CN113578358A - 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用 - Google Patents

一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN113578358A
CN113578358A CN202110581120.5A CN202110581120A CN113578358A CN 113578358 A CN113578358 A CN 113578358A CN 202110581120 A CN202110581120 A CN 202110581120A CN 113578358 A CN113578358 A CN 113578358A
Authority
CN
China
Prior art keywords
nvc
photocatalytic material
preparation
photocatalytic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110581120.5A
Other languages
English (en)
Other versions
CN113578358B (zh
Inventor
邵蒙蒙
崔立峰
陈豪登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202110581120.5A priority Critical patent/CN113578358B/zh
Publication of CN113578358A publication Critical patent/CN113578358A/zh
Application granted granted Critical
Publication of CN113578358B publication Critical patent/CN113578358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种Pt/NVC‑g‑C3N4光催化材料,以g‑C3N4作为载体,该g‑C3N4载体上修饰有Pt/NVC纳米颗粒。其制备方法包括:(1)高温碳化制得NVC;(2)将NVC借助化学还原法与Pt纳米颗粒复合,制得Pt/NVC;(3)将Pt/NVC通过热处理方式负载到g‑C3N4上,制得Pt/NVC‑g‑C3N4光催化材料。通过该方法制得的Pt/NVC‑g‑C3N4光催化材料能同时实现对水分子的活化和促进质子还原为氢过程,光催化活性高,具有出色的光解水制氢性能,且制备工艺简单、易于操作,适用于工业化生产。本发明还提供该Pt/NVC‑g‑C3N4光催化材料在光解水制氢的应用。

Description

一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用
技术领域
本发明涉及光催化材料技术领域,更具体地涉及一种Pt/NVC-g-C3N4光催 化材料及其制备方法和应用。
背景技术
自二氧化钛半导体材料被用于光驱分解水制氢以来,该光解水制氢技术便 立刻引起研究热潮,成为缓解能源危机的有效策略。高活性光催化剂的设计 主要基于光催化的三个过程,包括光响应、光生载流子分离及表面催化反应 (氢析出动力学)。其中,表面催化反应-氢析出是实现光解水制氢的最后且 关键步骤,加速氢析出过程受到了广泛重视。研究发现,负载析氢助催化剂 不仅能加速质子还原成氢,还能作为电子捕获中心促进光生载流子的分离。 因此,发展高效的析氢助催化剂对光解水产氢效率的提升和突破至关重要。
在众多析氢助催化剂中,Pt因其具有合适的Fermi能级和氢吸附能,在 光解水反应中表现出优异的催化活性。但Pt助催化剂对水分子的活化能力差, 而该过程通常是氢析出的速率控制步骤,由此限制了单一Pt负载体系的性能 升级。鉴于此,探索并开发具有活化水分子和还原质子能力的多功能助催化 剂极具现实意义。
发明内容
本发明目的之一是提供一种Pt/NVC-g-C3N4光催化材料,该光催化材料能 同时实现对水分子的活化和促进质子还原为氢过程,光催化活性高,具有出色 的光解水制氢性能。
为实现本发明目的,本发明提供一种Pt/NVC-g-C3N4光催化材料,以g-C3N4作为载体,该g-C3N4载体上修饰有Pt/NVC纳米颗粒。
与现有技术相比,该Pt/NVC-g-C3N4光催化材料中,以g-C3N4作为载体, 该g-C3N4载体上修饰有Pt/NVC纳米颗粒,g-C3N4和Pt/NVC的紧密结合, g-C3N4吸收光后生成电子空穴对。Pt/NVC具有催化性,利用生成的光生电子 还原质子为氢。尤其是,NVC将助力活化水分子并提供丰富的质子,Pt将促 进质子还原并生成氢气,两者的协同作用能很大程度上加速光解水析氢反应。 因此,Pt/NVC-g-C3N4光催化材料能同时实现对水分子的活化和促进质子还原 为氢过程,光催化活性高,具有出色的光解水制氢性能。
本发明目的之二是提供一种Pt/NVC-g-C3N4光催化材料的制备方法,包括 步骤:
(1)将钒源与碳氮化合物混合,在Ar气氛中于高温下碳化以形成N掺 杂的VC,制得NVC;
(2)将NVC借助化学还原法与Pt纳米颗粒复合,制得Pt/NVC;
(3)将Pt/NVC通过热处理方式负载到g-C3N4上,制得Pt/NVC-g-C3N4光 催化材料。
在Pt/NVC-g-C3N4光催化材料的制备方法中,通过简单的高温碳化和化学 还原法获得Pt/NVC助催化剂,并通过一步热处理过程得到Pt/NVC负载的 g-C3N4光催化材料。将具有优异活化水分子和还原质子能力的Pt/NVC负载于光 催化剂-石墨相氮化碳(g-C3N4)上,有利于光解水析氢反应。且该制备工艺简 单、易于操作,适用于工业化生产。
较佳的,步骤(1)中,钒源选自钒酸铵、钒酸钠、氧化钒中的至少一种。
较佳的,碳氮化合物选自尿素、单氰胺、二聚氰胺、三聚氰胺中的至少一 种。
较佳的,钒源与碳氮化合物的摩尔比为1:0.5~30。比如,采用1:0.5,1:2, 1:4,1:8,1:10,1:15,1:20,1:25,1:30。
较佳的,步骤(1)中的高温为600~1150℃。比如,该温度采用600℃、700℃、 800℃、900℃、1150℃。
较佳的,步骤(1)中,将钒源与碳氮化合物混合均匀,然后将上述混合 物转移到陶瓷舟中并置于管式炉正中间,在反应前用Ar气去除管式炉内空气, 并于600~1150℃下焙烧1~5小时以形成NVC。进一步,Ar气体的流速为10~100 sccm。
较佳的,步骤(2)中,将铂源溶于去离子水中,随后将NVC加入到上述 溶液中,混合均匀,然后将上述混合液转移到含硼氢化钠还原剂的水溶液中, 在超声辅助下原位还原Pt,得到Pt纳米颗粒复合的NVC。优选地,Pt与NVC 的质量比为0.1-5:1。
较佳的,铂源选自氯铂酸、氯铂酸钠、氯化铂中的至少一种。
较佳的,步骤(3)中,热处理的温度为400~600℃,如温度可为但不限于 400℃、450℃、500℃、550℃、600℃。
较佳的,步骤(3)中,将Pt/NVC与g-C3N4混合均匀,然后将上述混合物 转移到陶瓷舟中并置于管式炉正中间,在热处理前用Ar气去除管式炉内空气, 并于400~600℃下热处理0.5~5小时,得到Pt/NVC负载的g-C3N4,制得 Pt/NVC-g-C3N4光催化材料。进一步,热处理过程在Ar气氛中进行,气体流速 为50sccm。优选地,Pt/NVC与g-C3N4的质量比为0.01-0.5:1。
本发明目的之三是提供一种Pt/NVC-g-C3N4光催化材料在光解水制氢的应 用。
较佳的,将Pt/NVC-g-C3N4光催化材料加入到含牺牲剂的水溶液中进行光 催化反应。
较佳的,光催化材料用量为5~1000mg,牺牲剂溶液为10~250mL。
较佳的,牺牲剂选自甲醇水溶液、三乙醇胺水溶液、乳酸水溶液、Na2SO3和Na2S混合溶液中的至少一种。比如,可选用Na2SO3和Na2S混合溶液作为牺 牲剂。
较佳的,将Pt/NVC-g-C3N4光催化材料加入到含牺牲剂的水溶液中进行光 催化反应之前,通Ar去除空气,时间为5~60分钟。
较佳的,整个反应在磁力搅拌下进行。
附图说明
图1是本发明Pt/NVC-g-C3N4的XRD(a)及EDS图(b)。
其中,图1(a)为g-C3N4、NVC-g-C3N4、Pt/g-C3N4、Pt/NVC-g-C3N4的XRD 图;图1(b)为Pt/NVC-g-C3N4的EDS图。
图2是图1中Pt元素的放大图。
图3是图1中V元素的放大图。
图4中:图4(a)是本发明Pt/NVC-g-C3N4实施例1与对比例1-3中光催剂 的光催化性能;图4(b)是本发明Pt/NVC-g-C3N4的循环利用图。
具体实施方式
下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实 施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种Pt/NVC-g-C3N4光催化材料的制备方法,包括步骤:
(1)NVC的制备
将3.5mmol钒酸铵(NH4VO3)与10.5mmol二聚氰胺(C2H4N4)均匀 混合,随后将上述混合物转移到陶瓷舟中并盖好,置于管式炉正中间,反应 前以50sccm流速通30分钟Ar气去除管式炉内空气,于900℃下焙烧3小时, 其中Ar气的流量为50sccm,反应后,***在Ar气氛下自然冷却到室温, 获得NVC;
(2)Pt/NVC的制备
将100mg的NVC经超声均匀分散到含53mg氯铂酸(H2PtCl6)的水溶 液中,然后将上述混合液转移到含硼氢化钠还原剂的水溶液中,在超声辅助 下原位还原Pt,得到Pt纳米颗粒复合的NVC;
(3)Pt/NVC-g-C3N4光催化材料的制备
通过传统焙烧法将三聚氰胺于550℃下焙烧4小时,得到g-C3N4粉末。 然后将120mgPt/NVC与900mg g-C3N4混合均匀并转移到陶瓷舟中,置于管 式炉正中间。热处理前用Ar气去除管式炉内空气,于500℃下热处理2小时, 得到Pt/NVC-g-C3N4。整个过程的Ar气体流速为50sccm。
取实施例1制得的Pt/NVC-g-C3N4光催化材料进行光解水产氢工艺,如 下:
将50mg的Pt/NVC-g-C3N4光催化材料加入到45mL含10vol%三乙醇胺 的水溶液中,在室温下于顶部辐照反应体系来评价光催化性能。光照前,反应 体系超声15分钟以均匀分散光催化剂,同时通15分钟Ar去除反应器中的空气, 整个反应在磁力搅拌下进行。每隔一定时间,抽取约400μL气体产物,通过 福立气相色谱(FULI GC7980)进行定量分析(Ar为载气、TCD为检测器), 光催化分解水制氢性能见图4(a)。Pt/NVC-g-C3N4的光催化循环测试前,每 次通15分钟的Ar以除去之前的气体,然后进行光催化反应,循环4次,每 次2小时。光催化循环测试的性能见图4(b)。
实施例2
(1)NVC的制备
将1mmol钒酸钠(Na3VO4)与6mmol尿素(CH4N2O)均匀混合,随后 将上述混合物转移到陶瓷舟中并盖好,置于管式炉正中间,反应前以50sccm 流速通30分钟Ar气去除管式炉内空气,于800℃下焙烧4小时,其中Ar气 的流量为50sccm,反应后,***在Ar气氛下自然冷却到室温,获得NVC;
(2)Pt/NVC的制备
将200mg的NVC经超声均匀分散到含100mg氯铂酸钠(Na2[PtCl6]·6H2O) 的水溶液中,然后将上述混合液转移到含硼氢化钠还原剂的水溶液中,在超 声辅助下原位还原Pt,得到Pt纳米颗粒复合的NVC;
(3)Pt/NVC-g-C3N4光催化材料的制备
通过传统焙烧法将三聚氰胺于550℃下焙烧4小时,得到g-C3N4粉末。 然后将120mgPt/NVC与900mg g-C3N4混合均匀并转移到陶瓷舟中,置于管 式炉正中间。热处理前用Ar气去除管式炉内空气,于400℃下热处理3小时, 得到Pt/NVC-g-C3N4。整个过程的Ar气体流速为50sccm。
实施例3
(1)NVC的制备
将1mmol氧化钒(V2O5)与4mmol三聚氰胺(C3H6N6)均匀混合,随 后将上述混合物转移到陶瓷舟中并盖好,置于管式炉正中间,反应前以50 sccm流速通30分钟Ar气去除管式炉内空气,于1000℃下焙烧3小时,其中Ar气的流量为50sccm,反应后,***在Ar气氛下自然冷却到室温,获得 NVC;
(2)Pt/NVC的制备
将100mg的NVC经超声均匀分散到含35mg氯化铂(PtCl4)的水溶液 中,然后将上述混合液转移到含硼氢化钠还原剂的水溶液中,在超声辅助下 原位还原Pt,得到Pt纳米颗粒复合的NVC;
(3)Pt/NVC-g-C3N4光催化材料的制备
通过传统焙烧法将三聚氰胺于550℃下焙烧4小时,得到g-C3N4粉末。 然后将120mgPt/NVC与900mg g-C3N4混合均匀并转移到陶瓷舟中,置于管 式炉正中间。热处理前用Ar气去除管式炉内空气,于600℃下热处理1小时, 得到Pt/NVC-g-C3N4。整个过程的Ar气体流速为50sccm。
对比例1
该对比例中的光催化材料采用g-C3N4,采用g-C3N4进行光解水产氢工艺, 其余工艺与实施例1相同,在此不详细说明。
对比例2
该对比例中的光催化材料采用NVC-g-C3N4,采用NVC-g-C3N4进行光解 水产氢工艺,其余工艺与实施例1相同,在此不详细说明。
对比例3
该对比例中的光催化材料采用Pt/g-C3N4,采用Pt/g-C3N4进行光解水产氢 工艺,其余工艺与实施例1相同,在此不详细说明。
利用XRD、EDS等手段对Pt/NVC-g-C3N4光催化材料进行表征。如下:
图1(a)为g-C3N4、NVC-g-C3N4、Pt/g-C3N4、Pt/NVC-g-C3N4的XRD图。 图1(a)中Pt/NVC-g-C3N4表现出明显g-C3N4和NVC的特征衍射峰,说明 NVC已经成功负载到g-C3N4上。其中,Pt纳米颗粒由于其低含量而无显著 的衍射峰。
图1(b)为Pt/NVC-g-C3N4的EDS图。图1(b)的数据结果说明Pt/NVC-g-C3N4中除C、N、O元素外,还包含了Pt和V两种元素(请参考图2和图3),证实 了Pt的存在,并进一步证明了Pt/NVC成功负载在g-C3N4材料上。
请参考图4,图4(a)的数据结果说明:Pt/NVC负载的光催化产氢性能显 著高于纯g-C3N4以及单一NVC或Pt负载的g-C3N4,表明Pt和NVC的共负 载具有协同作用,能极大促进g-C3N4的光解水产氢活性。
图4(b)的数据结果说明:本发明制得的Pt/NVC-g-C3N4在循环使用4次 后(总共8小时)仍能表现出优异的光催化产氢活性,说明本发明Pt/NVC-g-C3N4具有良好的稳定性,有利于实际应用。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明 之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖 的范围。

Claims (10)

1.一种Pt/NVC-g-C3N4光催化材料,其特征在于,以g-C3N4作为载体,该g-C3N4载体上修饰有Pt/NVC纳米颗粒。
2.如权利要求1所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,将Pt/NVC通过热处理方式负载到g-C3N4上,制得Pt/NVC-g-C3N4光催化材料。
3.如权利要求2所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,包括步骤:
(1)将钒源与碳氮化合物混合,在Ar气氛中于高温下碳化以形成N掺杂的VC,制得NVC;
(2)将NVC借助化学还原法与Pt纳米颗粒复合,制得Pt/NVC。
4.如权利要求3所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,所述钒源选自钒酸铵、钒酸钠、氧化钒中的至少一种;
所述碳氮化合物选自尿素、单氰胺、二聚氰胺、三聚氰胺中的至少一种。
5.如权利要求3所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,步骤(1)中的高温为600~1150℃。
6.如权利要求3所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,步骤(2)中,将铂源溶于去离子水中,随后将NVC加入到上述溶液中,混合均匀,然后将上述混合液转移到含硼氢化钠还原剂的水溶液中,在超声辅助下原位还原Pt,得到Pt纳米颗粒复合的NVC。
7.如权利要求6所述的Pt/NVC-g-C3N4光催化材料的制备方法,其特征在于,所述铂源选自氯铂酸、氯铂酸钠、氯化铂中的至少一种。
8.一种如权利要求1所述的Pt/NVC-g-C3N4光催化材料在光解水制氢的应用。
9.如权利要求8所述的应用,其特征在于,将Pt/NVC-g-C3N4光催化材料加入到含牺牲剂的水溶液中进行光催化反应。
10.如权利要求9所述的应用,其特征在于,所述牺牲剂选自甲醇水溶液、三乙醇胺水溶液、乳酸水溶液、Na2SO3和Na2S混合液中的至少一种。
CN202110581120.5A 2021-05-26 2021-05-26 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用 Active CN113578358B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110581120.5A CN113578358B (zh) 2021-05-26 2021-05-26 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110581120.5A CN113578358B (zh) 2021-05-26 2021-05-26 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113578358A true CN113578358A (zh) 2021-11-02
CN113578358B CN113578358B (zh) 2023-09-05

Family

ID=78243294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110581120.5A Active CN113578358B (zh) 2021-05-26 2021-05-26 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113578358B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849761A (zh) * 2022-06-09 2022-08-05 东莞理工学院 一种光催化材料及其制备方法和应用
CN117225441A (zh) * 2023-08-16 2023-12-15 广东工业大学 一种制备g-C3N4负载Pt复合材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331172A1 (en) * 2008-02-20 2010-12-30 Showa Denko K.K. Catalyst carrier, catalyst and process for producing the same
JP2014169193A (ja) * 2013-03-01 2014-09-18 Nec Corp ナノカーボンとグラフェンまたはグラファイトが複合した炭素材料及びその製造方法
CN108620110A (zh) * 2018-05-09 2018-10-09 陕西科技大学 一种碳化钒/石墨烯纳米片复合材料、制备方法及其在水裂解产氢方面的应用
CN110652995A (zh) * 2019-10-21 2020-01-07 陕西科技大学 一种VC/g-C3N4光催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331172A1 (en) * 2008-02-20 2010-12-30 Showa Denko K.K. Catalyst carrier, catalyst and process for producing the same
JP2014169193A (ja) * 2013-03-01 2014-09-18 Nec Corp ナノカーボンとグラフェンまたはグラファイトが複合した炭素材料及びその製造方法
CN108620110A (zh) * 2018-05-09 2018-10-09 陕西科技大学 一种碳化钒/石墨烯纳米片复合材料、制备方法及其在水裂解产氢方面的应用
CN110652995A (zh) * 2019-10-21 2020-01-07 陕西科技大学 一种VC/g-C3N4光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAIZHONG HUANG ET AL.,: "Nitrogen-doped graphene–vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media" *
XUNFU ZHOU ET AL.,: "In Situ Photodeposited Construction of Pt−CdS/g‑C3N4−MnOx Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849761A (zh) * 2022-06-09 2022-08-05 东莞理工学院 一种光催化材料及其制备方法和应用
CN114849761B (zh) * 2022-06-09 2024-04-12 东莞理工学院 一种光催化材料及其制备方法和应用
CN117225441A (zh) * 2023-08-16 2023-12-15 广东工业大学 一种制备g-C3N4负载Pt复合材料的方法
CN117225441B (zh) * 2023-08-16 2024-05-07 广东工业大学 一种制备g-C3N4负载Pt复合材料的方法

Also Published As

Publication number Publication date
CN113578358B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN112221528B (zh) 一种单原子催化剂及其制备方法与应用
WO2017012210A1 (zh) 金属氧化物-氮化碳复合材料及其制备方法和应用
CN109622054B (zh) 一种半导体纳米粒子/碳点多孔整体催化剂的制备方法和应用
WO2019223051A1 (zh) 光催化电极耦合微生物燃料电池促进焦化废水处理方法
CN113578358B (zh) 一种Pt/NVC-g-C3N4光催化材料及其制备方法和应用
CN109225222B (zh) 一种复合光催化剂及其应用
CN113289653A (zh) 一种负载金属单原子的g-C3N4光催化剂的制备方法
Lin et al. A review on catalysts for electrocatalytic and photocatalytic reduction of N 2 to ammonia
CN102626641A (zh) 一种纳米复合催化剂及其制备方法
CN113862700A (zh) 一种Fe—N—C/MoO2纳米复合电催化剂及其制备方法和应用
Augugliaro et al. Conversion of solar energy to chemical energy by photoassisted processes—II. Influence of the iron content on the activity of doped titanium dioxide catalysts for ammonia photoproduction
CN106492863A (zh) 利用冷等离子体制备非贵金属碳化钼催化剂的方法
CN111974414A (zh) 一种复合催化材料及其制备方法、光催化剂、应用
CN114308061B (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN114425392B (zh) 一种碳氮基复合材料、其制备方法及其应用
CN110523425B (zh) 一种二氧化钼/氮掺杂还原石墨烯全光谱响应光催化剂及制备方法
CN114452974A (zh) MnO2基除醛材料及其超声-微波辅助制备方法和在甲醛催化氧化中的应用
CN110433850B (zh) 一种催化藜芦醇加氢脱氧的双金属催化剂及其制备方法与应用
CN113546658A (zh) 一种二维层状三元纳米复合光催化剂及其制备方法和应用
CN116174000A (zh) 一种低缺陷钙钛矿型钽基氧氮化物光催化剂的制备方法及其应用
CN109225297B (zh) 一种复合催化剂QDs-SISCN及其制备方法和应用
CN113600225A (zh) 一种异质结复合材料及其应用
CN111468146A (zh) 一种稀土溴氧化物光催化材料及其制备方法和应用
CN114849761B (zh) 一种光催化材料及其制备方法和应用
CN114950511B (zh) 一种具有丰富晶格缺陷位点的二氧化钛钼基光催化剂及其制备和在光催化固氮上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant