CN113599518A - 一种复合声敏剂及其制备方法 - Google Patents

一种复合声敏剂及其制备方法 Download PDF

Info

Publication number
CN113599518A
CN113599518A CN202110911105.2A CN202110911105A CN113599518A CN 113599518 A CN113599518 A CN 113599518A CN 202110911105 A CN202110911105 A CN 202110911105A CN 113599518 A CN113599518 A CN 113599518A
Authority
CN
China
Prior art keywords
oxygen
sound
tumor
sensitive agent
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110911105.2A
Other languages
English (en)
Other versions
CN113599518B (zh
Inventor
宋新然
冯炜
陆树婷
陈雨
王可屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tenth Peoples Hospital
Original Assignee
Shanghai Tenth Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tenth Peoples Hospital filed Critical Shanghai Tenth Peoples Hospital
Priority to CN202110911105.2A priority Critical patent/CN113599518B/zh
Publication of CN113599518A publication Critical patent/CN113599518A/zh
Application granted granted Critical
Publication of CN113599518B publication Critical patent/CN113599518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • A61K41/0033Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/748Cyanobacteria, i.e. blue-green bacteria or blue-green algae, e.g. spirulina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种复合声敏剂,包括声敏剂纳米粒子以及产氧微生物,在近红外激光照射下,产氧微生物持续的光合作用产生氧气,使得缺氧肿瘤区域发生光合氧合,超声激发声敏剂将氧气转变成大量有细胞毒性的单线态氧,从而有效杀死肿瘤细胞和破坏肿瘤组织。肿瘤乏氧环境的改善和声动力治疗后导致的免疫原性细胞死亡,实现声动力与免疫的协同治疗。与此同时,该复合声敏剂可用于磁共振成像和电子计算机断层扫描造影成像,实现对声动力治疗过程的实时监控。这项工作为使用杂化微生物的良好生物相容性和有效声动力的发展提供了良好的理论和实验支撑,并在微生物纳米医学的声动力中显示重要的临床转化前景。

Description

一种复合声敏剂及其制备方法
技术领域
本发明涉及超声抗肿瘤领域,特别涉及一种复合声敏剂及其制备方法。
背景技术
随着发病率和死亡率的不断上升,恶性肿瘤严重威胁着人类健康和生命安全。近年来,通过利用活性氧诱导细胞凋亡已被广泛应用于癌症治疗。其中,声动力疗法已经成为癌症治疗的一种有效策略而备受关注。超声波(Ultrasound, US)介导的声动力治疗是一种非侵入性、高穿透深度的治疗方法,在治疗深部实体肿瘤方面具有较大的潜力。通过利用超声波触发声敏剂,产生过量的活性氧引发氧化应激,杀伤癌细胞,是声动力***的内在机制。理想的声动力疗法需要三要素:超声激发、氧气和声敏剂。其中,肿瘤乏氧和氧气供应不足已成为限制声动力疗法用于肿瘤疗效的主要因素之一,且在声动力治疗过程中,氧气的进一步消耗会加剧肿瘤的乏氧状态。
研究表明,由于实体瘤的肿瘤细胞快速增殖、血管发育不全、分布不均匀造成其内部氧气供应不足,导致肿瘤内乏氧。因此,乏氧是晚期实体肿瘤的一个主要特征。乏氧进一步加剧肿瘤基因的不稳定性并激活肿瘤生长因子,促进肿瘤的转移,严重限制了治疗效果。其中,乏氧诱导因子-1α(Hypoxia induced factor 1α,HIF-1α)相关信号通路的高表达,进一步抑制上皮标志物E-cadherin的表达,促进间质标志物N-cadherin和Vimentin的表达,增加肿瘤细胞的迁移性和侵袭性。所以,乏氧与肿瘤的发生、发展、预后和转移密切相关。针对肿瘤乏氧的高效治疗是实现肿瘤彻底治愈必须攻克的重要难题之一。
随着纳米技术的广泛发展,为缓解或逆转肿瘤缺氧区,研究者开发了基于全氟化碳、血红蛋白和过氧化氢酶等新型产氧纳米材料,提高肿瘤乏氧区域的氧气浓度,从而提高声动力疗法对乏氧肿瘤的疗效。然而,这些方法存在诸多弊端,例如,全氟化碳负载氧气效率低,且它本身具有毒性,高浓度的摄入会对机体造成严重威胁;游离的血红蛋白四聚体分子及其分解产物能渗透血管内皮进入器官及组织间质,会引发副作用;由于肿瘤微环境过氧化氢浓度低,负载过氧化氢酶的纳米粒子缺少反应底物来产生足够的氧气,从而难以达到理想治疗效果。因此,开发新型氧气载体,设计和构建高效且生物安全性高的持续供氧体系缓解肿瘤乏氧微环境是改善声动力治疗效果的最佳手段之一。
发明内容
本发明的目的在于提供一种复合声敏剂及其制备方法,所述复合声敏剂高效且生物安全性高,可持续供氧以缓解肿瘤乏氧微环境,改善了声动力治疗的效果。
为实现上述目的,本发明提供了一种复合声敏剂,所述复合声敏剂包括声敏剂纳米粒子以及产氧微生物。
进一步地,所述声敏剂纳米粒子为双金属锰钨氧化物(表示为:MnaWbOx,或 M)纳米粒子。用于多模态成像导航下的肿瘤声动力治疗,由于Mn(II)离子和W 元素的存在,MnaWbOx纳米粒子可用于磁共振造影和计算机断层扫描成像。
进一步地,所述产氧微生物为蓝细菌(表示为:Cyanobacteria,或Cyan)。近年来,微生物在生物纳米医学领域受到广泛关注。将微生物和纳米材料整合起来,功能互补,包含治疗、分子成像和生物检测等组合功能,对改善人类健康有较高的优势。蓝细菌是地球上最早出现的光合自养生物,它以水作为电子供体,利用太阳光能将CO2还原成有机碳化合物,并释放氧气。将具有产氧能力的蓝细菌作为声敏剂的载体和“推进器”,可在乏氧肿瘤中原位光合产氧,促进化学反应产生具有细胞毒性的单线态氧,从而解决声动力疗法对乏氧肿瘤效果较低的难题,为肿瘤超声治疗提供新的科学依据。
具体地,光合供氧伴以声敏剂MnaWbOx提高乏氧肿瘤的声动力功效。在660 nm波长激光辐照下,蓝细菌发生光合作用产生氧气,使得乏氧肿瘤区域发生光合氧合,进一步超声激发声敏剂,将氧气转变成大量有细胞毒性的单线态氧,从而重创缺氧的肿瘤组织和细胞达到高效治疗的目的。肿瘤乏氧环境的改善和声动力治疗后导致了免疫原性的细胞死亡,以及蓝藻本身可作为免疫佐剂激活免疫***,从而实现声动力疗法与免疫的协同治疗。此外,大量的氧气释放抑制HIF-1α基因的表达,进一步提高了声动力治疗的效率,并最终达到高效***的目的。该发明为微生物纳米医学用于辅助增效声动力肿瘤治疗提供理论依据和实验支撑。
本发明还提供一种制备上述复合声敏剂的方法,所述制备方法包括:通过静电吸附作用将声敏剂纳米粒子负载在产氧微生物表面完成所述复合声敏剂的构建。
进一步地,所述产氧微生物表面带有负电荷,将所述产氧微生物分散在磷酸盐缓冲液中;所述声敏剂纳米粒子表面带有正电荷,将所述声敏剂纳米粒子加入所述磷酸盐缓冲液中,混合搅拌,所述产氧微生物和所述声敏剂纳米粒子通过正负电荷吸附作用进行结合(表示为:MnaWbOx@Cyan,或M@C)。
进一步地,所述声敏剂纳米粒子为双金属锰钨氧化物(MnaWbOx)纳米粒子,所述双金属锰钨氧化物(MnaWbOx)纳米粒子的制备方法包括:使用高温有机相合成法制备双金属锰钨氧化物(MnaWbOx)初始粒子;以及使用氨基聚乙二醇硬脂酸(C18-polyethylene glycol-amine,C18-PEG-NH2)对所述双金属锰钨氧化物 (MnaWbOx)初始粒子进行改性修饰得到所述双金属锰钨氧化物(MnaWbOx)纳米粒子。
进一步地,所述高温有机相合成法的步骤包括:将10-20mL苄醚、1-1.5g 的1,2-十二烷二醇和0.35-0.5g六羰基钨置入三颈烧瓶中,搅拌混合,在惰性气体保护下,将混合体系进行第一次加热,分别加入1-3ml油酸和1-3ml油胺,将其进行第二次加热,再加入0.25g乙酰丙酮锰,反应30分钟后,将体系冷却至室温,再加入过量乙醇,充分混合后离心,经洗涤剂反复洗涤,收集生成的所述双金属锰钨氧化物初始粒子。
进一步地,所述第一次加热的温度为100-120℃,所述第二次加热的温度为230-260℃。
进一步地,所述洗涤剂为环己烷和乙醇的混合物。
进一步地,对所述双金属锰钨氧化物(MnaWbOx)初始粒子进行改性修饰的步骤包括:将10-12mg所述双金属锰钨氧化物(MnaWbOx)初始粒子和50mg氨基聚乙二醇硬脂酸(C18-polyethylene glycol-amine,C18-PEG-NH2)混合于4-5mL 氯仿中,超声作用15-30min,然后将混合溶液在室温下搅拌2-3h,氮气烘干,然后溶解在去离子水中,4℃保存备用。
本发明提供一种新型具有高生物安全性、自供给氧气的超声激发的微生物增强型复合声敏剂,以实现高效的声动力肿瘤治疗。通过对蓝藻表面进行功能声敏剂的修饰,构建一种新型高效的微生物增强型复合微纳声敏***用于肿瘤的声动力治疗。探究蓝藻的瘤内光合产氧作用机制,优化声敏剂的诊疗性能,并明确蓝藻-声敏剂-超声三者之间协同作用机理。以期该复合声敏剂在超声的作用下实现活性氧自由基的连续产出,以提高声动力肿瘤治疗效率。同时,光合作用增强的声动力疗法能够有效改善肿瘤免疫抑制微环境,诱导免疫原性细胞死亡介导的抗肿瘤免疫应答,最终实现肿瘤的声动力与免疫高效协同治疗。
与现有技术相比,本发明的复合声敏剂,在近红外激光照射下,产氧微生物持续的光合作用产生氧气,使得缺氧肿瘤区域发生光合氧合,超声激发声敏剂将氧气转变成大量有细胞毒性的单线态氧,从而有效杀死肿瘤细胞和破坏肿瘤组织。肿瘤乏氧环境的改善和声动力治疗后导致的免疫原性细胞死亡,实现声动力与免疫的协同治疗。与此同时,该复合声敏剂可用于磁共振成像和电子计算机断层扫描造影成像,实现对声动力治疗过程的实时监控。这项工作为使用杂化微生物的良好生物相容性和有效声动力的发展提供了良好的理论和实验支撑,并在微生物纳米医学的声动力中显示重要的临床转化前景。
更具体地,本发明的有益效果包括:
(1)本发明构建的微生物增强型复合声敏***制备过程简便、原料来源广泛、实验装置简易、制备时间短且条件温和。
(2)为了解决声动力疗法中肿瘤乏氧问题,本发明设计一种稳定性好,粒径均一、分散性好、具有良好生物相容性的纳米声敏剂,并可作为成像对比剂用于磁共振成像和电子计算机断层扫描造影成像,实现对声动力疗效的实时监控;同时以蓝细菌为载体,构建超声激发的微生物增强型复合杂化微纳声敏***,使其实现氧气及单线态氧的持续输出,为低氧实体肿瘤超声治疗提供新方法。
(3)本发明构建的超声激发的微生物增强型复合杂化声动力微纳声敏***中,在超声辐射以及声敏剂和氧气的参与下,通过产生活性氧杀死肿瘤细胞。通过氧气含量测定,HIF-1α表达实验等数据结果考察其产氧机制。构建的超小缺氧锰钨双金属氧化物MnaWbOx表现出高效的超声波触发生成活性氧,由于 MnaWbOx的缺氧结构充当电子陷阱位点,可以防止电子-空穴复合,同时持续高效的供氧增加了活性氧的产量,有利于增强声动力触发的癌细胞杀伤。开发新型高性能多功能声敏剂,将为超声波触发的非侵入性、便捷和经济有效的癌症治疗奠定坚实的基础。
(4)绝大多数实体肿瘤内存在乏氧微环境,肿瘤细胞会激活一系列相关分子信号传导途径以适应乏氧微环境。HIF-1α是介导细胞对乏氧微环境进行适应性反应的关键性转录调控因子,在维持肿瘤细胞的能量代谢、心血管形成、细胞增殖和凋亡、肿瘤细胞侵袭转移等方面发挥重要的作用。本发明构建微纳声敏***,使得肿瘤区域发生再氧合,下调HIF-1α通路,改善肿瘤乏氧微环境,并且声动力治疗后导致了免疫原性的细胞死亡,由于氧气的产生和免疫增强的双重作用,从而实现了声动力与免疫的协同治疗。
(5)本发明提供了一种增强声动力疗法的有效方法,蓝细菌光合作用产氧改善了肿瘤内乏氧状态,超声激发产生大量的活性氧杀死癌细胞,同时肿瘤细胞的碎片可以作为抗原,解除免疫抑制微环境,激活其抗肿瘤免疫应答,从而实现肿瘤的高效活性氧与免疫协同治疗,从根本上防止肿瘤复发和转移,本发明拟深入研究探讨其协同治疗机制,以期为肿瘤的精准高效提供新的思路。
附图说明
图1所示为实施例所得的一种复合声敏剂用于肿瘤的声动力与免疫协同治疗的方法的实验流程图;
图2为复合声敏剂的制备实验结果,其中,a是MnaWbOx纳米粒子的TEM 图像;b是MnaWbOx纳米粒子的EDS-mapping图像;c是蓝细菌细胞的TEM图像;d是复合声敏剂MnaWbOx@Cyan的TEM图像;e是复合声敏剂MnaWbOx@Cyan的EDS-mapping图像;
图3为声敏剂的生物安全性评价预实验结果,a、b、c分别为不同浓度的蓝细菌、MnaWbOx纳米粒子、复合声敏剂MnaWbOx@Cyan的细胞毒性;
图4为蓝细菌产氧机制的实验结果,其中,a是肿瘤内注射蓝细菌(1.1×109细胞/毫升,100μL)并在激光照射下(50mW/cm2)在指定的时间点进行肿瘤光声成像;b是根据PA成像的平均氧水平的相应时间过程;c是瘤内注射蓝细菌(1.1×109细胞/毫升,100μL)后不同时间的HIF-1α和CD31免疫组织化学分析和H&E染色;d是瘤内注射蓝细菌(1.1×109细胞/毫升,100μL)后HIF-1α的蛋白质印迹分析;e、f是分别根据c对HIF-1α和CD31的表达进行量化的结果。
图5为在缺氧和常氧条件下测定4T1细胞的活力。
图6为不同处理后的活细胞(绿色荧光)和死亡或晚期凋亡细胞(红色荧光)染色结果,其中,第一列对照组、第二列US组、第三列M@C+激光组、第四列MnWOx NPs+US组、第五列M@C+激光+US组。
图7为通过瘤内注射对4T1荷瘤小鼠进行级联光合氧化增强声动力疗法的体内评价。
图8~10为本发明实施例5方案效果图。
具体实施方式
本文所公开的“范围”以下限和上限的形式。可以分别为一个或多个下限,和一个或多个上限。给定范围是通过选定一个下限和一个上限进行限定的。选定的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是包含和可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4 和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有步骤可以顺序进行,也可以随机进行,但是优选是顺序进行的。
实施例1
复合声敏剂的制备方法:
(1)采用高温有机相合成方法制备MnaWbOx初始粒子。将20mL苄醚、1.5g 的1,2-十二烷二醇和0.35g六羰基钨置入三颈烧瓶中,磁力搅拌混合;在氮气保护下,将混合体系加热至120℃,分别加入1ml油酸和1ml油胺,将其加热至 260℃,再加入0.25g乙酰丙酮锰,反应30分钟后,将体系冷却至室温,再加入过量乙醇,充分混合后离心,经环己烷和乙醇反复洗涤,收集生成的MnaWbOx初始粒子。
(2)使用C18-PEG-NH2来修饰合成的MnaWbOx初始粒子,简单地说,10mg MnaWbOx初始粒子和50mg C18-PEG-NH2混合于4mL氯仿中,超声作用15min。然后将混合溶液在室温下搅拌2h,氮气烘干制得MnaWbOx纳米粒子。将获得的 MnaWbOx-PEG-NH2样品溶解在去离子水中,4℃保存备用。
(3)由于蓝细菌表面带有负电荷,MnaWbOx纳米粒子表面带有正电荷,因此可通过正负电荷吸附作用将材料和蓝细菌进行结合。具体步骤如下:将一定数量的蓝细菌细胞分散在磷酸盐缓冲液中,室温下,将合适比例的MnaWbOx纳米粒子溶液加入上述溶液中,混合搅拌,离心洗涤,备用。
实施例2
在进行体内治疗评估之前,分别对不同分组的细胞的体内生物相容性进行了***研究。并且进一步检测白细胞(WBC)、平均血小板体积(MPV)、红细胞 (RBC)、平均红细胞血红蛋白(MCH)、淋巴细胞、血红蛋白(HGB)、中性粒细胞 (NEUT)等血液学指标,同时检测血清谷丙转氨酶(ALT)、天冬氨酸转氨酶(AST)、肌酐(CREA)和尿素等生化指标。
实施例3
(1)测试荷瘤小鼠模型中的再氧合和相关蛋白表达。首先,通过基于氧饱和度模式(sO2)的光声(PA)成像评估了激光照射下的体内肿瘤氧合效应。将蓝细菌(1.1×109细胞/毫升,100μL)注射到携带4T1肿瘤的Balb/C裸鼠中。PA成像监测sO2的产生;
(2)体内持续的肿瘤氧合可能导致HIF-1α的表达下调。然后通过蛋白质印迹监测HIF-1α的表达;
(3)HE染色与免疫组织化学染色动态监测监测HIF-1α和CD31的表达。
实施例4
采用钙黄绿素/碘化丙啶(Calcein-AM/PI)染色进一步评价体外SDT性能。将4T1癌细胞接种到共聚焦培养皿中使其附着。然后将贴壁的4T1细胞放入密封的厌氧产气袋或湿化培养箱中,获得缺氧或常氧细胞。12h后,将M@C生物混合声敏剂或Mn1.4WOx NP与4T1细胞在缺氧或常氧条件下共孵育12h。随后,将与M@C生物混合声敏剂共孵育的4T1细胞在预光照射后,用或不用US照射 1分钟。将与Mn1.4WOx NP共孵育的4T1细胞用US照射。然后用Calcein-AM/PI 37℃孵育15min,PBS洗涤,然后用激光共聚焦显微镜观察。
实施例5
20只植入4T1肿瘤的小鼠随机分为5组,荷瘤小鼠经或不经激光照射,瘤内注射不同的药物,试验期为2周。每两天测量并计算肿瘤体积和小鼠体重,得到时间变化曲线。观察期结束时,处死所有小鼠,解剖取主要脏器(心、肝、脾、肺、肾)和肿瘤组织。取肿瘤组织称重、照相、H&E、TUNEL试剂盒、Ki67 抗体染色。
图1所示为本方案的复合声敏剂用于肿瘤的声动力与免疫协同治疗的实验流程图。本发明的复合声敏剂,在近红外激光照射下,产氧微生物蓝细菌持续的光合作用产生氧气,使得缺氧肿瘤区域发生光合氧合,超声激发声敏剂 MnaWbOx纳米粒子将氧气转变成大量有细胞毒性的单线态氧,从而有效杀死肿瘤细胞和破坏肿瘤组织。肿瘤乏氧环境的改善和声动力治疗后导致的免疫原性细胞死亡,实现声动力与免疫的协同治疗。
如图2所示可以看出,前期初步制备了MnaWbOx、MnaWbOx-PEG、 MnaWbOx-NH2、MnaWbOx@Cyan纳米材料,通过TEM图像证明MnaWbOx纳米粒子呈现出均匀的球形形态,直径分布狭窄约为2-4nm,元素图谱显示出均匀分布的Mn、W、O元素共存(图2b),同时,TEM图谱显示蓝细菌细胞呈典型的棒状结构,长度为2-4μm(图2c),除此之外,图2e元素图谱进一步显示MnaWbOx纳米粒子可成功负载在Cyan上。
如图3所示可以看出,在30天的观察中,实验组和对照组均无死亡,行为明显异常,体重差异显著(图3a)。白细胞(WBC)、平均血小板体积(MPV)、红细胞(RBC)、平均红细胞血红蛋白(MCH)、淋巴细胞、血红蛋白(HGB)、中性粒细胞(NEUT)等血液学指标的结果表明,不同组间无显著差异(图3b-h)。同时血清谷丙转氨酶(ALT)、天冬氨酸转氨酶(AST)、肌酐(CREA)和尿素等生化指标的结果表明M@C对所有小鼠均无明显的肝肾毒性。
如图4所示可以看出,通过光声成像技术评价激光照射下体内肿瘤的氧合情况,在注射蓝细菌前,平均sO2值为10.6%,表明肿瘤区域存在相对缺氧水平。当注入蓝藻并接受10分钟的激光照射(50mW/cm2)时,观察到显着的氧气张力。如图4a所示,在辐照结束时可以观察到饱和sO2水平的***性增长。照射 10分钟后,平均饱和sO2水平从8.2%增加到28.0%。注射后60分钟后,平均 sO2值为16.2%,略高于对照组(图4b)。即使辐照后sO2水平逐渐降低,这种高氧张力水平仍可在注射后稳定保持75分钟,表明蓝细菌在体内持续产生sO2的能力。体内持续的肿瘤氧合可能导致HIF-1α的表达下调。然后通过蛋白质印迹和免疫组织化学染色动态监测HIF-1α的表达。如图4c所示,蓝细菌和激光照射组合可以显着下调HIF-1α的表达,特别是在给药2小时后。然后它在24小时时回到初始水平(图4f)。此外,CD31表达没有显着变化(图4e)。进一步的 WB分析发现注射后2小时HIF-1α表达水平最低,这与免疫组织化学染色一致(图4d)。这些结果表明,蓝藻光合作用引起的肿瘤再氧合可以进一步下调 HIF-1α的表达。众所周知,HIF-1α作为缺氧信号传导的操作介质已被证明在肿瘤进展中发挥重要作用。在某种程度上,HIF-1α的下调可能会提高治疗效果。
如图5所示,分别在缺氧和常氧条件下测定4T1细胞的活力。缺氧条件下,与Mn1.4WOx纳米声敏剂加US组(71.0%细胞活力)相比,常氧条件下细胞活力明显下降至48.0%,说明氧气在高效SDT中起着不可或缺的作用。值得注意的是,光照M@C在低氧条件下显示出更强的细胞毒性(29.0%细胞活力),这表明光照 M@C具有更强的肿瘤细胞杀伤功能。随后,采用钙黄素-乙酰氧甲基酯(钙黄素- AM)/碘化丙啶(PI)共染色进一步观察不同处理后的活细胞(绿色荧光)和死亡或晚期凋亡细胞(红色荧光)。对照组、US组和M@C加激光组分别出现较强的绿色荧光(图6),说明M@C低强度US照射具有较高的生物相容性和较低的细胞毒性。但Mn1.4WOx+US组和M@C+激光+US组在常氧条件下同时呈现明显的红色荧光信号,说明Mn1.4WOx和M@C均可作为US激活的声敏剂。
如图7所示,通过瘤内注射对4T1荷瘤小鼠进行级联光合氧化增强声动力疗法的体内评价。不同治疗后,每两天测量各组小鼠个体肿瘤体积和体重。整个治疗期间体重未见明显变化。14天治疗后,如图8、9所示,M@C+Laser+US 组的肿瘤生长明显受到抑制,肿瘤抑制率达到91.3%,说明在光合氧化和纳米声敏化剂支持的声动力ROS生成辅助下,耐缺氧声动力疗法具有较高的治疗效果。进一步采集肿瘤切片的H&E和免疫组化染色,观察其对肿瘤的高抑制效果。与对照组、US组和M@C+激光组正常肿瘤组织状态比较,M@C+Laser+US组可见明显的组织损伤和细胞坏死,细胞核收缩破裂(图10)。在Ki67抗体染色(图10) 中,M@C+Laser+US组的深棕色细胞代表肿瘤细胞增殖被显著抑制。同样, TUNEL染色显示,同一组不同处理后细胞凋亡的深棕色细胞面积最大。结果表明,蓝细菌介导的肿瘤微环境改善可以充分发挥声动力治疗的优势。体外和体内实验结果均证明,声敏化M@C生物杂交能提高活性氧的产生率,增强声动力疗法的效力,在激光照射下显著抑制肿瘤生长。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

1.一种复合声敏剂,其特征在于,所述复合声敏剂包括声敏剂纳米粒子以及产氧微生物。
2.如权利要求1所述的复合声敏剂,其特征在于,所述声敏剂纳米粒子为双金属锰钨氧化物纳米粒子。
3.如权利要求1所述的复合声敏剂,其特征在于,所述产氧微生物为蓝细菌。
4.一种制备如权利要求1~3任一项所述的复合声敏剂的方法,其特征在于,所述制备方法包括:通过静电吸附作用将声敏剂纳米粒子负载在产氧微生物表面完成所述复合声敏剂的构建。
5.如权利要求4所述的制备方法,其特征在于,所述产氧微生物表面带有负电荷,将所述产氧微生物分散在磷酸盐缓冲液中;所述声敏剂纳米粒子表面带有正电荷,将所述声敏剂纳米粒子加入所述磷酸盐缓冲液中,混合搅拌,所述产氧微生物和所述声敏剂纳米粒子通过正负电荷吸附作用进行结合。
6.如权利要求4所述的制备方法,其特征在于,所述声敏剂纳米粒子为双金属锰钨氧化物纳米粒子,所述双金属锰钨氧化物纳米粒子的制备方法包括:
使用高温有机相合成法制备双金属锰钨氧化物初始粒子;以及
使用氨基聚乙二醇硬脂酸对所述双金属锰钨氧化物初始粒子进行改性修饰得到所述双金属锰钨氧化物纳米粒子。
7.如权利要求6所述的制备方法,其特征在于,所述高温有机相合成法的步骤包括:将10-20mL苄醚、1-1.5g的1,2-十二烷二醇和0.35-0.5g六羰基钨置入三颈烧瓶中,搅拌混合,在惰性气体保护下,将混合体系进行第一次加热,分别加入1-3ml油酸和1-3ml油胺,将其进行第二次加热,再加入0.25g乙酰丙酮锰,反应30分钟后,将体系冷却至室温,再加入过量乙醇,充分混合后离心,经洗涤剂反复洗涤,收集生成的所述双金属锰钨氧化物初始粒子。
8.如权利要求7所述的制备方法,其特征在于,所述第一次加热的温度为100-120℃,所述第二次加热的温度为230-260℃。
9.如权利要求7所述的制备方法,其特征在于,所述洗涤剂为环己烷和乙醇的混合物。
10.如权利要求6所述的制备方法,其特征在于,对所述双金属锰钨氧化物初始粒子进行改性修饰的步骤包括:将10-12mg所述双金属锰钨氧化物初始粒子和50mg氨基聚乙二醇硬脂酸混合于4-5mL氯仿中,超声作用15-30min,然后将混合溶液在室温下搅拌2-3h,氮气烘干。
CN202110911105.2A 2021-08-09 2021-08-09 一种复合声敏剂及其制备方法 Active CN113599518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110911105.2A CN113599518B (zh) 2021-08-09 2021-08-09 一种复合声敏剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110911105.2A CN113599518B (zh) 2021-08-09 2021-08-09 一种复合声敏剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113599518A true CN113599518A (zh) 2021-11-05
CN113599518B CN113599518B (zh) 2023-04-07

Family

ID=78307870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110911105.2A Active CN113599518B (zh) 2021-08-09 2021-08-09 一种复合声敏剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113599518B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114246947A (zh) * 2021-12-27 2022-03-29 中国科学院苏州纳米技术与纳米仿生研究所 不依赖肿瘤微环境中氧气的无机声敏剂、制备方法及应用
CN114432458A (zh) * 2022-01-21 2022-05-06 同济大学 一种细菌载药***及其制备方法
CN114796492A (zh) * 2022-05-12 2022-07-29 大连理工大学 一种超声驱动纳米声敏疫苗及其制备和应用
CN115040773A (zh) * 2022-06-22 2022-09-13 西南交通大学 一种治疗慢性感染创面的微针贴片及其制备方法和应用
CN115944732A (zh) * 2023-03-14 2023-04-11 成都中医药大学 一种铋基多孔纳米材料及其制备方法和应用
WO2023104124A1 (zh) * 2021-12-08 2023-06-15 深圳先进技术研究院 一种活生物自产氧声敏剂开发及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350605B1 (en) * 1989-12-28 2002-02-26 Naoki Mita Microorganisms, microbial symbionts, their culture methods, and methods for treating manganese-containing water using them
US20150335741A1 (en) * 2008-12-12 2015-11-26 Board Of Trustees Of The University Of Arkansas In vivo photoacoustic and photothermal nano-theranostics of biofilms
CN105285536A (zh) * 2014-07-25 2016-02-03 香港中文大学深圳研究院 一种声动力灭活食品微生物的方法
CN109395105A (zh) * 2018-11-05 2019-03-01 中山大学 一种聚氨基酸声敏剂及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350605B1 (en) * 1989-12-28 2002-02-26 Naoki Mita Microorganisms, microbial symbionts, their culture methods, and methods for treating manganese-containing water using them
US20150335741A1 (en) * 2008-12-12 2015-11-26 Board Of Trustees Of The University Of Arkansas In vivo photoacoustic and photothermal nano-theranostics of biofilms
CN105285536A (zh) * 2014-07-25 2016-02-03 香港中文大学深圳研究院 一种声动力灭活食品微生物的方法
CN109395105A (zh) * 2018-11-05 2019-03-01 中山大学 一种聚氨基酸声敏剂及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FEI GONG等: "Ultrasmall Oxygen-Deficient Bimetallic Oxide MnWOX Nanoparticles for Depletion of Endogenous GSH and Enhanced Sonodynamic Cancer Therapy", 《ADV. MATER.》 *
SHUTING LU等: "Photosynthetic Oxygenation-Augmented Sonodynamic Nanotherapy of Hypoxic Tumors" *
SHUTING LU等: "Photosynthetic Oxygenation-Augmented Sonodynamic Nanotherapy of Hypoxic Tumors", 《ADV. HEALTHCARE MATER.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104124A1 (zh) * 2021-12-08 2023-06-15 深圳先进技术研究院 一种活生物自产氧声敏剂开发及其应用
CN114246947A (zh) * 2021-12-27 2022-03-29 中国科学院苏州纳米技术与纳米仿生研究所 不依赖肿瘤微环境中氧气的无机声敏剂、制备方法及应用
CN114432458A (zh) * 2022-01-21 2022-05-06 同济大学 一种细菌载药***及其制备方法
CN114796492A (zh) * 2022-05-12 2022-07-29 大连理工大学 一种超声驱动纳米声敏疫苗及其制备和应用
CN114796492B (zh) * 2022-05-12 2023-01-13 大连理工大学 一种超声驱动纳米声敏疫苗及其制备和应用
CN115040773A (zh) * 2022-06-22 2022-09-13 西南交通大学 一种治疗慢性感染创面的微针贴片及其制备方法和应用
CN115040773B (zh) * 2022-06-22 2023-10-13 西南交通大学 一种治疗慢性感染创面的微针贴片及其制备方法和应用
CN115944732A (zh) * 2023-03-14 2023-04-11 成都中医药大学 一种铋基多孔纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113599518B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN113599518B (zh) 一种复合声敏剂及其制备方法
Zhang et al. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy
Ma et al. Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy
Chen et al. A theranostic nrGO@ MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor
Chen et al. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters
Chen et al. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
CN110215438B (zh) 双载蒽环类药物及光敏剂介孔硅纳米粒的制备方法与应用
CN108578716B (zh) 一种聚多巴胺包裹的磁性介孔二氧化硅纳米材料及其制备和应用
CN113599520B (zh) 一种卟啉脂质-全氟化碳纳米制剂及其制备方法和用途
Wang et al. Co-delivery of enzymes and photosensitizers via metal-phenolic network capsules for enhanced photodynamic therapy
CN112206221B (zh) 一种负载斑蝥素的巨噬细胞膜包封的金属有机框架纳米颗粒及其制备方法
CN112263679B (zh) 一种靶向载氧纳米声敏剂及其制备方法
Wang et al. Near-infrared light triggered photothermal therapy and enhanced photodynamic therapy with a tumor-targeting hydrogen peroxide shuttle
CN113559064A (zh) 一种新型自供氧脂质体纳米粒及其制备方法与应用
Tang et al. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy
WO2022067885A1 (zh) 掺杂型二氧化钛在制备声敏剂中的应用
Liu et al. An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy
CN111821436B (zh) 肿瘤原位产氧增敏光动力疗效的靶向穿透型纳米诊疗复合物及其构建方法
CN110917349B (zh) 一种碗状isp复合功能性纳米粒子及其制备方法和应用
CN110115763B (zh) 一种近红外光激活的多功能脂质体及其制备方法与应用
CN110152021B (zh) 一种具备癌细胞内靶向给药能力的药物载体***及其制备方法
CN114887056B (zh) 一种基于供氧和超小Cu-Se-Au的多功能仿生纳米粒子的制备方法和应用
CN114470231B (zh) 一种叶酸-羟烷基淀粉大分子稳定共载光敏剂和小分子前药的纳米载药***、其制备和应用
CN110642865B (zh) 一种高电荷阳离子卟啉在制备pdt纳米光敏剂中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant