数结果图;
图8是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警***的结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在***示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于***中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
近年来,TWA被视为SCD的预测因子,也证实了作为一种无创检测手段的TWA在预测心源性猝死方面大有前景。然而TWA是人体体表心电图中很难用肉眼观察到的,且容易被各类噪声干扰甚至湮灭的异常现象。因此,心电图中TWA的准确检测是一个具有挑战性的问题。根据检测原理对TWA检测方法进行分类,大致分为时域检测法、变换域检测法。
时域检测法主要是通过时域上的符号变换对信号进行定性和定量分析,并对比TWA时域诊断标准来判断TWA存在与否。常见的有相关分析法。相关分析法是以连续心动周期内的心电信号为对象,计算该段信号中所有T波的平均幅值,并利用T波当前幅值与平均幅值的互相关和自相关函数等信息构建相关指数,以此作为TWA的检测指标,记为交替相关指数。
TWA变换域检测方法以短时傅里叶变换或频谱变换为基础。谱分析法(SpectralMethod,SM)主要是将数字化后的心电信号按照每次心拍跳动进行分段,并把它们看作一个矢量,然后在一定窗口对向量信号进行频谱分析和TWA检测。
非线性原理检测TWA方法:拉普拉斯似然比法,其心思想是建立非高斯的TWA概率模型,通过模型分析TWA,但该方法的缺点在于明显的抗噪性差及稳健性低。
本发明提供了一种混沌检测T波电交替的心源性猝死预警方法,能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。
下面结合附图,对本发明实施例作进一步阐述。
参照图1,图1是本发明一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的流程图,混沌检测T波电交替的心源性猝死预警方法包括但不仅限于步骤S110至步骤S160。
步骤S110,获取心电数据;
步骤S120,对心电数据进行去干扰噪声;
步骤S130,对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;
步骤S140,计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;
步骤S150,判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;
步骤S160,当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。
在一实施例中,首先获取心电数据,再对心电数据进行预处理以去除干扰噪声,主要包括肌电干扰、工频干扰和基线漂移,肌电信号是一种几乎无法避免的干扰信号,是由人体活动、其他部位肌肉的紧张和颤动所导致,主要为采集心电数据时电极片所在区域的肌肉抽搐引起的干扰,无规律的,是一种高斯白噪声,属于高频干扰,频率一般分布在30Hz~2000Hz之间体现在心电波形上的是一种变化速率快,微小无规则可寻的纹波。工频干扰是由心电采集设备连接的电源及外界电磁场引起的,属于交流信号,主要体现在心电图上有明显的正弦波叠加,具象一点就是心电波形上会有很多细小的毛刺。基线漂移一般是由于人体呼吸、心电图机电极片微小移位、皮肤表面阻抗等因素导致的。基线漂移会使得信号数据段连同基准线上下的浮动或扭曲,变化较为缓慢,频率较低,一般小于1Hz。这种干扰对于后续心电分析研究有着较大的影响,特别是对ST段识别的准确率造成极大的影响。由于T波电交替就出现在心电波形上的ST波段,因此基线漂移一定要尽可能处理掉,减少对TWA检测的影响。然后对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。
在一实施例中,获取心电数据,选择所述心电数据的导联和采样时刻点,对所述心电数据做可视化处理,对心电数据进行预处理去干扰噪声,对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数,计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。
参考图2至图5,图2是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的TWA心电图,图3是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图,图4是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图,图5是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的滤波去除P波后的S-T波结果图。
心电数据T波段截取,T波是心电图的重要组成成分,它反映了心室肌的复极过程。T波电交替现象是T波异常的一种,研究表明,心源性猝死和T波电交替现在有直接联系,可以通过检测T波电交替现象来***患有心源性猝死的可能性。在心电数据中,与R波相比,T波特征并不明显,变化细微,利用混沌***对微弱信号的有效检测正好可以解决T波异常问题。
检测T波电交替现象首先需要将S-T波波段进行截取。本文将利用小波包算法通过提取心电图的T波所处的频率范围的波形,确定心电图的T波的时域边界并在单周期心电图中提取T波。
根据心电图的QRS波群、T波的频谱图分析可知,QRS波的带宽频率集中在为0~38Hz,积累了将近99%的能量,QRS波峰能量集中在8~16Hz附近;T波带宽为0~8Hz,波峰能量集中在1~8Hz的频率范围内。
小波包算法是小波分解的推广,可以有效将信号按照频率进行有效分解成不同频率的信号,这些信号的重新叠加组合又将变为原信号。针对心电图的波群带宽频率分布情况,S-T波段主要分布在带宽为0~8Hz频率范围内。通过小波包分解,对于一个采样频率为mHz的样本信号,总的信号S表示为:
Figure BDA0003185865820000081
其分解的信号频带为:
Figure BDA0003185865820000091
以EuropeanST-TDatabase数据集为例,其10秒数据长度为2500,则其频率为250HZ,将其分解为5层,则根节点(5,0)频带为0-8HZ,即为S-T波段。
在一实施例中,获取心电数据;对心电数据进行预处理去干扰噪声;对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;计算得到第一误差和第二误差,第一误差为关联维数与关联维数的平均值之间的差值的绝对值,第二误差为最大Lyapunov指数与最大Lyapunov指数的平均值之间的差值的绝对值;判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值;当第一误差小于第一阈值,或第二误差小于第二阈值,发出心源性猝死预警。其中,对心电数据进行预处理去干扰噪声包括去肌电干扰、去工频干扰和去基线漂移,肌电信号是一种几乎无法避免的干扰信号,是由人体活动、其他部位肌肉的紧张和颤动所导致,主要为采集心电数据时电极片所在区域的肌肉抽搐引起的干扰,无规律的,是一种高斯白噪声,属于高频干扰,频率一般分布在30Hz~2000Hz之间体现在心电波形上的是一种变化速率快,微小无规则可寻的纹波。工频干扰是由心电采集设备连接的电源及外界电磁场引起的,属于交流信号,主要体现在心电图上有明显的正弦波叠加,具象一点就是心电波形上会有很多细小的毛刺,中国大部分地区的工频一般是50Hz,而美国的工频是60Hz。
基线漂移一般是由于人体呼吸、心电图机电极片微小移位、皮肤表面阻抗等因素导致的,基线漂移会使得信号数据段连同基准线上下的浮动或扭曲,变化较为缓慢,频率较低,一般小于1Hz,这种干扰对于后续心电分析研究有着较大的影响,特别是对ST段识别的准确率造成极大的影响,由于T波电交替就出现在心电波形上的ST波段,因此基线漂移一定要尽可能处理掉,减少对TWA检测的影响。
可以理解的是,选用巴特沃斯(Butterworth)低通滤波器进行去肌电干扰,低通滤波器的原理为频率响应会随着频率的升高而减小,能够最大限度地使通频带内部的信号流通,阻带则会随着频率的升高越来越趋近为0。中国大部分地区的工频一般是50Hz,而美国的工频是60Hz,去除工频干扰选用50/60Hz的工频陷波器,陷波器的特点鲜明,设计难度低,在保证去工频干扰效果的同时计算速度也快,以国际标准数据库的数据为例,其频率按美国标准为60Hz,设计阻带截止频率为59Hz和61Hz。利用中值滤波Kaiser窗函数法可以有效矫正基线漂移的问题。
假设心电波形信号为x(n),0≤n≤N-1,利用窗宽为L=2k+1的中值滤波对x(n)进行处理,延拓信号波形首尾的k点:
Figure BDA0003185865820000101
对处理得到的新延拓信号x(n),-k≤n≤N+k-1,从n=0到n=N-1逐点进行中值滤波得到基线漂移:
X(n)=med[x(n-k),x(n-k+1),…,x(n),x(n+1),…,x(n+k)],n=0,1,…,N-1式中,X(n)为基线漂移波形,med[·]为中值算子。原始波形x(n)减去X(n)得到滤除基线漂移后的信号:
Figure BDA0003185865820000102
参考图6,图6是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的相空间重构案例图;图7是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警方法的TWA心电数据求解关联维数结果图。
在一实施例中,在对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数之前,还包括步骤:选择功率谱,对时间序列进行相空间重构。
相空间重构:为了尽量地展开被隐藏的混沌吸引子,因为混沌吸引子往往能够体现原时间序列难以捕捉的混沌规律性。混沌理论认为,***内的各个分量互相关联,相关分量的信息就隐含在任一分量的发展过程中。为了获取***完整且准确的定性信息,这往往需要了解全面且充分的状态演化信息。
假设给定一时间序列{x(i),i=1,2,3,…,N},序列长度为N,基于两个重要参数(延迟时间τ和嵌入维数m),对{x(i)}进行相空间重构,得到新的相空间矩阵是一个高维向量组成的矩阵:
Figure BDA0003185865820000111
Nm个相空间的相点可表示为:
X(i)=[x(i),x(i+τ),x(i+2τ),…,x(i+(m-1)τ)]i=1,2,…,M
重构一个合适的相空间,关键在于延迟时间和嵌入维数m的选取:
(1)关于延迟时间τ:τ过于小,可能会出现延迟变量之间的相关性太过于紧密导致时间序列只是从一维空间变成多维同样变量的序列组,无法探寻出背后隐藏的特征信息。反之,如果选的太大,重构的局面将会呈现出较为严峻的自我折迭现象。
(2)关于嵌入维数m:m过大,计算量明显变大,会极大地增加了不必要的工作量和降低了工作的效率。若m太低,存在的缺点将凸显出来,吸引子会自交,打开不完全,不能精准且充分的表征***的动力学行为。
本实验采用C-C算法,其思想认为时间序列含有噪声且长度有限时,两者是互相关联的参量,密不可分,需同时确定。该算法有限样本下操作简单,计算量小,极大缩减计算时间,且其抗噪能力较强。延迟时间τ依赖于时间窗口τw=(m-1)τ,利用关联积分同时估计出τ和τw,进而确定嵌入维数m。
原时间序列为x(i),i=1,2,…,N,将其分成t个不相交的子序列,定义长度
为:
l=[N/t]
式中,[·]表示取整。t个子序列展开如下:
Figure BDA0003185865820000112
分别计算每个子序列的统计量S(m,N,r,τ):
Figure BDA0003185865820000121
式中,Cl表示第l个子序列的关联积分,可用来表征邻域半径大于相空间中
任意两点间距离的概率,定义如下:
Figure BDA0003185865820000122
式中,M=N-(m-1)t,r代表着空间距离阈值,θ(x)为Heaviside
阶跃函数,空间向量Xi和Xj间距离采用无穷范数。
当N→∞时,有:
Figure BDA0003185865820000123
据BDS统计,若时间序列是独立同分布,则当N→∞时,S(m,r,τ)恒为0。S(m,r,τ)~τ反映了序列的自相关性,当其第一次过零点或对所有r差值最小时,
重构后的混沌吸引子在相空间的运动轨迹完全打开。
定义关于r的最大偏差ΔS(m,τ):
ΔS(m,τ)=max{S(m,ri,τ)}-min{S(m,ri,τ)}
式中,ΔS(m,τ)用来度量S(m,r,τ)~τ对所有r的最大偏差。
最优延迟时间取S(m,r,τ)~τ的第一个零点或ΔS(m,τ)~τ的第一个极小点。
Figure BDA0003185865820000124
Figure BDA0003185865820000125
Figure BDA0003185865820000126
找到
Figure BDA0003185865820000127
第一个零点或
Figure BDA0003185865820000128
的第一个局部极小点,定位这两点的时间,一
般以这两个时间作为最优延迟时间τ。而嵌入窗宽τw是从Scor(t)中选取全局最小点对应的时间作为τw。进一步能确定最佳嵌入维数m。
m=τw/τ+1
在一实施例中,对心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数,包括步骤:
选取第一空间向量和第二空间向量,根据第一空间向量和第二空间向量计算得到关联积分,根据关联积分计算得到关联维数。
在一实施例中,在判断第一误差是否小于第一阈值,判断第二误差是否小于第二阈值之后,包括步骤:
当第一误差大于第一阈值,且第二误差大于第二阈值,结束进程。
可以理解的是,关联维数的计算:混沌***相空间中的吸引子轨迹会形成具有无穷嵌套的自相似结构,而这一现象可用关联维数进行刻画。因此将关联维数作为混沌检测分析的一个重要参数。
对任一时间序列{x(i),i=1,2,3,…,N}进行相空间重构后,选取任意两个空间向量X(i)和X(j)统计两者之间的距离小于等于任意给定的邻域半径r的点数对数量占所有点数对的比例,即关联积分:
Figure BDA0003185865820000131
式中,M=N-(m-1)t,r代表着空间距离阈值,θ(x)为Heaviside阶跃函数,空间向量Xi和Xj间距离采用无穷范数。对充分小的r关联积分满足C(r)∝rD,增长趋势为指数倍,定义关联维数:
Figure BDA0003185865820000132
D可由曲线lnC(r)~ln(r)线性部分斜率估计出来:
Figure BDA0003185865820000133
随着相空间维数的不断增加,但D值却不跟着一起改变时,即可认定为是关联维数D。该方法简单易行,应用日渐广泛,但对噪声较敏感,有时计算结果存在较大的误差。
Figure BDA0003185865820000141
最大李雅普诺夫指数的计算:Lyapunov指数是指相空间内邻近轨迹的平均发散速率指数。由混沌理论可知,只要Lyapunov指数出现正值则标志着混沌的产生,且数值越大,意味着混沌程度越强。反之,若Lyapunov指数为负值就可表明***是有序态,且运动处于稳定与收敛状态。因此可以通过Lyapunov指数的正负情况来检验***是否出现混沌。在得到一个重构相空间Y(ti)后:
Y(ti)=[x(ti),x(ti+τ),…,x(ti+(m-1)τ)]i=1,2,…,N
取初始点Y(t0),寻找其最邻近点,记为Y0(t0)。设其与最近相邻点Y0(t0)的初始距离为L0,即两点间最小距离。追踪这两个相点的时间演化,直到t1时刻,
两相点的间距超过某规定值,定义如下:
L'0=|Y(t1)-Y0(t1)|>ε
ε>0时,保留Y(t1),并在Y(t1)邻近另外寻找一个相点Y1(t1),使得
L1=|Y(t1)-Y1(t1)|<ε
继续重复以上过程,直到历遍整个序列的点,Y(t)到达时间序列的终点N。
假设跟踪演化过程总共迭代了M次,则最大Lyapunov指数(LLE)为:
Figure BDA0003185865820000142
延迟时间τ与嵌入维数m由C-C算法计算相空间重构得出。部分结果如下表:
Figure BDA0003185865820000151
数据表明,心脏***处于混沌状态,且病态的明显比正常的混沌性弱。从中还获取到另一个重要的信息,即TWA患者的最小与其它三类都有较明显的差别,因此选择最大Lyapunov指数与关联维数一起作为检测TWA的混沌特征。
基于混沌特征的心源性猝死检测设计,对于TWA患者与健康人及其它疾病患者,在两个混沌特征(关联维数和最大Lyapunov指数)具有显著的区分度。
定义误差值ε1
Figure BDA0003185865820000152
其中,
Figure BDA0003185865820000153
代表着关联维数的平均值,D′代表着与
Figure BDA0003185865820000154
差值最大的关联维数值。
同样,定义误差值ε2:
Figure BDA0003185865820000155
其中,
Figure BDA0003185865820000156
代表着最大Lyapunov指数的平均值,L′代表着与
Figure BDA0003185865820000157
差值最大的最大Lyapunov指数。
计算已有国际数据库(论文选用100组)中TWA患者的关联维数D求均值得到TWA患者的关联维数
Figure BDA0003185865820000158
为0.877,得关联维数的误差值
Figure BDA0003185865820000159
同理,最大Lyapunov指数
Figure BDA00031858658200001510
均值为0.0423,其误差值
Figure BDA00031858658200001511
将ε1、ε2作为TWA的检测指标。
假设输入一条待测心电数据{x(i),i=1,2,3,…,N},通过混沌检测,计算关联维数和最大Lyapunov指数值,得到该时间序列关联维数D1和最大Lyapunov指数L1,计算关联维数的平均值
Figure BDA0003185865820000161
与待测时间序列关联维数D1之间差的绝对值和最大Lyapunov指数平均值
Figure BDA0003185865820000162
与待测时间序列最大Lyapunov指数L1之间差的绝对值。若满足
Figure BDA0003185865820000163
Figure BDA0003185865820000164
即可判定该待测心电数据属于TWA数据而做出警示,从而达到心源性猝死的预警目的。
参考图8,图8是本发明另一个实施例提供的混沌检测T波电交替的心源性猝死预警***的结构图。
本发明还提供了一种混沌检测T波电交替的心源性猝死预警***,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的混沌检测T波电交替的心源性猝死预警方法。混沌检测T波电交替的心源性猝死预警***应用了如第一方面所述的混沌检测T波电交替的心源性猝死预警方法,能够寻找对TWA检测可行性较高的混沌特征,对TWA进行有效检测,对心源性猝死做到较好地预警。
此外,本发明的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,控制处理器能够执行图1中的方法步骤S110至步骤S160。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (9)

1.一种混沌检测T波电交替的心源性猝死预警方法,其特征在于,包括以下步骤:
获取心电数据;
对所述心电数据进行去干扰噪声;
对所述心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数;
计算得到第一误差和第二误差,所述第一误差为所述关联维数与所述关联维数的平均值之间的差值的绝对值,所述第二误差为所述最大Lyapunov指数与所述最大Lyapunov指数的平均值之间的差值的绝对值;
判断所述第一误差是否小于第一阈值,判断所述第二误差是否小于第二阈值;
当所述第一误差小于第一阈值,或所述第二误差小于第二阈值,发出心源性猝死预警。
2.根据权利要求1所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,在所述对所述心电数据进行预处理去干扰噪声之前,还包括步骤:
选择所述心电数据的导联和采样时刻点;
对所述心电数据做可视化处理。
3.根据权利要求1所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,所述对所述心电数据进行预处理去干扰噪声,包括步骤;
对所述心电数据进行预处理去除肌电干扰、工频干扰和矫正基线漂移。
4.根据权利要求3所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,所述对所述心电数据进行预处理去除肌电干扰、工频干扰和基线漂移,包括步骤;
使用巴特沃斯低通滤波器滤除所述肌电干扰;
使用50Hz或60Hz的工频陷波器滤除所述工频干扰;
使用中值滤波Kaiser窗函数法对所述基线漂移进行矫正。
5.根据权利要求1所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,在所述对所述心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数之前,还包括步骤:
选择功率谱,对时间序列进行相空间重构。
6.根据权利要求1所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,对所述心电数据的T波电交替数据使用混沌检测法计算得到关联维数和最大Lyapunov指数,包括步骤:
选取第一空间向量和第二空间向量,根据所述第一空间向量和所述第二空间向量计算得到关联积分,根据所述关联积分计算得到所述关联维数。
7.根据权利要求1所述的混沌检测T波电交替的心源性猝死预警方法,其特征在于,在判断所述第一误差是否小于第一阈值,判断所述第二误差是否小于第二阈值之后,包括步骤:
当所述第一误差大于第一阈值,且所述第二误差大于第二阈值,结束进程。
8.一种混沌检测T波电交替的心源性猝死预警***,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7中任意一项所述的混沌检测T波电交替的心源性猝死预警方法。
9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1至7任意一项所述的混沌检测T波电交替的心源性猝死预警方法。
CN202110861353.0A 2021-07-29 2021-07-29 混沌检测t波电交替的心源性猝死预警方法 Active CN113633293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110861353.0A CN113633293B (zh) 2021-07-29 2021-07-29 混沌检测t波电交替的心源性猝死预警方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110861353.0A CN113633293B (zh) 2021-07-29 2021-07-29 混沌检测t波电交替的心源性猝死预警方法

Publications (2)

Publication Number Publication Date
CN113633293A true CN113633293A (zh) 2021-11-12
CN113633293B CN113633293B (zh) 2022-09-16

Family

ID=78418819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110861353.0A Active CN113633293B (zh) 2021-07-29 2021-07-29 混沌检测t波电交替的心源性猝死预警方法

Country Status (1)

Country Link
CN (1) CN113633293B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116226745A (zh) * 2023-05-09 2023-06-06 海阳市辛安镇畜牧兽医站 基于孵化间环境数据的孵化异常报警方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842997A (en) * 1991-02-20 1998-12-01 Georgetown University Non-invasive, dynamic tracking of cardiac vulnerability by simultaneous analysis of heart rate variability and T-wave alternans
US20090177102A1 (en) * 2008-01-07 2009-07-09 The General Electric Company System, method and device for predicting sudden cardiac death risk
CN101807915A (zh) * 2010-04-15 2010-08-18 复旦大学 应用于整数分频锁相环路中的鉴频鉴相器和电荷泵电路
US20110190650A1 (en) * 2009-12-31 2011-08-04 Cerner Innovation, Inc. Computerized Systems and Methods for Stability-Theoretic Prediction and Prevention of Sudden Cardiac Death
CN102512157A (zh) * 2011-12-15 2012-06-27 重庆大学 基于模型的动态心电图t波交替定量分析方法
CN103006207A (zh) * 2013-01-11 2013-04-03 山东师范大学 基于形态学的t波交替散点图法的心电信号分析方法
US20150216426A1 (en) * 2012-08-17 2015-08-06 Analytics For Life Method and system for characterizing cardiovascular systems from single channel data
US9408543B1 (en) * 2012-08-17 2016-08-09 Analytics For Life Non-invasive method and system for characterizing cardiovascular systems for all-cause mortality and sudden cardiac death risk
CN106691410A (zh) * 2016-12-13 2017-05-24 佛山科学技术学院 一种脉搏及血红细胞浓度监测仪及方法
CN107212881A (zh) * 2017-05-26 2017-09-29 广东工业大学 一种t波电交替检测方法
CN107408144A (zh) * 2014-11-14 2017-11-28 Zoll医疗公司 医疗先兆事件估计
CN109938695A (zh) * 2019-03-08 2019-06-28 度特斯(大连)实业有限公司 一种基于异质度指标的人体疾病风险预测方法及设备
CN110299205A (zh) * 2019-07-23 2019-10-01 上海图灵医疗科技有限公司 基于人工智能的生物医学信号特征处理及评测方法、装置及应用
WO2020086112A1 (en) * 2018-10-24 2020-04-30 Chi-Hua Foundation Multi-channel real-time cardiovascular performance evaluation system and method
CN112494026A (zh) * 2020-09-07 2021-03-16 南京云思创智信息科技有限公司 一种基于非接触的远程心脏猝死预警方法
CN112545528A (zh) * 2020-12-28 2021-03-26 北京理工大学 基于分数阶傅里叶变换和张量分解的心电t波特征提取方法
CN112617851A (zh) * 2021-01-06 2021-04-09 北京航空航天大学 一种基于心电信号的脑力负荷分类方法及***

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842997A (en) * 1991-02-20 1998-12-01 Georgetown University Non-invasive, dynamic tracking of cardiac vulnerability by simultaneous analysis of heart rate variability and T-wave alternans
US20090177102A1 (en) * 2008-01-07 2009-07-09 The General Electric Company System, method and device for predicting sudden cardiac death risk
CN101911083A (zh) * 2008-01-07 2010-12-08 通用电气公司 用于预测心脏猝死风险的***、方法和装置
US20110190650A1 (en) * 2009-12-31 2011-08-04 Cerner Innovation, Inc. Computerized Systems and Methods for Stability-Theoretic Prediction and Prevention of Sudden Cardiac Death
CN101807915A (zh) * 2010-04-15 2010-08-18 复旦大学 应用于整数分频锁相环路中的鉴频鉴相器和电荷泵电路
CN102512157A (zh) * 2011-12-15 2012-06-27 重庆大学 基于模型的动态心电图t波交替定量分析方法
US9408543B1 (en) * 2012-08-17 2016-08-09 Analytics For Life Non-invasive method and system for characterizing cardiovascular systems for all-cause mortality and sudden cardiac death risk
US20150216426A1 (en) * 2012-08-17 2015-08-06 Analytics For Life Method and system for characterizing cardiovascular systems from single channel data
CN103006207A (zh) * 2013-01-11 2013-04-03 山东师范大学 基于形态学的t波交替散点图法的心电信号分析方法
CN107408144A (zh) * 2014-11-14 2017-11-28 Zoll医疗公司 医疗先兆事件估计
CN106691410A (zh) * 2016-12-13 2017-05-24 佛山科学技术学院 一种脉搏及血红细胞浓度监测仪及方法
CN107212881A (zh) * 2017-05-26 2017-09-29 广东工业大学 一种t波电交替检测方法
WO2020086112A1 (en) * 2018-10-24 2020-04-30 Chi-Hua Foundation Multi-channel real-time cardiovascular performance evaluation system and method
CN109938695A (zh) * 2019-03-08 2019-06-28 度特斯(大连)实业有限公司 一种基于异质度指标的人体疾病风险预测方法及设备
CN110299205A (zh) * 2019-07-23 2019-10-01 上海图灵医疗科技有限公司 基于人工智能的生物医学信号特征处理及评测方法、装置及应用
CN112494026A (zh) * 2020-09-07 2021-03-16 南京云思创智信息科技有限公司 一种基于非接触的远程心脏猝死预警方法
CN112545528A (zh) * 2020-12-28 2021-03-26 北京理工大学 基于分数阶傅里叶变换和张量分解的心电t波特征提取方法
CN112617851A (zh) * 2021-01-06 2021-04-09 北京航空航天大学 一种基于心电信号的脑力负荷分类方法及***

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
CARDO, R;CORVALAN, A ;: "Correlation between Multifractal Spectrum Based on Wavelet Leade", 《COMPUTERS IN CARDIOLOGY 2008, VOLS 1 AND 2》 *
MONASTERIO, V;LAGUNA, P;CYGANKIEWICZ, I: "Average T-wave alternans activity in ambulatory ECG records predicts sudden cardiac death in patients with chronic heart failure", 《HEART RHYTHM》 *
NEARING, BD; VERRIER, RL: "Progressive increases in complexity of T-wave oscillations heral", 《CIRCULATION RESEARCH》 *
RAJABI, R.; GHASSEMIAN, H.: "Microvolt T-wave alternans analysis using Lyapunov exponents", 《PROCEEDINGS OF THE 2009 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS & APPLICATIONS (ISIEA 2009)》 *
任江波,王汾连,何高文: "深海富钴结核微区X射线荧光光谱分析和数据挖掘", 《光谱学与光谱分析》 *
佘黎煌,张石,王鸿雁: "非高斯条件下基于粒子滤波的T波交替检测算法", 《电子学报》 *
佘黎煌: "心电图中T波电交替检测关键技术研究", 《万方》 *
姜媛: "T波电交替现象对心衰患者发生恶性心律失常的预测价值探讨", 《万方》 *
孙中伟,彭屹: "QT间期的检测与分析", 《中国生物医学工程学报》 *
张石,佘黎煌,徐中强,宋宇宁: "心电T波电交替检测算法综述", 《中国生物医学工程学报》 *
徐舫舟,赵捷,王纪奎,李群,田杰,唐文涛: "T波交替散点图法:利用非线性动力学***表示周期性的散点图", 《中国组织工程研究与临床康复》 *
李田田: "短暂非线***替波检测技术", 《万方》 *
杨萍等: "微伏级T波电交替的研究进展", 《心血管病学进展》 *
胡荣亮,黎冠东,刘婷: "神经功能重建仪对脑卒中运动功能恢复影响的研究", 《广东省医学会第十五次神经病学学术会议暨第五届粤港澳神经病学学术会议论文集》 *
蔡志鸿等: "T波交替―一项新的预测心源性猝死的无创伤性指标", 《北京生物医学工程》 *
邹吉利.: "基于吉布斯采样和典型相关分析的TWA检测算法研究", 《万方》 *
陈丹凤: "中西医结合产程护理对分娩结局的影响", 《新中医》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116226745A (zh) * 2023-05-09 2023-06-06 海阳市辛安镇畜牧兽医站 基于孵化间环境数据的孵化异常报警方法
CN116226745B (zh) * 2023-05-09 2023-08-11 海阳市辛安镇畜牧兽医站 基于孵化间环境数据的孵化异常报警方法

Also Published As

Publication number Publication date
CN113633293B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Satija et al. A new automated signal quality-aware ECG beat classification method for unsupervised ECG diagnosis environments
Saini et al. QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases
Faezipour et al. A patient-adaptive profiling scheme for ECG beat classification
US20160120431A1 (en) Medical device having automated ecg feature extraction
Satija et al. An automated ECG signal quality assessment method for unsupervised diagnostic systems
CN108937916A (zh) 一种心电信号检测方法、装置及存储介质
Satija et al. A simple method for detection and classification of ECG noises for wearable ECG monitoring devices
Kshirsagar et al. Classification of ECG-signals using artificial neural networks
Sankar et al. Automatic computer analysis of transients in EEG
Slama et al. Application of statistical features and multilayer neural network to automatic diagnosis of arrhythmia by ECG signals
Bajare et al. ECG based biometric for human identification using convolutional neural network
CN113633293B (zh) 混沌检测t波电交替的心源性猝死预警方法
Mykoliuk et al. Machine learning methods in ECG classification
Vuksanovic et al. ECG based system for arrhythmia detection and patient identification
Arvanaghi et al. Classification of cardiac arrhythmias using arterial blood pressure based on discrete wavelet transform
Vimala Stress causing arrhythmia detection from ECG signal using HMM
Butt et al. Classifying normal sinus rhythm and cardiac arrhythmias in ECG signals using statistical features in temporal domain
Malathi et al. A high-performance low complex design and implementation of QRS detector using modified MaMeMi filter optimized with Mayfly optimization algorithm
Imtiaz et al. Pan-Tompkins++: A robust approach to detect R-peaks in ECG signals
Kannathal et al. Analysis of electrocardiograms
Murthy et al. ECG signal denoising and ischemic event feature extraction using Daubechies wavelets
Sahay et al. A survey approach on ECG feature extraction techniques
Elmansouri et al. New Electrocardiogram signal analysis in a research laboratory using LabVIEW
Saminu et al. Stationary wavelet transform and entropy-based features for ECG beat classification
Londhe et al. A complete ECG signal delineation method based on wavelet transform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant