CN113582534B - 光纤的制备方法及其装置 - Google Patents

光纤的制备方法及其装置 Download PDF

Info

Publication number
CN113582534B
CN113582534B CN202111020397.7A CN202111020397A CN113582534B CN 113582534 B CN113582534 B CN 113582534B CN 202111020397 A CN202111020397 A CN 202111020397A CN 113582534 B CN113582534 B CN 113582534B
Authority
CN
China
Prior art keywords
optical fiber
drawing tension
coating layer
target
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111020397.7A
Other languages
English (en)
Other versions
CN113582534A (zh
Inventor
朱钱生
郭雨凡
叶阳
曹珊珊
薛济萍
薛驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangdong Technology Co ltd
Zhongtian Technologies Fibre Optics Co Ltd
Jiangsu Zhongtian Technology Co Ltd
Original Assignee
Jiangdong Technology Co ltd
Zhongtian Technologies Fibre Optics Co Ltd
Jiangsu Zhongtian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangdong Technology Co ltd, Zhongtian Technologies Fibre Optics Co Ltd, Jiangsu Zhongtian Technology Co Ltd filed Critical Jiangdong Technology Co ltd
Priority to CN202111020397.7A priority Critical patent/CN113582534B/zh
Publication of CN113582534A publication Critical patent/CN113582534A/zh
Application granted granted Critical
Publication of CN113582534B publication Critical patent/CN113582534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/07Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

本发明提供一种光纤的制备方法及其装置,涉及光纤技术领域。其中,光纤的制备方法包括如下步骤:提供光纤预制棒;将光纤预制棒通过熔融和在目标拉丝张力范围内拉制形成光纤主体;将光纤主体进行退火处理;将退火后的光纤主体进行涂覆形成内涂覆层和外涂覆层;将涂覆后的光纤主体进行固化形成光纤;将光纤收至收纤盘上。光纤的制备装置,包括送棒机构、拉丝炉、退火装置、涂覆装置、固化装置和牵引机构。通过熔融的光纤预制棒拉制成光纤主体的目标拉丝张力范围来将光纤的模场直径满足G.652类主干光纤的模场直径,通过内外涂覆层的涂料参数的合理匹配及涂料固化度的合理匹配,使得光纤的抗弯曲性能满足达到G.657类光纤的抗弯性能。

Description

光纤的制备方法及其装置
技术领域
本发明涉及光纤技术领域,尤其涉及一种光纤的制备方法及其装置。
背景技术
随着FTTH的不断发展,光纤到户很多情况下会面临在楼道、墙角或室内等复杂的施工环境,这就要求光纤具有良好的抗弯曲性能,使其在小弯曲半径的情况下依然能够保证信号的正常传输。
相关技术中,为了使光纤有较好的弯曲性能,通常的方法是减小光纤的模场直径或增加光纤的截止波长,考虑到光纤成缆后截止波长必须小于1260nm,因此通过增加光纤截止波长来改善光纤弯曲性能的空间有限,通常做法是减小光纤的模场直径。
然而,通过减小模场直径来达到G.657类光纤的抗弯性能的光纤与G.652类主干光纤熔接连接后,会出现光信号稳定性差的问题。
发明内容
本发明提供一种光纤的制备方法及其装置,以解决通过减小光纤的模场直径来降低弯曲损耗的光纤与主干光纤熔接时,会出现光信号稳定性差的问题。
一方面,本发明提供一种光纤的制备方法,包括如下步骤:
提供光纤预制棒;
将所述光纤预制棒通过熔融和在目标拉丝张力范围内拉制形成光纤主体;
将所述光纤主体进行退火处理;
将退火后的所述光纤主体进行涂覆形成内涂覆层和外涂覆层;
将涂覆后的所述光纤主体进行固化形成光纤;
将所述光纤收至收纤盘上;
其中,所述内涂覆层使用的涂料固化后弹性模量小于或等于1.5Mpa、黏度为1500mPa·s~3000mPa·s且断裂伸长率大于或等于120%;所述外涂覆层使用的涂料的固化后弹性模量大于或等于550Mpa、黏度为1500mPa·s~3500mPa·s且断裂伸长率大于或等于5%;所述内涂覆层固化度为85%~95%,所述外涂覆层固化度为92%~100%。
可选地,获取经退火后光纤主体的当前拉丝张力,根据所述当前拉丝张力与所述目标拉丝张力范围的比较,以减小所述当前拉丝张力与所述目标拉丝张力范围差值的方式调节所述光纤主体的拉丝速度。
可选地,若当前拉丝张力大于第一目标拉丝张力,则降低所述光纤主体的拉丝速度;
若当前拉丝张力小于第二目标拉丝张力,则提高所述光纤主体的拉丝速度;
其中,所述第一目标拉丝张力为所述目标拉丝张力加1,所述二目标拉丝张力为所述目标拉丝张力减1;所述目标拉丝张力为光纤在目标拉丝速度下光纤截止波长和光纤弯曲损耗满足后的张力。
可选地,所述将退火后的所述光纤主体进行涂覆形成内涂覆层和外涂覆层,具体包括:
将所述内涂覆层的材料通过模具涂覆在退火后的所述光纤主体上;
将所述外涂覆层的材料通过所述模具涂覆在所述内涂覆层上;
其中,所述模具的外壁上设置有进料槽和进料口,所述进料槽包括折线槽和曲线槽,所述折线槽与所述曲线槽的中心连通,所述曲线槽的两端上设置有所述进料口;所述内涂覆层半径范围为72.5~77.5μm,外涂覆层的最大半径为87.5μm~92.5μm,所述内涂覆层的厚度值与所述内涂覆层的厚度值之比为1:0.7~1:1.1。
可选地,所述将涂覆后的所述光纤主体进行固化形成光纤,具体包括:
将涂覆后的所述光纤主体通过预设功率和预设数量的固化炉进行固化形成所述光纤。
可选地,将装满光纤的所述收纤盘放置在氮气氛围中进行热处理;
其中,所述氮气氛围中的氮气纯度大于或等于99.999%,所述收纤盘上的光纤在所述氮气氛围中进行热处理的时间为4小时~24小时。
可选地,所述提供光纤预制棒,具体包括:
采用轴向气相沉积法制备掺锗二氧化硅粉末体;
将所述掺锗二氧化硅粉末体进行脱羟烧结,制成芯棒;
采用轴向气相沉积法在所述芯棒外侧制备下陷层;
采用轴向气相沉积法在所述光纤预制棒的下陷层外侧制备外包层;
其中,所述芯棒相对于所述外包层的相对折射率为0.34%~0.38%;所述下陷层相对于所述外包层的相对折射率为-0.07%~-0.1%。
另一方面,本发明还提供一种光纤的制备装置,包括送棒机构、拉丝炉、退火装置、涂覆装置、固化装置和牵引机构;
所述送棒机构,用于将光纤预制棒送至所述拉丝炉中;
所述拉丝炉位于所述送棒机构的下游,用于将所述预制棒加热熔融成玻璃态并在目标拉丝张力范围内形成光纤主体;
所述退火装置位于所述拉丝炉的下游,用于对所述光纤主体进行退火;
所述涂覆装置位于所述退火装置的下游,用于对退火后的光纤主体进行涂覆;
所述固化装置位于所述涂覆装置的下游,用于对涂覆后的光纤主体进行固化,形成光纤;
所述牵引机构位于所述固化装置的下游,用于将所述光纤收至收纤盘上。
可选地,还包括控制装置;
所述控制装置包括:拉丝张力获取模块,用于获取经退火后的光纤主体的当前拉丝张力;
控制模块,用于根据当前拉丝张力与目标拉丝张力范围的比较,以减小当前拉丝张力与目标拉丝张力范围差值的方式调节所述牵引机构的拉丝速度。
可选地,所述控制模块,用于根据当前拉丝张力与目标拉丝张力范围的比较,以减小当前拉丝张力与目标拉丝张力范围差值的方式调节所述牵引机构的拉丝速度,具体包括:
若当前拉丝张力大于第一目标拉丝张力,则降低所述光纤主体的拉丝速度;
若当前拉丝张力小于第二目标拉丝张力,则提高所述光纤主体的拉丝速度;
其中,所述第一目标拉丝张力为所述目标拉丝张力加1,所述二目标拉丝张力为所述目标拉丝张力减1;所述目标拉丝张力为光纤在目标拉丝速度下光纤截止波长和光纤弯曲损耗满足后的张力。
可选地,所述涂覆装置包括模具,所述模具的外壁上设置有进料槽和进料口,所述进料槽包括折线槽和曲线槽,所述折线槽与所述曲线槽的中心连通,所述曲线槽的两端上设置有所述进料口。
可选地,所述固化装置包括固化炉,所述固化炉的数量为4~8个,全部所述固化炉从上往下依次摆放,每个所述固化炉设置有功率调节档位。
可选地,还包括处理柜,用于对装满光纤的收纤盘在氮气氛围中进行热处理。
本发明提供一种光纤的制备方法及其装置,通过将熔融的光纤预制棒拉制成光纤主体的目标拉丝张力范围来保证光纤的模场直径满足G.652类主干光纤的模场直径,通过内外涂覆层的涂料参数的合理匹配及涂料固化度的合理匹配,使得光纤的抗弯曲性能满足达到G.657类光纤的抗弯性能,从而使得光纤同时具备G.652类主干光纤的模场直径与G.657类光纤的抗弯性能。
除了上面所描述的本发明实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本发明实施例提供的光纤的制备方法及其装置所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光纤预制棒的径向截面结构示意图;
图2为本发明实施例提供的一种光纤预制棒的剖面折射率分布示意图;
图3为本发明实施例提供的一种光纤预制棒的制备方法的流程示意图;
图4为本发明实施例提供的一种光纤的径向截面结构示意图;
图5为本发明实施例提供的一种光纤的制备方法的流程示意图;
图6为本发明实施例提供的一种光纤的制备装置的结构示意图;
图7为本发明实施例提供的一种控制装置的框图;
图8为本发明实施例提供的一种涂覆装置中的模具的结构示意图。
附图标记:
1-光纤预制棒; 10-芯棒; 20-下陷层; 30-外包层;
40-内涂覆层; 50-外涂覆层; 2-光纤; 100-模具;
101-进料槽; 102-进料口; 1011-折线槽; 1012-曲线槽;
200-送棒机构; 201-拉丝炉; 202-退火装置; 203-涂覆装置;
204-固化装置; 205-牵引机构; 206-处理柜; 207-控制装置;
2071-拉丝张力获取模块; 2072-控制模块; 208-张力仪; 209-上位机。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
相关技术中,为了使光纤有较好的弯曲性能,通常的方法是减小光纤的模场直径或增加光纤的截止波长,考虑到光纤成缆后截止波长必须小于1260nm,因此通过增加光纤截止波长来改善光纤弯曲性能的空间有限,通常做法是减小光纤的模场直径。然而,通过减小模场直径来达到G.657类光纤的抗弯性能的光纤与G.652类主干光纤进行熔接时,由于两者的模场直径差值较大,会造成较大的熔接损耗,从而会出现光信号稳定性差的问题。
为了解决上述问题,本发明提供一种光纤的制备方法及其装置,通过将熔融的光纤预制棒拉制成光纤主体的目标拉丝张力范围来保证光纤的模场直径满足G.652类主干光纤的模场直径,通过内外涂覆层的涂料参数的合理匹配及涂料固化度的合理匹配,使得光纤的抗弯曲性能满足达到G.657类光纤的抗弯性能,从而使得光纤同时具备G.652类主干光纤的模场直径与G.657类光纤的抗弯性能,进而可以避免光纤与G.657类光纤进行熔接时由于两者的模场直径差值较大造成出现光信号稳定性差的问题。
下面结合具体实施例对本发明提供的光纤的制备方法及其装置进行详细说明。
图1为本发明实施例提供的一种光纤预制棒的径向截面结构示意图;图2为本发明实施例提供的一种光纤预制棒的剖面折射率分布示意图。
如图1和图2所示,本发明实施例提供一种光纤预制棒1,由内向外包括芯棒10、下陷层20和外包层30;芯棒10主要由掺锗二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为0.34%~0.38%;光纤预制棒1的下陷层20由二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为-0.07%~-0.1%;光纤预制棒1的外包层30由二氧化硅制成。
其中,为了使光纤预制棒1的芯棒10和下陷层20对外包层30的折射率呈阶跃型分布,芯棒10通过采用掺锗二氧化硅提高芯棒10的折射率,光纤预制棒1的下陷层20通过采用掺氟二氧化硅降低折射率。通过光纤预制棒1的折射率剖面设计,使得制备得到的光纤2具备较强的抗弯曲性能、具备较大的模场直径。
在一种可选的实施方式中,光纤预制棒1由内向外包括芯棒10、下陷层20和外包层30;芯棒10主要由掺锗二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为0.38%;光纤预制棒1的下陷层20主要由掺锗二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为-0.07%;光纤预制棒1的外包层30由二氧化硅制成。
需要说明的是,芯棒10的半径为r1,光纤预制棒1的下陷层20的半径为r2,光纤预制棒1的外包层30的半径为r3。
图3为本发明实施例提供的一种光纤预制棒的制备方法的流程示意图。
如图3所示,本发明实施例提供一种光纤预制棒1的制备方法,包括如下步骤:
步骤S10:采用轴向气相沉积法制备掺锗二氧化硅粉末体。
步骤S20:将掺锗二氧化硅粉末体进行脱羟烧结,制成芯棒10。
具体地,将掺锗二氧化硅粉末体置于脱羟基氛围中去除水分和羟基,脱羟基氛围包括载气和含氟气体,载气为氯气,含氟气体与氯气的体积比为,脱羟基氛围的温度范围为,掺锗二氧化硅粉末体置于脱羟基氛围中的时间。
通过在二氧化硅中添加锗来实现芯棒10相对于光纤预制棒1的外包层30的折射率为0.34%~0.38%。例如,芯棒10为相对于光纤预制棒1的外包层30的折射率为0.38%的掺锗二氧化硅。
步骤S30:采用轴向气相沉积法在芯棒外侧制备光纤预制棒1的下陷层20。
通过在二氧化硅中添加氟来实现光纤预制棒1的下陷层20相对外包层30的折射率的调控。其中,光纤预制棒1的下陷层20主要由掺锗二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为-0.07%~-0.1%。优选地,光纤预制棒1的下陷层20主要由掺锗二氧化硅制成,其相对于光纤预制棒1的外包层30的折射率为-0.07%。
步骤S40:采用轴向气相沉积法在下陷层20外侧制备光纤预制棒1的外包层30。
其中,光纤预制棒1的外包层30主要由二氧化硅制成。
在光纤预制棒1的制备方法中,芯棒10、下陷层20和外包层30均采用轴向气相沉积法一步成型,避免了芯棒10、下陷层20和外包层30由于成型工艺不同需要分开成型,降低了芯棒10、下陷层20和外包层30的工艺复杂度,减少了光纤预制棒1内部缺陷,从而提高了光纤预制棒1的强度。而且,通过光纤预制棒1的折射率剖面设计,使得制备得到的光纤2具备较强的抗弯曲性能、具备较大的模场直径。
图4为本发明实施例提供的一种光纤的径向截面结构示意图。
如图4所示,本发明实施例还提供一种光纤2,由内向外包括纤芯11、下陷层20、外包层30、内涂覆层40和外涂覆层50。纤芯11主要由掺锗二氧化硅制成,其相对于光纤2的外包层30的折射率为0.34%~0.38%;光纤2的下陷层20主要由掺锗二氧化硅制成,其相对于光纤2的外包层30的折射率为-0.07%~-0.1%;光纤2的外包层30由二氧化硅制成。
其中,光纤2采用拉丝炉将光纤预制棒1拉制和涂覆形成。
通过光纤2的纤芯11、下陷层20对外包层30的折射率呈阶跃型分布,来避免光从纤芯11中溢出,使得制备得到的光纤2具备较强的抗弯曲性能、具备较大的模场直径。
可选地,纤芯11的最大半径为4.4μm~4.8μm,光纤2的下陷层20最大的半径为15μm~23μm,光纤2的外包层30最大的半径为62μm~63μm,内涂覆层40最大半径为72.5μm~77.5μm,外涂覆层50最大半径为87.5μm~92.5μm。
现有的光纤的外涂覆层50大多为半径为125μm。本申请的光纤2的外涂覆层50半径下降到87.5μm~92.5μm,通过光纤2的纤芯11、下陷层20对外包层30的折射率呈阶跃型分布,可以保证光纤2的抗弯曲性能可以达到G.657类光纤的抗弯性能,而且光纤2变细还可以提高管道的容纤量。
需要说明的是,本申请提供的具有较小尺寸和较好抗弯曲性能的光纤2在半径10mm单圈的条件下,1550nm波长下的每千米传输损耗小于或等于0.45dB。
可选地,内涂覆层40与外涂覆层50的厚度比范围1:0.7~1:1.1。
其中,内涂覆层40和外涂覆层50的涂料均为丙烯酸树脂,内涂覆层40使用丙烯酸树脂的弹性模量小于或等于1.5Mpa,内涂覆层40使用丙烯酸树脂在涂覆时的黏度为1500mPa·s~3000mPa·s,内涂覆层40使用丙烯酸树脂的断裂伸长率大于或等于120%;外涂覆层50使用丙烯酸树脂的弹性模量小于或等于550Mpa,外涂覆层50使用丙烯酸树脂在涂覆时的黏度为1500mPa·s~3500mPa·s,外涂覆层50使用丙烯酸树脂的断裂伸长率大于或等于5%。
内涂覆层40固化度为85%~95%,外涂覆层50固化度为92%~100%
通过内涂覆层40与外涂覆层50的厚度比范围在1:0.7~1:1.1之间,内涂覆层40固化度为85%~95%,外涂覆层50固化度为92%~100%,当光纤2的外涂覆层50半径下降到77.5μm以下时,可以提高光纤2的抗弯曲性能。
图5为本发明实施例提供的一种光纤的制备方法的流程示意图。
如图5所示,本发明实施例提供一种光纤的制备方法,包括如下步骤:
步骤S100:提供光纤预制棒1。
其中,光纤预制棒1的结构可以与以上所述的光纤预制棒的结构相同。在其它实施方式中,光纤预制棒的结构也可以选择与以上所述的光纤预制棒的不同的结构,在此不做具体设置。
步骤S110:将光纤预制棒1通过熔融和在目标拉丝张力范围内拉制形成光纤主体。
具体地,将光纤预制棒1在拉丝炉中熔融并拉制成光纤主体,拉丝炉中的温度为1800℃~2200℃,拉丝炉中充盈着保护气体。
为了保证拉丝炉对光纤预制棒1热量传递的稳定性,光纤预制棒1与拉丝炉的内壁之间的间隙为5mm~15mm。
需要说明的是,光纤主体包括光纤2的纤芯11、下陷层20和外包层30。
还需要指出的是,拉丝炉中的保护气体为氦气和氩气中的一种或多种。
熔融的光纤预制棒1拉制成光纤主体的目标拉丝张力范围为将光纤的模场直径满足G.652类主干光纤的模场直径时的张力范围。
步骤S120:将光纤主体进行退火处理。
具体地,将光纤主体在退火装置中冷却,光纤主体在退火装置中的停留时间为0.067s~0.3s,退火装置中的温度为1400℃~1700℃。
需要指出的是,退火装置包括多个保温炉,多个保温炉从上至下依次设置,多个保温炉从上至下温度依次梯度递减设置。
步骤S130:将退火后的光纤主体进行涂覆形成内涂覆层40和外涂覆层50。
其中,内涂覆层40和外涂覆层50的涂料均为丙烯酸树脂,内涂覆层40使用丙烯酸树脂的弹性模量小于或等于1.5Mpa,内涂覆层40使用丙烯酸树脂在涂覆时的黏度为1500mPa·s~3000mPa·s,内涂覆层40使用丙烯酸树脂的断裂伸长率大于或等于120%;外涂覆层50使用丙烯酸树脂的弹性模量小于或等于550Mpa,外涂覆层50使用丙烯酸树脂在涂覆时的黏度为1500mPa·s~3500mPa·s,外涂覆层50使用丙烯酸树脂的断裂伸长率大于或等于5%。
需要说明的是,内涂覆层40使用丙烯酸树脂在25℃时的黏度为3500mPa·s~7500mPa·s;外涂覆层50使用丙烯酸树脂在25℃时的黏度为3500mPa·s~7500mPa·s。
还需要指出的是,内涂覆层40最大半径为72.5μm~77.5μm,外涂覆层50最大半径为87.5μm~92..5μm,内涂覆层40与外涂覆层50的厚度比范围在1:0.7~1:1.1之间。
步骤S140:将涂覆后的光纤主体进行固化形成光纤2。
具体地,将涂覆后的光纤主体在固化炉中形成光纤2,固化炉中采用氮气、氦气、氩气中的一种或多种进行隔绝,固化炉中的氧气浓度小于50ppm。光纤2的内涂覆层固化度为85%~95%,外涂覆层固化度为92%~100%。
其中,固化炉从上至下依次设置,每个固化炉的气体量在10L~15L。
进一步地,将涂覆后的光纤主体通过预设功率和预设数量的固化炉进行固化形成光纤。固化炉的功率和数量是由光纤拉丝速度和光纤的涂覆层厚度决定。
步骤S150:将光纤2收至收纤盘上。
其中,光纤2通过牵引机构将固化后的光纤2收至收纤盘上。
通过将熔融的光纤预制棒1拉制成光纤主体的目标拉丝张力范围来保证光纤的模场直径满足G.652类主干光纤的模场直径,通过内涂覆层40和外涂覆层50的涂料参数的合理匹配及涂料固化度的合理匹配,使得光纤2的抗弯曲性能满足达到G.657类光纤的抗弯性能,从而使得光纤2同时具备G.652类主干光纤的模场直径与G.657类光纤的抗弯性能,进而可以避免光纤与G.657类光纤进行熔接时由于两者的模场直径差值较大造成出现光信号稳定性差的问题。
可选地,在步骤S130的步骤中具体包括:将内涂覆层40的材料通过模具涂覆在退火后的光纤主体上;将外涂覆层50的材料通过模具涂覆在内涂覆层40上。
其中,模具的外壁上设置有进料槽和进料口,进料槽包括折线槽和曲线槽,折线槽与曲线槽的中心连通,曲线槽的两端上设置有进料口,避免了涂料直喷至进料口导致涂层不稳定和不均匀,可以提高光纤2的抗弯曲性能。
内涂覆层半径范围为72.5~77.5μm,外涂覆层的最大半径为87.5μm~92.5μm,内涂覆层的厚度值与内涂覆层的厚度值之比为1:0.7~1:1.1。
为了光纤2的外涂覆层50半径下降到87.5μm~92.5μm时光纤2的抗弯曲性能可以达到G.657类光纤的抗弯性能,将光纤2的纤芯11相对于光纤2的外包层30的折射率为0.34%~0.38%,光纤2的下陷层20相对于光纤2的外包层30的折射率为-0.07%~-0.1%,内涂覆层40与外涂覆层50的厚度比范围在1:0.7~1:1.1之间,内涂覆层40固化度为85%~95%,外涂覆层50固化度为92%~100%。
可选地,在步骤S140的步骤中还包括:将装满光纤2的收纤盘放置在氮气氛围中进行热处理。
将装满光纤2的收纤盘放置在处理柜206中进行热处理,装满光纤2的收纤盘在处理柜中的放置时间范围为4小时~24小时。
需要指出的是,处理柜206使用时先进行抽真空处理,处理柜206抽真空至0.015Mpa,然后在处理柜206中充入氮气,氮气纯度大于或等于99.999%,处理柜206中氧气的浓度不大于100ppm,处理柜206中的温度范围为45℃~60℃。
将装满光纤的收纤盘放置在氮气氛围中进行热处理后再进行光纤强度筛选,从而可以降低每1000km光纤的断纤次数。
图6为本发明实施例提供的一种光纤的制备装置的结构示意图。
如图6所示,本发明实施例还提供一种光纤的制备装置,包括送棒机构200、拉丝炉201、退火装置202、涂覆装置203、固化装置204和牵引机构205。
其中,送棒机构200用于将光纤预制棒送至拉丝炉201中。送棒机构200包括送棒电机、驱动轮、从动轮、履带、可上下移动的送棒平台、夹持件,夹持件用于夹持光纤预制棒;履带安装在驱动轮和从动轮上,送棒电机与驱动轮连接,送棒平台安装在履带上,夹持件安装在送棒平台上,送棒机构,履带安装在驱动轮和从动轮上,送棒电机与驱动轮连接,送棒平台安装在履带上,移动件可左右移动的安装在送棒平台上,夹持件可前后移动的安装在移动件上。
拉丝炉201位于送棒机构200的下游,用于将光纤预制棒加热熔融成玻璃态并拉成丝状的光纤主体。
拉丝炉201中的温度为1800℃~2200℃,拉丝炉201中充盈着保护气体。拉丝炉中的保护气体为氦气和氩气中的一种或多种。
为了保证拉丝炉201对光纤预制棒热量传递的稳定性,光纤预制棒与拉丝炉201的内壁之间的间隙为5mm~15mm。
需要说明的是,光纤主体包括光纤2的纤芯11、下陷层20、外包层30。
退火装置202位于拉丝炉201的下游,用于对光纤主体进行退火。
光纤主体在退火装置202中的停留时间为0.067s~0.3s,退火装置202中的温度为1400℃~1700℃。
需要指出的是,退火装置202包括多个保温炉,多个保温炉从上至下依次设置,多个保温炉从上至下温度依次梯度递减设置。
涂覆装置203位于退火装置202的下游,用于对退火后的光纤主体进行涂覆。
固化装置204位于涂覆装置203的下游,用于对涂覆后的光纤主体进行固化,形成光纤2。
牵引机构205位于固化装置204的下游,用于提供拉丝速度并将光纤2收至收纤盘上。
可选地,光纤的制备装置还包括处理柜206,用于对装满光纤的收纤盘进行热处理。
处理柜206使用时先进行抽真空处理,处理柜206抽真空至0.015Mpa,然后在处理柜中充入氮气,氮气纯度大于或等于99.999%,处理柜中氧气的浓度不大于100ppm,处理柜中的温度范围为45℃~60℃。
将装满光纤的收纤盘放置在氮气氛围中进行热处理后再进行光纤强度筛选,从而可以降低每1000km光纤的断纤次数。
图7为本发明实施例提供的一种控制装置的框图。
可选地,如图7所示,本发明实施例还提供的光纤的制备装置还包括控制装置207和张力仪208。
控制装置207包括:拉丝张力获取模块2071,用于获取经退火后的光纤主体的当前拉丝张力。控制模块2072,用于调节牵引机构205的拉丝速度,以将不在目标拉丝张力范围内的当前拉丝张力调至目标拉丝张力范围内。
张力仪208设置在退火装置202和涂覆装置203之间。张力仪208通过信号线与控制装置207连接。张力仪208用于对退火后的光纤主体的当前拉丝张力进行检测,并将检测到的光纤主体的当前拉丝张力信号传送给控制装置207。
上位机209通过控制线与控制装置207相连。
光纤主体的当前拉丝张力可以通过如下公式计算得到:
F=2ηTSGZ
式中,F为光纤主体的当前拉丝张力;ηT为粘度,是温度的函数;S为光纤主体的横截面积;Gz为轴向速度梯度。
可以看出,光纤主体的当前拉丝张力大小主要与粘度和轴向速度梯度有关,粘度和轴向速度梯度是由炉温和拉丝速度来控制的。光纤主体的横截面的均匀性也会对光纤主体的当前拉丝张力的大小产生一定影响。牵引机构205的拉丝速度对当前拉丝张力的影响具体表现为:牵引机构205的拉丝速度升高,粘度变大,当前拉丝张力增大;牵引机构205的拉丝速度降低,粘度变小,当前拉丝张力减小。
通过张力仪208获取经退火后的光纤主体的当前拉丝张力;控制装置207将得到的当前拉丝张力与上位机209设置的目标拉丝张力范围进行比较分析,然后调节牵引机构205的拉丝速度来将当前拉丝张力调至目标拉丝张力范围内。
在一种可选的实施方式中,目标拉丝张力范围的下限值为第一目标拉丝张力,目标拉丝张力范围的上限值为第二目标拉丝张力。
若当前拉丝张力大于第一目标拉丝张力,则降低牵引机构的拉丝速度。
具体地,首先通过控制装置207按照每秒变化不小于1m/min降低牵引机构205的拉丝速度,然后再通过张力仪208对光纤主体的当前拉丝张力进行检测,并将检测到的光纤主体的当前拉丝张力信号传送给控制装置207,最后控制装置207将得到的当前拉丝张力与上位机设置的第一目标拉丝张力进行比较分析,若光纤主体的当前拉丝张力小于或等于第一目标拉丝张力,则停止调节牵引机构205的拉丝速度,若光纤主体的当前拉丝张力仍大于第一目标拉丝张力,则按上述方式继续调节牵引机构205的拉丝速度。
若当前拉丝张力小于第二目标拉丝张力,则提高牵引机构的拉丝速度。
具体地,首先通过控制装置207按照每秒变化不小于1m/min提高牵引机构205的拉丝速度,然后再通过张力仪208对光纤主体的当前拉丝张力进行检测,并将检测到的光纤主体的当前拉丝张力信号传送给控制装置207,最后控制装置207将得到的当前拉丝张力与上位机设置的第二目标拉丝张力进行比较分析,若光纤主体的当前拉丝张力大于或等于第二目标拉丝张力,则停止调节牵引机构205的拉丝速度,若光纤主体的当前拉丝张力仍小于第二目标拉丝张力,则按上述方式继续调节牵引机构205的拉丝速度。
第一目标拉丝张力为目标拉丝张力加1,第二目标拉丝张力为目标拉丝张力减1;目标拉丝张力为光纤在目标拉丝速度下光纤截止波长和光纤弯曲损耗满足后的张力。
可选地,固化装置204包括固化炉,固化炉的数量为4~8个,全部固化炉从上往下依次摆放,每个固化炉设置有功率调节档位。
其中,控制装置207还包括光纤拉丝速度获取模块和光纤涂覆层厚度获取模块,光纤拉丝速度获取模块用于获取光纤拉丝速度,光纤涂覆层厚度获取模块用于获取光纤涂覆层的厚度。控制模块2072还用于根据光纤拉丝速度和光纤涂覆层的厚度控制固化炉的数量和功率,从而达到光纤设定的固化度。
需要说明的是,控制模块2072中设置有光纤拉丝速度和光纤涂覆层的厚度在预设固化度下对应的固化炉的数量和功率。
图8为本发明实施例提供的一种涂覆装置中的模具的结构示意图。
可选地,涂覆装置203包括模具100,模具的外壁上设置有进料槽101和进料口102,进料槽101包括折线槽1011和曲线槽1012,折线槽1011与曲线槽1012的中心连通,曲线槽1012的两端上设置有进料口102。当将涂料注入模具100时,可以避免涂料直喷至进料口导致光纤2的涂层不稳定和不均匀,可以提高光纤2的抗弯曲性能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

1.一种光纤的制备方法,其特征在于,包括如下步骤:
提供光纤预制棒;具体包括:
采用轴向气相沉积法制备掺锗二氧化硅粉末体;
将所述掺锗二氧化硅粉末体进行脱羟烧结,制成芯棒;
采用轴向气相沉积法在所述芯棒外侧制备下陷层;
采用轴向气相沉积法在所述光纤预制棒的下陷层外侧制备外包层;
其中,所述芯棒相对于所述外包层的相对折射率为0.34%~0.38%;所述下陷层相对于所述外包层的相对折射率为-0.07%~-0.1%;
将所述光纤预制棒通过熔融和在目标拉丝张力范围内拉制形成光纤主体;
将所述光纤主体进行退火处理;
将退火后的所述光纤主体进行涂覆形成内涂覆层和外涂覆层;
将涂覆后的所述光纤主体进行固化形成光纤;
将所述光纤收至收纤盘上;
其中,所述内涂覆层和所述外涂覆层的涂料均为丙烯酸树脂,所述内涂覆层使用丙烯酸树脂的弹性模量小于或等于1.5Mpa、在涂覆时的黏度为1500mPa·s~3000mPa·s且断裂伸长率大于或等于120%;所述外涂覆层使用丙烯酸树脂的弹性模量大于或等于550Mpa、在涂覆时的黏度为1500mPa·s~3500mPa·s且断裂伸长率大于或等于5%;所述内涂覆层固化度为85%~95%,所述外涂覆层固化度为92%~100%。
2.根据权利要求1所述的光纤的制备方法,其特征在于,获取经退火后光纤主体的当前拉丝张力,根据所述当前拉丝张力与所述目标拉丝张力范围的比较,以通过调节所述光纤主体的拉丝速度方式将所述当前拉丝张力调至所述目标拉丝张力范围内。
3.根据权利要求2所述的光纤的制备方法,其特征在于,若当前拉丝张力大于第一目标拉丝张力,则降低所述光纤主体的拉丝速度;
若当前拉丝张力小于第二目标拉丝张力,则提高所述光纤主体的拉丝速度;
其中,所述第一目标拉丝张力为所述目标拉丝张力加1,所述二目标拉丝张力为所述目标拉丝张力减1;所述目标拉丝张力为光纤在目标拉丝速度下光纤截止波长和光纤弯曲损耗满足后的张力。
4.根据权利要求1所述的光纤的制备方法,其特征在于,所述将退火后的所述光纤主体进行涂覆形成内涂覆层和外涂覆层,具体包括:
将所述内涂覆层的材料通过模具涂覆在退火后的所述光纤主体上;
将所述外涂覆层的材料通过所述模具涂覆在所述内涂覆层上;
其中,所述模具的外壁上设置有进料槽和进料口,所述进料槽包括折线槽和曲线槽,所述折线槽与所述曲线槽的中心连通,所述曲线槽的两端上设置有所述进料口;所述内涂覆层半径范围为72.5~77.5μm,外涂覆层的最大半径为87.5μm~92.5μm,所述内涂覆层的厚度值与所述内涂覆层的厚度值之比为1:0.7~1:1.1。
5.根据权利要求1所述的光纤的制备方法,其特征在于,所述将涂覆后的所述光纤主体进行固化形成光纤,具体包括:
将涂覆后的所述光纤主体通过预设功率和预设数量的固化炉进行固化形成所述光纤。
6.根据权利要求1所述的光纤的制备方法,其特征在于,将装满光纤的所述收纤盘放置在氮气氛围中进行热处理;
其中,所述氮气氛围中的氮气纯度大于或等于99.999%,所述收纤盘上的光纤在所述氮气氛围中进行热处理的时间为4小时~24小时。
7.一种光纤的制备装置,其特征在于,用于制备权利要求1-6中任一项所述的光纤,包括送棒机构、拉丝炉、退火装置、涂覆装置、固化装置和牵引机构;
所述送棒机构,用于将光纤预制棒送至所述拉丝炉中;
所述拉丝炉位于所述送棒机构的下游,用于将所述预制棒加热熔融成玻璃态并在目标拉丝张力范围内形成光纤主体;
所述退火装置位于所述拉丝炉的下游,用于对所述光纤主体进行退火;
所述涂覆装置位于所述退火装置的下游,用于对退火后的光纤主体进行涂覆;
所述固化装置位于所述涂覆装置的下游,用于对涂覆后的光纤主体进行固化,形成光纤;
所述牵引机构位于所述固化装置的下游,用于将所述光纤收至收纤盘上。
8.根据权利要求7所述的光纤的制备装置,其特征在于,还包括控制装置;
所述控制装置包括:拉丝张力获取模块,用于获取经退火后的光纤主体的当前拉丝张力;
控制模块,用于根据当前拉丝张力与目标拉丝张力范围的比较,以减小当前拉丝张力与目标拉丝张力范围差值的方式调节所述牵引机构的拉丝速度。
9.根据权利要求8所述的光纤的制备装置,其特征在于,所述控制模块,用于根据当前拉丝张力与目标拉丝张力范围的比较,以减小当前拉丝张力与目标拉丝张力范围差值的方式调节所述牵引机构的拉丝速度,具体包括:
若当前拉丝张力大于第一目标拉丝张力,则降低所述光纤主体的拉丝速度;
若当前拉丝张力小于第二目标拉丝张力,则提高所述光纤主体的拉丝速度;
其中,所述第一目标拉丝张力为所述目标拉丝张力加1,所述二目标拉丝张力为所述目标拉丝张力减1;所述目标拉丝张力为光纤在目标拉丝速度下光纤截止波长和光纤弯曲损耗满足后的张力。
10.根据权利要求7所述的光纤的制备装置,其特征在于,所述涂覆装置包括模具,所述模具的外壁上设置有进料槽和进料口,所述进料槽包括折线槽和曲线槽,所述折线槽与所述曲线槽的中心连通,所述曲线槽的两端上设置有所述进料口。
11.根据权利要求7所述的光纤的制备装置,其特征在于,所述固化装置包括固化炉,所述固化炉的数量为4~8个,全部所述固化炉从上往下依次摆放,每个所述固化炉设置有功率调节档位。
12.根据权利要求7所述的光纤的制备装置,其特征在于,还包括处理柜,用于对装满光纤的收纤盘在氮气氛围中进行热处理。
CN202111020397.7A 2021-09-01 2021-09-01 光纤的制备方法及其装置 Active CN113582534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111020397.7A CN113582534B (zh) 2021-09-01 2021-09-01 光纤的制备方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111020397.7A CN113582534B (zh) 2021-09-01 2021-09-01 光纤的制备方法及其装置

Publications (2)

Publication Number Publication Date
CN113582534A CN113582534A (zh) 2021-11-02
CN113582534B true CN113582534B (zh) 2023-01-03

Family

ID=78240888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111020397.7A Active CN113582534B (zh) 2021-09-01 2021-09-01 光纤的制备方法及其装置

Country Status (1)

Country Link
CN (1) CN113582534B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276026B (zh) * 2021-11-25 2024-03-22 中天科技光纤有限公司 光纤制备方法及设备
CN115490419B (zh) * 2022-09-30 2023-10-17 中天科技光纤有限公司 光纤及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386148B2 (ja) * 2008-11-05 2014-01-15 株式会社フジクラ 光ファイバ素線の製造方法と製造装置
CN103214181B (zh) * 2013-04-18 2015-09-16 烽火通信科技股份有限公司 一种高速拉制光纤的装置及方法
JP5851636B1 (ja) * 2015-02-10 2016-02-03 株式会社フジクラ 光ファイバ素線の製造方法、制御装置および製造装置
CN106116138A (zh) * 2016-05-18 2016-11-16 中天科技光纤有限公司 一种小直径低损耗弯曲不敏感单模光纤的拉丝涂覆工艺
CN112897874B (zh) * 2021-05-07 2021-11-16 中天科技光纤有限公司 光纤拉丝速度的控制方法、控制装置及光纤拉丝***
CN113292241B (zh) * 2021-05-26 2024-05-14 中天科技光纤有限公司 光纤拉丝炉、光纤制备装置、光纤制备方法及细径光纤

Also Published As

Publication number Publication date
CN113582534A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN113582534B (zh) 光纤的制备方法及其装置
JP6052897B2 (ja) マルチコア光ファイバリボン及びその作製方法
CN107710041B (zh) 具有应力消除层的低衰减光纤、其预成形件及其制造方法
US6565775B2 (en) Method of cooling an optical fiber while it is being drawn
US20120033924A1 (en) Low loss optical fiber designs and methods for their manufacture
EP3978969A1 (en) Optical fiber, and preparation method for optical fiber
JP4663277B2 (ja) 光ファイバ素線及びその製造方法
US9588286B2 (en) Optical fiber
EP1878708A1 (en) Method for manufacturing an optical preform by means of an internal vapour deposition process, as well as a preform obtained thereby
US20120057834A1 (en) Optical Fiber, Optical Fiber Preform and Method of Fabricating Same
CN111801609B (zh) 光纤
JP5949016B2 (ja) 光ファイバ製造方法
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
EP4091995A1 (en) Optical fiber and preparation method therefor
CN113716862B (zh) 光纤的制备方法及其装置
US8971684B2 (en) Method of producing preform for coupled multi-core fiber, method of producing coupled multi-core fiber, and coupled multi-core fiber
US6823125B2 (en) Optical fiber base material, its manufacturing method and optical fiber
US8567217B2 (en) Optical fiber preform and manufacturing method therefor
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
CN115636581B (zh) 光纤预制件、光纤拉丝装置以及光纤拉丝方法
US20150040616A1 (en) Optical fiber glass base material manufacturing method and optical fiber glass base material
CN115490419B (zh) 光纤及其制备方法
CN116589174B (zh) 石英预制件、光纤及光纤制备方法
US20230016133A1 (en) Optical fiber
KR102217526B1 (ko) 광섬유용 실리카 유리 모재의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant