CN113584436A - 一种基于非溶剂的钙钛矿薄膜、制备方法及应用 - Google Patents

一种基于非溶剂的钙钛矿薄膜、制备方法及应用 Download PDF

Info

Publication number
CN113584436A
CN113584436A CN202110866416.1A CN202110866416A CN113584436A CN 113584436 A CN113584436 A CN 113584436A CN 202110866416 A CN202110866416 A CN 202110866416A CN 113584436 A CN113584436 A CN 113584436A
Authority
CN
China
Prior art keywords
thin film
perovskite thin
cspbbr
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110866416.1A
Other languages
English (en)
Other versions
CN113584436B (zh
Inventor
陈永生
郭海中
刘林林
王嘉铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110866416.1A priority Critical patent/CN113584436B/zh
Publication of CN113584436A publication Critical patent/CN113584436A/zh
Application granted granted Critical
Publication of CN113584436B publication Critical patent/CN113584436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于非溶剂的钙钛矿薄膜、制备方法及应用,属于半导体材料技术领域。包括以下步骤:将一定比例的粉体原料混合后,于200~300℃处理0.5~1.5h,获得反应后的混合粉末;在真空条件下,采用电子束蒸发法,将反应后的混合粉末沉积至预设的衬底上,获得钙钛矿薄膜;将获得的钙钛矿薄膜,于100~450℃,退火5~50min,即得高质量的钙钛矿薄膜。本发明提供的方法无需溶剂参与,过程简单、可控进行CsPbBr3薄膜的制备。

Description

一种基于非溶剂的钙钛矿薄膜、制备方法及应用
技术领域
本发明属于半导体材料技术领域,具体涉及一种基于非溶剂的钙钛矿薄膜、制备方法及应用。
背景技术
近年来,有机-无机杂化钙钛矿材料因其优异的性能,在太阳能电池、二极管、光电探测器、激光器和场效应管等领域具有巨大的应用潜力,而其在太阳能电池领域的应用自然成为众多科学家的研究内容。自2009年以来,它的转换效率在短短十几年里由3.8%就上升到了25.5%。尽管它的光电转换效率发展迅速,但其A位的有机成分易受湿、热、光的影响降解,导致其效率衰减,不稳定。而全无机钙钛矿不含有机组分,大大的提高了其热稳定性。尤其是CsPbBr3,因其较大的容忍因子,具有优异的稳定性。电池的理论极限效率为16.37%,目前实验室最高效率为10.91%,开路电压可达1.7V。如此高的开路电压和优异的稳定性可以使它作为叠层电池的顶电池使用,特别是4端子叠层电池。因此CsPbBr3钙钛矿的研究还是具有十分重要的意义。
目前制备钙钛矿薄膜的方法常为溶剂法,成本低,操作简便;但是其缺点也显而易见,比如成膜不均匀,溶剂有毒性,对环境有害等。在制备CsPbBr3薄膜时,CsBr通常使用的有机溶剂,如二甲基亚砜(DMSO)和二甲基甲酰胺(DMF)等,中溶解度低,很难采用一步溶液法制备出致密、高质量的CsPbBr3薄膜,而采用多步溶液法时又比较容易产生杂相。此外,当制备大面积器件时,溶液法难以形成均匀且致密的薄膜,表面形貌较差。而当采用多源真空蒸发法时,沉积参数不易控制,操作繁琐。
发明内容
本发明的目的在于针对上述方法所存在的缺点与不足,提供一种基于非溶剂制备钙钛矿薄膜的方法,该方法无需溶剂参与,过程简单、可控进行CsPbBr3薄膜的制备。
本发明第一个目的是提供一种基于非溶剂制备钙钛矿薄膜的方法,包括以下步骤:
将一定比例的粉体原料混合后,于200~300℃处理0.5~1.5h,获得反应后的混合粉末;
在真空条件下,采用蒸发法,将反应后的混合粉末沉积至预设的衬底上,获得钙钛矿薄膜;
将获得的钙钛矿薄膜,于100~450℃,退火5~50min,即得退火后的钙钛矿薄膜。
优选的,所述原料为粉体的CsBr和PbBr2
更优选的,所述CsBr和PbBr2摩尔比为1~2:1。
更优选的,所述钙钛矿薄膜为CsPbBr3薄膜。
优选的,所述蒸发法采用电子束蒸发法。
更优选的,所述蒸发法采用电子束蒸发法,所述调节蒸发束流为1-10mA。
优选的,所述衬底在使用前是按照以下步骤处理:
将衬底泡入去离子水中,用棉签蘸取洗洁精擦拭衬底表面;接着依次将衬底于去离子水、丙酮、酒精、异丙醇中均超声8~12min,超声完成后,将衬底自然晾干,最后用紫外灯照射衬底8~12min。
更优选的,所述衬底为石英玻璃衬底或掺杂氟的SnO2导电玻璃。
本发明第二个目的是提供一种钙钛矿薄膜。
本发明第三个目的是提供一种钙钛矿薄膜在太阳能电池中的应用。
本发明与现有技术相比具有如下有益效果:
本发明首先将前驱物按照一定的比例混合研磨,然后将研磨后的粉末放在反应釜中加热反应。再将所制得的粉末作为靶材在电子束高真空环境沉积制备CsPbBr3薄膜。后续的退火是为了进一步优化薄膜质量。
本发明提供的制备方法,整个过程清洁、简单、可控,在前期混合过程中,使原料混合反应,接着将混合后的加热反应,使得混合物进一步反应,这个过程不仅避免有毒溶剂的使用,而且高温反应后的粉末前驱物含量会减少,有利于改善后期蒸发制备薄膜的结晶度。采用电子束蒸发镀膜可以改善薄膜的质量,使其更均匀致密。后退火处理可以优化薄膜质量,提高结晶度,增大晶粒尺寸。
本发明提供的方法使得CsPbBr3薄膜在空气中具有优异的稳定性。
本发明原料易得,操作简单,满足商业化生产要求。
附图说明
图1为实施例钙钛矿薄膜的制备过程示意图。
图2为应用实施例1构筑的CsPbBr3电池的结构图(a)和实物图(b)。
图3为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜(as-prepared)的X射线衍射测试图谱。
图4为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜(as-prepared)的紫外可见(UV-Vis)透射光谱。
图5为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜(as-prepared)的光致发光(PL)测试光谱。
图6为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜(as-prepared)的扫描电子显微镜(SEM)照片。
图7为应用实施例1~4提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池(as-prepared)的I-V曲线。
图8为应用实施例1和应用实施例5~8提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池(as-prepared)的I-V曲线。
图9为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜(as-prepared)的X射线衍射测试图谱。
图10为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜(as-prepared)的紫外可见(UV-Vis)透射光谱。
图11为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜(as-prepared)的光致发光(PL)测试光谱。
图12为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜(as-prepared)的扫描电子显微镜(SEM)照片。
图13为应用实施例9~12提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池(as-prepared)的的I-V曲线。
图14为应用实施例11和应用实施例13~17提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池(as-prepared)的的I-V曲线。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
需要说明的是,下述各实施例中采用的CsBr粉体的纯度≥99.9%;PbBr2粉体纯度≥99.9%;其他试剂和材料,如无特殊说明,均可在市场上购买得到;所述实验方法中如无特殊说明,均为常规方法。
实施例1
一种基于非溶剂制备钙钛矿薄膜的方法,见图1,包括以下步骤:
将石英玻璃衬底泡入去离子水中片刻去除衬底表面灰尘。然后用棉签蘸取洗洁精擦拭衬底表面。接着分别用去离子水、丙酮、酒精、异丙醇将擦拭干净的衬底超声10min,超声完成后,将衬底自然晾干,最后用紫外灯(UV)照射衬底10min。
称量CsBr:PbBr2=1:1摩尔比的原料倒进研钵中进行混合研磨,不需要加任何溶液,研磨至橙黄色,说明原料反应;之后将混合粉末倒进反应釜内衬中,此步骤也不要加入任何溶液,拧紧反应釜形成封闭空间,将反应釜放置在鼓风干燥箱中250℃反应1h,待其冷却到室温取出备用;
用耐高温胶带将玻璃衬底固定在电子束蒸发镀膜机的基片架上,将反应釜反应后的混合粉末为靶材的坩埚放置在靶台上,调整基片架与靶台的距离,关闭真空室,镀制时将真空室的压强抽至4.0×10-4Pa,打开蒸发电源,设定手动镀制程序,预热机器5min,启动电子枪加热蒸发靶材,设置灯丝电流为0.5A、灯丝电压105-110V,调节蒸发束流为1mA,蒸镀时间为1min,调节蒸发束流为2mA,蒸镀时间为30S,调节蒸发束流为3mA,蒸镀时间为30S,调节蒸发束流为4mA,蒸镀时间为1min,调节蒸发束流为5mA,蒸镀时间为5min;沉积完成后,手动关闭镀制程序,真空室中充入氮气,打开放气孔,取出CsPbBr3薄膜。
将沉积好的CsPbBr3薄膜放进瓷舟中,在马弗炉中根据目标温度和目标时间设定程序,进行退火。设置退火时间为10min,退火温度依次为300℃;当退火过程结束后自动降温,待薄膜冷却至温室时,打开马弗炉,取出CsPbBr3钙钛矿薄膜。
实施例2
与实施例1相同,不同之处在于,退火温度为100℃。
实施例3
与实施例1相同,不同之处在于,退火温度为200℃。
实施例4
与实施例1相同,不同之处在于,退火温度为350℃。
实施例5
与实施例1相同,不同之处在于,退火温度为400℃。
实施例6
与实施例1相同,不同之处在于,退火温度为450℃。
实施例7
与实施例1相同,不同之处在于,退火时间为5min。
实施例8
与实施例1相同,不同之处在于,退火时间为20min。
实施例9
与实施例1相同,不同之处在于,退火时间为30min。
实施例10
与实施例1相同,不同之处在于,退火时间为40min。
实施例11
与实施例1相同,不同之处在于,CsBr:PbBr2的摩尔比为2:1。
实施例12
与实施例11相同,不同之处在于,退火温度为250℃。
实施例13
与实施例11相同,不同之处在于,退火温度为350℃。
实施例14
与实施例11相同,不同之处在于,退火温度为400℃。
应用实施例1
一种基于非溶剂的钙钛矿薄膜在太阳能电池中的应用,见图1~2,将基于非溶剂的钙钛矿薄膜应用于太阳能电池的制备方法如下:
将刻蚀掺杂氟的SnO2导电玻璃(FTO)衬底泡入去离子水中片刻去除衬底表面灰尘。然后用棉签蘸取洗洁精擦拭衬底表面。接着分别用去离子水、丙酮、酒精、异丙醇将擦拭干净的衬底超声10min,超声完成后,将衬底自然晾干,最后用紫外灯(UV)照射衬底10min。
用试管刷和洗洁精刷洗烧杯,然后用去离子水超声清洗烧杯,将其自然晾干。在烧杯中加入冰水混合物至100mL刻度线,放置在磁力搅拌器上,边搅拌边缓慢滴入2.2mL冷藏TiCl4溶液,分为22次缓慢滴加,然后室温搅拌30min。搅拌结束后,将清洗好的FTO,用耐高温胶带贴住边缘,防止全部沉积上TiO2薄膜之后,造成后续制备的电池短路。之后正面朝上浸没TiCl4溶液当中,封好口。然后放入恒温水浴锅中,70℃水浴。水浴完成后,去掉胶带,分别用去离子水和无水乙醇对其表面进行冲洗,然后用高纯氮气吹干备用。
称量CsBr:PbBr2=1:1摩尔比的原料倒进研钵中进行混合研磨,不需要加任何溶液,研磨至橙黄色,说明原料反应;之后将混合粉末倒进反应釜内衬中,此步骤也不要加入任何溶液,拧紧反应釜形成封闭空间,将反应釜放置在鼓风干燥箱中250℃反应,待其冷却到室温取出备用。
用沉积过TiO2薄膜的FTO固定在电子束蒸发镀膜机的基片架上,将反应釜反应后的混合粉末为靶材的坩埚放置在靶台上,调整基片架与靶台的距离,关闭真空室,镀制时将真空室的压强抽至4.0×10-4Pa,打开蒸发电源,设定手动镀制程序,预热机器5min,启动电子枪加热蒸发靶材,设置灯丝电流为0.5A、灯丝电压105-110V,调节蒸发束流为1mA,蒸镀时间为1min,调节蒸发束流为2mA,蒸镀时间为30S,调节蒸发束流为3mA,蒸镀时间为30S,调节蒸发束流为4mA,蒸镀时间为1min,调节蒸发束流为5mA,蒸镀时间为5min;沉积完成后,手动关闭镀制程序,真空室中充入氮气,打开放气孔,取出CsPbBr3薄膜。
将沉积好的CsPbBr3薄膜放进瓷舟中,在马弗炉中根据目标温度和目标时间设定程序,进行退火。设置退火时间为10min,退火温度为300℃;当退火过程结束后自动降温,待薄膜冷却至温室时,打开马弗炉,取出CsPbBr3钙钛矿薄膜。
用胶带粘贴沉积的退火处理的CsPbBr3薄膜FTO非电极部分,随后将碳浆刮涂到吸收层表面;静置30min后,100℃退火30min。即得基于非溶剂的钙钛矿薄膜太阳能电池器件,器件的有效面积为0.06cm2。图2为构筑的电池的结构图(a)和实物图(b)。
应用实施例2
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火的温度为100℃。
应用实施例3
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火的温度为200℃。
应用实施例4
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火的温度为350℃。
应用实施例5
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火时间为5min。
应用实施例6
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火时间为20min。
应用实施例7
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火时间为30min。
应用实施例8
与应用实施例1相同,不同之处在于,CsPbBr3薄膜退火时间为40min。
应用实施例9
与应用实施例1相同,不同之处在于,将基于非溶剂的钙钛矿薄膜应用于太阳能电池的的制备方法中,CsBr:PbBr2的摩尔比为2:1。
应用实施例10
与应用实施例9相同,不同之处在于,CsPbBr3薄膜退火的温度为250℃。
应用实施例11
与应用实施例9相同,不同之处在于,CsPbBr3薄膜退火的温度为350℃。
应用实施例12
与应用实施例9相同,不同之处在于,CsPbBr3薄膜退火的温度为400℃。
应用实施例13
与应用实施例11相同,不同之处在于,CsPbBr3薄膜退火时间为5min。
应用实施例14
与应用实施例11相同,不同之处在于,CsPbBr3薄膜退火时间为15min。
应用实施例15
与应用实施例11相同,不同之处在于,CsPbBr3薄膜退火时间为20min。
应用实施例16
与应用实施例11相同,不同之处在于,CsPbBr3薄膜退火时间为30min。
应用实施例17
与应用实施例11相同,不同之处在于,CsPbBr3薄膜退火时间为40min。
为了说明本发明提供的一种基于非溶剂制备钙钛矿薄膜的方法所得到的钙钛矿薄膜的相关性能,对实施例1~4中制备出的全无机Pb基钙钛矿薄膜相关性能进行测试,见图3~14所示,及表1~4。
图3为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜(as-prepared)的X射线衍射测试图谱;
从图3可知,直接沉积的薄膜在11.73°处出现的衍射峰对应CsPb2Br5的(002)晶向;在15.18°、21.58°、30.48°、30.82°、34.36°和38.04°处出现的衍射峰为CsPbBr3的(101)、(121)、(040)、(202)、(222)和(123)晶向(PDF#54-0751)。这说明薄膜为CsPb2Br5和CsPbBr3的混合膜。退火温度较低时,CsPb2Br5的(002)衍射峰强度随温度的升高而增强;退火温度升高至300℃,衍射峰强度急剧降低;经350℃退火后,衍射峰完全消失。这说明在300℃时,CsPb2Br5发生热分解,生成CsPbBr3和PbBr2,而PbBr2由于熔点低,高温时会气化挥发而被去除。CsPbBr3组分以正交相存在于薄膜中。当退火温度比较低时,(101)、(202)晶向的衍射峰强度随温度的升高而降低;当退火温度高于300℃时,又随着退火温度的升高而增强。(121)和(123)晶向的衍射强度随着退火温度的升高而增强;然而当退火温度达到450℃时,两晶向衍射峰消失。
图4为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜的紫外可见(UV-Vis)透射光谱;
从图4可知,CsPbBr3薄膜的吸收边在528nm处,对应带隙为2.34eV。由图可知,随退火温度升高,吸收边略有红移,退火温度为400℃和450℃时,带隙约为2.3eV。吸收强度随着退火温度升高呈先增强后减弱趋势,300℃退火后,薄膜的吸收强度最强。当退火温度大于300℃时,薄膜吸收强度下降,尤其是短波范围吸收强度减弱。
图5为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜的光致发光(PL)测试光谱;
从图5可知,薄膜光致发光强度随退火温度升高逐渐递增,450℃退火时的发光峰强度达到最大,说明随退火温度升高薄膜缺陷减少。由图可知PL谱发光峰随退火温度逐渐红移,与吸收光谱变化趋势一致。说明进行后退火会提高薄膜质量。
图6为实施例1~6提供的退火后的CsPbBr3薄膜及实施例1中未退火的CsPbBr3薄膜的扫描电子显微镜(SEM)照片;
从图6可知,由于室温沉积过程入射原子能量低,成膜过程中临界晶核较多,因此会形成较多晶粒尺寸较小的晶粒,且100℃退火后,薄膜的晶粒尺寸变化不大。随着退火温度升高,晶粒逐渐长大。200℃退火后,晶粒明显较之前有所增加,说明在薄膜退火过程中,原子从外界获取能量而发生体扩散,晶粒间逐渐融合长大。当退火温度达到300℃时,晶粒明显变大,平均1μm的晶粒间紧密相接,薄膜表明更为平整。退火温度进一步升高,薄膜晶粒仍旧继续长大,但出现裸露的衬底,表明原子会进一步扩散。图中350℃退火后,晶粒边界存在小颗粒,400℃退火后晶粒边界无小颗粒存在。退火温度进一步升高,孔洞增大。说明退火会增大晶粒尺寸,改变薄膜形貌。
图7为应用实施例1~4提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的I-V曲线;
从图7可知,薄膜在300℃退火后功率转换效率(PCE)较高,但也仅有2.37%。不同温度退火后钙钛矿太阳能电池(PSCs)具体参数见表1。为进一步优化该条件下CsPbBr3的器件,针对300℃退火温度进行了不同退火时间的优化,见图8所示。
表1为应用实施例1~4提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的具体参数
Figure BDA0003187474600000101
Figure BDA0003187474600000111
图8为应用实施例1和应用实施例5~8提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的I-V曲线;
从图8可知,在300℃退火不同时间后,器件的Voc变化不大,在1.35V左右波动,但是当退火时间为40min时,电压降低到0.93V。与电压变化情况不同,Jsc随退火时间延长会先增大后减小,退火30min后器件的Jsc最大,值5.82mA/cm2。PSCs具体参数见表2。器件的PCE随退火时间的增加先升高后降低。在300退火30min后,电池获得5.93%的效率。
表2为应用实施例1和应用实施例5~8提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池(as-prepared)的具体参数
Figure BDA0003187474600000112
图9为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜(as-prepared)的X射线衍射测试图谱;
从图9可知,在不同退火温度的条件下,取向和强度是有所变化的;未退火的原始薄膜在15.18°和30.82°的峰对应于CsPbBr3正交相的(101)和(202)取向。当退火温度为250℃时,薄膜(101)和(202)晶向强度变弱,沿21.58°的(121)晶向和38.04°的(123)晶向生长。当退火温度进一步增加,沿(121)和(123)晶向生长强度变弱,薄膜又重新沿(101)和(202)晶向择优生长。同时,当退火温度达到350℃时峰强达到最强,温度继续升高,特征峰强度有所下降。并且我们计算了此样品(202)晶向的半全峰宽(FWHM)(0.163),与400℃(0.201)相比,半全峰宽值较小,说明350℃结晶性更优。证明这种实验条件下后退火温度对薄膜结晶性有着重大影响,并且350℃退火温度结晶性是所有样品中最好的。
图10为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜的紫外可见(UV-Vis)透射光谱;
从图10可知,所有不同退火温度条件的样品均在~520nm出现一个吸收边。并且可以观察到,随着退火温度的增加,吸收边强度发生变化。具体而言,随着退火温度的升高,吸收峰强度先增强后减弱。当退火温度达到350℃时,吸光强度最高。这说明结晶性的增强以及晶粒的增大提高了光捕获能力。
图11为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜的光致发光(PL)测试光谱;
从图11可知,原始薄膜在515nm处出现PL峰,随着退火温度的增加,峰的强度先是减弱,当温度达到350℃时,530nm处的PL强度显著增强。退火薄膜的峰值强度,表明退火薄膜结晶度提高,晶粒尺寸增大,同时也说明钙钛矿层中缺陷辅助的光生载流子的非辐射复合得到了显著抑制。当温度上升至400℃时,强度又有所下降,这与XRD和测试结果相吻合。
图12为实施例11~14提供的退火后的CsPbBr3薄膜及实施例11中未退火的CsPbBr3薄膜的扫描电子显微镜(SEM)照片;
从图12可知,这些钙钛矿薄膜均具有致密无针孔的形貌,并且随着退火温度的增加,晶粒尺寸不断变大。当退火温度为350℃时,晶粒尺寸可达微米级别。随着退火温度进一步提高,晶粒尺寸进一步增大。但是,从图中看出,400℃退火形貌较350℃退火形貌晶粒尺寸进一步增大,我们推测粗糙度可能会进一步增大,这将影响活性层与其他层的接触,导致器件性能下降。无论如何,从图中得出结论退火温度确实会改善薄膜形貌,增大晶粒尺寸。
图13为应用实施例9~12提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的I-V曲线;
图14为应用实施例11和应用实施例13~17提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的I-V曲线;
从图13~14可知,具体的光伏参数见表3和表4。基于未退火的CsPbBr3薄膜制备的器件,转换效率仅有0.64%,短路电流为1.61mA/cm2,开路电压为0.92V,填充因子为43.26%。这是由于钙钛矿薄膜中晶粒较小,存在大量晶界,导致载流子大量复合,使器件性能指标降低。在350℃的条件下进行退火,使该器件的性能得到了很大的提高。转换效率上升到了7.81%,开路电压更是提高到了1.43V,填充因子也达到了79.96%,短路电流为6.81mA/cm2。当退火温度继续增加到400℃时,可能由于薄膜粗糙度明显增大,可能导致钙钛矿活性层与碳浆接触不良,导致开路电压和短路电流降低,最终得到7.15%的转换效率。我们同样发现,退火时间只对器件存在微弱影响,所构筑的各个不同退火时间的器件转换效率都在7%以上除了40min退火的样品。
表3为应用实施例9~12提供的太阳能电池及采用未退火的CsPbBr3薄膜制成的太阳能电池的具体参数
Figure BDA0003187474600000131
表4为应用实施例11和应用实施例13~17提供的退火的CsPbBr3薄膜制成的器件的具体参数
Figure BDA0003187474600000141
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。

Claims (10)

1.一种基于非溶剂制备钙钛矿薄膜的方法,其特征在于,包括以下步骤:
将一定比例的粉体原料混合后,于200~300℃处理0.5~1.5h,获得反应后的混合粉末;
在真空条件下,采用蒸发法,将反应后的混合粉末沉积至预设的衬底上,获得钙钛矿薄膜;
将获得的钙钛矿薄膜,于100~450℃,退火5~50min,即得退火后的钙钛矿薄膜。
2.根据权利要求1所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述原料为粉体的CsBr和PbBr2,通过研磨方式进行混合。
3.根据权利要求2所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述CsBr和PbBr2摩尔比为1~2:1。
4.根据权利要求2所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述钙钛矿薄膜为CsPbBr3薄膜。
5.根据权利要求1所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述蒸发法采用电子束蒸发法。
6.根据权利要求5所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述蒸发法采用电子束蒸发法,所述调节蒸发束流为1-10mA。
7.根据权利要求1所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述衬底在使用前是按照以下步骤处理:
将衬底泡入去离子水中,用棉签蘸取洗洁精擦拭衬底表面;接着依次将衬底于去离子水、丙酮、酒精、异丙醇中均超声8~12min,超声完成后,将衬底自然晾干,最后用紫外灯照射衬底8~12min。
8.根据权利要求7所述的基于非溶剂制备钙钛矿薄膜的方法,其特征在于,所述衬底为石英玻璃衬底或掺杂氟的SnO2导电玻璃。
9.一种权利要求1~8任一项所述的方法制得的钙钛矿薄膜。
10.权利要求9所述的钙钛矿薄膜在太阳能电池中的应用。
CN202110866416.1A 2021-07-29 2021-07-29 一种基于非溶剂的钙钛矿薄膜、制备方法及应用 Active CN113584436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110866416.1A CN113584436B (zh) 2021-07-29 2021-07-29 一种基于非溶剂的钙钛矿薄膜、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110866416.1A CN113584436B (zh) 2021-07-29 2021-07-29 一种基于非溶剂的钙钛矿薄膜、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113584436A true CN113584436A (zh) 2021-11-02
CN113584436B CN113584436B (zh) 2023-06-06

Family

ID=78252018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110866416.1A Active CN113584436B (zh) 2021-07-29 2021-07-29 一种基于非溶剂的钙钛矿薄膜、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113584436B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903859A (zh) * 2021-12-02 2022-01-07 中国华能集团清洁能源技术研究院有限公司 一种干法制备钙钛矿层的方法和钙钛矿型太阳能器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016646A (zh) * 2019-03-25 2019-07-16 华中科技大学 一种用于高能射线探测的铅基卤素钙钛矿膜的制备方法
CN110504363A (zh) * 2019-07-31 2019-11-26 浙江天地环保科技有限公司 一种全无机钙钛矿太阳能电池制备方法
CN112226738A (zh) * 2020-11-09 2021-01-15 曲阜师范大学 一种无机铯铅卤钙钛矿磁控溅射靶材制备与回收和薄膜生长技术
FR3111919A1 (fr) * 2020-06-30 2021-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de depot d’une couche de perovskite inorganique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016646A (zh) * 2019-03-25 2019-07-16 华中科技大学 一种用于高能射线探测的铅基卤素钙钛矿膜的制备方法
CN110504363A (zh) * 2019-07-31 2019-11-26 浙江天地环保科技有限公司 一种全无机钙钛矿太阳能电池制备方法
FR3111919A1 (fr) * 2020-06-30 2021-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de depot d’une couche de perovskite inorganique
CN112226738A (zh) * 2020-11-09 2021-01-15 曲阜师范大学 一种无机铯铅卤钙钛矿磁控溅射靶材制备与回收和薄膜生长技术

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOUSRA EL AJJOURI.ET.AL.: "Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites", 《CHEMISTRY OF MATERIALS》 *
YOUSRA EL AJJOURI.ET.AL.: "Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites", 《CHEMISTRY OF MATERIALS》, 25 October 2018 (2018-10-25), pages 1 - 4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903859A (zh) * 2021-12-02 2022-01-07 中国华能集团清洁能源技术研究院有限公司 一种干法制备钙钛矿层的方法和钙钛矿型太阳能器件

Also Published As

Publication number Publication date
CN113584436B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
Wan et al. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology
Troughton et al. Photonic flash-annealing of lead halide perovskite solar cells in 1 ms
Tsang et al. Transparent conducting aluminum-doped zinc oxide thin film prepared by sol–gel process followed by laser irradiation treatment
WO2019148326A1 (zh) 钙钛矿薄膜的制备方法及其应用
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
KR101583026B1 (ko) Czts계 태양전지용 박막의 제조방법
Peng et al. High-performance perovskite solar cells fabricated by vapor deposition with optimized PbI 2 precursor films
CN112289932A (zh) 钙钛矿薄膜及其制备方法和应用
Xie et al. Fabrication of Sb2S3 solar cells by close space sublimation and enhancing the efficiency via co-selenization
CN111697142A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法
CN113584436B (zh) 一种基于非溶剂的钙钛矿薄膜、制备方法及应用
Xu et al. Low temperature-processed stable and high-efficiency carbon-based CsPbI2Br perovskite solar cells by additive strategy
CN109728111B (zh) 一种基于溴化铜制备高性能全无机钙钛矿太阳能电池的方法
CN111244291B (zh) 一种高性能高稳定的FACs钙钛矿薄膜的制备方法
AL-Zahrani et al. Effect of hydrothermal growth temperature and time on physical properties and photoanode performance of zno nanorods
CN113380951B (zh) 一种基于绿色反溶剂法的钙钛矿太阳能电池及其制备方法
CN113636597B (zh) 一种钽掺杂的二氧化钒薄膜的制备方法
Liang et al. Enhanced crystallinity and performance of CH3NH3PbI3 thin film prepared by controlling hot CH3NH3I solution onto evaporated PbI2 nanocrystal
Sujith et al. Effect of solution and dry processing techniques on the optical and transport properties of inorganic CsPbBr3 perovskite films
CN111293182A (zh) 一种溶胶-凝胶法制备大晶粒czts吸收层的方法
Wang et al. Elemental Pb initiated in situ Cl doping for improved photovoltaic performances of perovskite
CN113421978B (zh) 一种弱磁场作用的磁性钙钛矿薄膜的制备方法
CN115784629B (zh) 一种含锡的双钙钛矿材料薄膜及其原位溶液制备方法和应用
KR102524637B1 (ko) 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법
Farhana et al. The impact of pre-annealing temperature on the performance of sb2s3 film in planar solar cell structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant