CN113565681B - Coupling system using electric heating gasifier and multi-energy conversion method thereof - Google Patents

Coupling system using electric heating gasifier and multi-energy conversion method thereof Download PDF

Info

Publication number
CN113565681B
CN113565681B CN202110907641.5A CN202110907641A CN113565681B CN 113565681 B CN113565681 B CN 113565681B CN 202110907641 A CN202110907641 A CN 202110907641A CN 113565681 B CN113565681 B CN 113565681B
Authority
CN
China
Prior art keywords
electric heating
gas
power generation
hydrogen
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110907641.5A
Other languages
Chinese (zh)
Other versions
CN113565681A (en
Inventor
章康
吕洪坤
应光耀
韩高岩
国旭涛
蔡洁聪
童家麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority to CN202110907641.5A priority Critical patent/CN113565681B/en
Publication of CN113565681A publication Critical patent/CN113565681A/en
Application granted granted Critical
Publication of CN113565681B publication Critical patent/CN113565681B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

The invention relates to a coupling system using an electric heating gasifier and a multi-energy conversion method thereof, belonging to the field of comprehensive utilization of hydrogen energy, aiming at the problem that the prior art cannot reasonably integrate and utilize clean energy such as hydrogen energy, wind energy, solar energy and the like for life use, the invention adopts the following technical scheme: a coupling system using an electrically heated gasifier, comprising: the system comprises a power grid, an electric heating gasifier, a high-temperature steam heat pump, a gas power generation system, a waste heat collector, a heat exchanger, a lithium bromide unit and a natural gas pipe network, wherein the electric heating gasifier generates hydrogen-rich synthetic gas through the power grid, the gas power generation system generates power by utilizing the hydrogen-rich synthetic gas, the waste heat collector collects waste heat of the gas power generation system, and the lithium bromide unit and the heat exchanger are respectively connected with the waste heat collector to supply cold and heat for a user. The electric heating gasification furnace in the system utilizes the wind energy power generation and/or surplus electric energy provided by the light energy power generation to prepare hydrogen, and the gas power generation system can utilize the hydrogen to generate electricity in multiple forms, so that the problems in the prior art are effectively solved.

Description

Coupling system using electric heating gasifier and multi-energy conversion method thereof
Technical Field
The invention belongs to the field of comprehensive utilization of hydrogen energy, and particularly relates to a coupling system using an electric heating gasifier and a multi-energy conversion method thereof.
Background
The hydrogen energy is a pollution-free energy carrier with high energy density, can effectively couple traditional fossil energy and renewable energy, promotes energy complementation and collaborative optimization, and has important significance for constructing a clean, low-carbon, safe and efficient energy system. Hydrogen can be produced in a variety of ways, two of which are commonly used, one being electrolytic and one being high temperature. The electrolysis reaction has high power consumption, waste materials and greenhouse gases cannot be reasonably utilized as production raw materials, and the production cost is high.
Wind power generation and solar power generation are also classical examples of reasonable utilization of clean energy, but still need to be integrated and utilized in a reasonable way. How to reasonably utilize and integrate clean energy sources to meet the demands of users is a urgent need, and therefore, a coupling system and a multi-energy conversion method are needed to be provided, which can reasonably integrate and utilize the clean energy sources to provide living resources such as air, heat, electricity and the like for users.
Disclosure of Invention
Aiming at the problem that clean energy such as hydrogen energy, wind energy, solar energy and the like cannot be reasonably integrated and utilized for living use in the prior art, the invention provides a coupling system using an electric heating gasifier and a multi-energy conversion method thereof, and the electric heating gasifier is adopted to prepare the waste into hydrogen-rich synthetic gas; stabilizing the fluctuation of new energy and intermittently improving the utilization rate of the new energy, and assisting the power grid to cut peaks and fill valleys; and the multi-energy combined supply mode can meet the requirements of users on various energy sources such as electricity, heat, cold, gas and the like.
The invention adopts the following technical scheme: a coupling system using an electrically heated gasifier, comprising:
the power grid provides surplus electric energy through a photovoltaic power generation power supply and/or a wind power generation power supply;
the electric heating gasification furnace is powered by the power grid to generate hydrogen-rich mixed gas;
the high-temperature steam heat pump is powered by the power grid and is connected with the electric heating gasification furnace to provide steam for the electric heating gasification furnace;
the fuel gas power generation system is connected with the electric heating gasification furnace and the power grid, generates power by using the hydrogen-rich mixed gas and transmits the generated electric energy to the power grid;
the waste heat collector is connected with the gas power generation system and used for collecting waste heat of the gas power generation system;
the heat exchanger is connected with the waste heat collector and is used for supplying heat to a user;
the lithium bromide unit is connected with the waste heat collector and used for cooling a user;
the natural gas pipe network is connected with the electric heating gasification furnace so as to supply gas to a user;
the electric heating gasification furnace is provided with a shell with a filling port at the top, and the shell is provided with a resistance wire so as to control the temperature in a sectional way; the inside of the shell is sequentially provided with:
a drying layer, which is heated by the radiation of the resistance wire to control the temperature so that the filler entering from the filler opening is dried to form a drying material;
the cracking layer is heated by radiation of the resistance wire to control the temperature so that the dry material sinking under the action of gravity is subjected to pyrolysis reaction to form coke;
the first air inlet is communicated with the first oxidation layer, and the first air inlet is communicated with a hot air source so that hot air enters the first oxidation layer;
the second air inlet is communicated with the high-temperature steam heat pump, so that high-temperature steam enters the reduction layer;
a second oxide layer;
the third air inlet is communicated with the ash slag layer, and the third air inlet is communicated with a hot air source, so that hot air enters the ash slag layer and the second oxidation layer;
the coke falls under the action of gravity and fills the first oxidation layer, the reduction layer and the second oxidation layer, a reducing agent is arranged in the reduction layer, the hot air reacts with the coke at the first oxidation layer and the second oxidation layer to form carbon dioxide, and the carbon dioxide, high-temperature steam, the coke and the catalyst form hydrogen-rich synthetic gas at the reduction layer; the reduction layer is communicated with an air outlet, the hydrogen-rich synthetic gas is discharged from the air outlet, and the air outlet is communicated with the gas power generation system to provide hydrogen-rich mixed gas for the gas power generation system.
The electric heating gasification furnace in the system utilizes the surplus electric energy provided by wind energy power generation and/or light energy power generation to prepare hydrogen, the gas power generation system can utilize the hydrogen to generate electricity in a multi-form, so that surplus electric power such as wind energy and/or solar energy can be consumed, fluctuation of new energy can be stabilized, the new energy utilization rate can be intermittently improved, peak clipping and valley filling of a power-assisted power grid can be realized, the demand response capability of the power-assisted power grid can be improved, and the requirements of a user on multiple energy sources such as electricity, hydrogen, heat and gas can be met in a multi-energy combined mode.
The utility model provides an electric heating gasifier is multistage formula gasifier, and the hot air gets into the casing from first air inlet and third air inlet respectively and reacts and produce carbon dioxide, and it obtains hydrogen-rich synthetic gas to reduce in the zone of reduction with the vapor, and the reaction that takes place includes: carbon dioxide reacts with carbon to produce carbon monoxide, carbon monoxide reacts with water to produce carbon dioxide and hydrogen, and carbon monoxide reacts with water to produce carbon dioxide and hydrogen; the electric heating gasifier has high efficiency and is convenient for achieving the effects of energy conservation and low carbon.
Further, the first air inlet and the third air inlet are arranged on the same side as the second air inlet, and the air outlet is arranged opposite to the second air inlet. The arrangement is such that the hot air is in full contact with and fully reacts with the coke, and the high-temperature steam can fully react with the coke, so that the hydrogen ratio of the hydrogen-rich synthetic gas obtained at the gas outlet is higher.
Further, the coupling system further comprises a methanol synthesizer, the methanol synthesizer is connected with the electric heating gasifier and used for synthesizing methanol, and the waste heat collector is connected with the methanol synthesizer so as to collect waste heat of the methanol synthesizer. The methanol synthesizer can further convert hydrogen energy and carbon dioxide into zero-carbon fuel such as methanol, so that high-efficiency conversion of hydrogen energy based on carbon capture is realized, and decarburization in the fields of industry, transportation and the like is promoted.
Further, the photovoltaic power generation power supply and/or the wind power generation power supply are/is connected with the power grid through a transformer so as to be used.
Further, the power generation system is connected with the electric heating gasifier through a PSA purifier and a hydrogen storage tank for hydrogen purification and storage.
Further, the power generation system includes a fuel cell, a gas turbine, and an internal combustion engine, each of which generates power by consuming hydrogen generated by the electric heating gasification furnace.
Further, the heat exchanger is a two-stage heat exchanger, the first stage of the heat exchanger exchanges heat between tail gas and cold water through the hybrid condenser, the second stage of the heat exchanger exchanges heat with hot water produced by the first stage through the plate heat exchanger, and finally the hot water produced by the plate heat exchanger is used for meeting the heat demand of a user, so that the purposes of high efficiency and energy conservation are achieved.
The multi-energy conversion method for coupling the hydrogen and the electric heating gas by the coupling system comprises the following steps:
step 1, connecting a photovoltaic power generation power supply and/or a wind power generation power supply with a power grid, and providing surplus electric energy for the power grid;
step 2, connecting the high-temperature steam heat pump and the electric heating gasifier with a power grid, and simultaneously connecting the high-temperature steam heat pump and the electric heating gasifier to enable the high-temperature steam heat pump to generate steam with the temperature of at least 100 ℃ and enable the steam to enter the electric heating gasifier to enable the electric heating gasifier to generate hydrogen-rich synthetic gas:
step 2.1, adding biomass/garbage from a filling port of the electric heating gasification furnace;
step 2.2, drying the biomass/garbage in sequence at a drying layer and cracking the biomass/garbage at a cracking layer to form coke, wherein the coke falls under the action of gravity and fills a first oxidation layer, a reduction layer and a second oxidation layer;
step 2.3, hot air is introduced into a first oxidation layer and an ash slag layer of the electric heating gasification furnace, so that coke reacts to generate carbon dioxide;
step 2.4, introducing high-temperature steam into the electric heating gasification furnace, so that the high-temperature steam, carbon dioxide, coke and a reducing agent react to generate hydrogen-rich synthetic gas;
step 3, connecting a gas power generation system with the electric heating gasifier and the power grid, so that the gas power generation system generates power by utilizing the hydrogen-rich synthetic gas and transmits the generated electric energy to the power grid;
step 4, collecting the waste heat of the gas power generation system by adopting a waste heat collector;
step 5, connecting the heat exchanger and the lithium bromide unit with the waste heat collector so that the heat exchanger and the lithium bromide unit can utilize waste heat in the waste heat collector to supply heat and cool for users;
and 6, connecting the electric heating gasifier with a natural gas pipe network, so that the hydrogen-rich synthetic gas enters the natural gas pipe network and supplies gas to the natural gas pipe network.
The method is simple to operate, is beneficial to realizing energy conservation, low carbon and multi-energy continuous supply, and realizes multi-element efficient clean utilization of energy.
The invention has the beneficial effects that:
1. the electric heating gasification furnace is a multi-section gasification furnace, so that the hydrogen production efficiency is high, and the energy-saving and low-carbon effects are conveniently achieved;
2. the electric heating gasification furnace in the coupling system utilizes the wind energy power generation and/or the surplus electric energy provided by the light energy power generation to prepare hydrogen, the gas power generation system can utilize the hydrogen to generate electricity in a multi-form mode, so that surplus electric power such as wind energy and/or solar energy can be consumed, fluctuation of new energy can be stabilized, the new energy utilization rate can be intermittently improved, peak clipping and valley filling of a power-assisted power grid can be realized, the demand response capability of the power-assisted power grid can be improved, and the requirements of a user on multiple energy sources such as electricity, hydrogen, heat and gas can be met in a multi-energy combined mode;
3. the coupling method is simple to operate, and is beneficial to realizing energy conservation, low carbon and multi-energy continuous supply.
Drawings
FIG. 1 is a schematic structural view of a coupling system using an electric heating gasification furnace;
fig. 2 is a schematic structural view of an electric heating gasification furnace.
In the figure: 1-a photovoltaic power generation power supply; 2-a wind power generation power supply; 3-high temperature steam heat pump; 4-an electric heating gasifier; 41-a filler port; 42-drying the layer; 43-cleavage layer; 44-a first oxide layer; 45-a reduction layer; 46-a second oxide layer; 47-ash layer; 48-a first air inlet; 49-a second air inlet; 410-a third air inlet; 411-air outlet; a 5-PSA purifier; 6-a hydrogen storage tank; 7-a fuel cell; 8-gas turbines; 9-an internal combustion engine; a 10-methanol synthesizer; 11-a waste heat collector; 12-a heat exchanger; 13-lithium bromide unit.
Detailed Description
The technical solutions of the embodiments of the present invention will be explained and illustrated below with reference to the drawings of the present invention, but the following embodiments are only preferred embodiments of the present invention, and not all the embodiments. Based on the examples in the implementation manner, other examples obtained by a person skilled in the art without making creative efforts fall within the protection scope of the present invention.
Example 1
The coupling system using the electric heating gasification furnace of the present embodiment, as shown in fig. 1, includes:
the power grid provides surplus electric energy through the photovoltaic power generation power supply 1 and the wind power generation power supply 2;
an electric heating gasifier 4 which is powered by the power grid to generate hydrogen-rich mixed gas;
a high-temperature steam heat pump 3 which is powered by the power grid and is connected with the electric heating gasification furnace 4 to provide steam for the electric heating gasification furnace 4;
the fuel gas power generation system is connected with the electric heating gasification furnace 4 and the power grid, uses the hydrogen-rich mixed gas to generate power and transmits the generated electric energy to the power grid;
the waste heat collector 11 is connected with the gas power generation system and is used for collecting waste heat of the gas power generation system;
a heat exchanger 12 connected to the waste heat collector 11 for supplying heat to a user;
a lithium bromide unit 13 connected to the waste heat collector 11 for supplying cold to a user;
a natural gas pipe network connected to the electric heating gasification furnace 4 so as to supply gas to a user;
as shown in fig. 2, the electric heating gasification furnace 4 is provided with a shell with a filling port 41 at the top, and resistance wires are arranged on the shell so as to control the temperature in a sectional way, and the filling material is preferably biomass or garbage in the invention so as to realize recycling of the waste; the inside of the shell is sequentially provided with:
a drying layer 42 which is heated by the radiation of the resistance wire to control the temperature so that the filler entering from the filler port 41 is dried to form a dried material;
a pyrolysis layer 43 for heating and controlling the temperature by the radiation of the resistance wire so that the dried material sunk under the action of gravity is subjected to pyrolysis reaction to form coke;
a first oxide layer 44, a first air inlet 48 in communication with said first oxide layer 44, said first air inlet 48 in communication with a source of hot air such that hot air enters said first oxide layer 44;
the reduction layer 45, the second air inlet 49 and the air outlet 411 are communicated with the reduction layer 45, and the second air inlet 49 is communicated with the high-temperature steam heat pump 3 so that high-temperature steam enters the reduction layer 45; the reducing agent used in this example was Ni/ZrO 2 A catalyst;
a second oxide layer 46;
the ash layer 47, a third air inlet 410 is communicated with the ash layer 47, and the third air inlet 410 is communicated with a hot air source so that hot air enters the ash layer 47 and the second oxidation layer 46;
the coke falls under the action of gravity and fills the first oxidation layer 44, the reduction layer 45 and the second oxidation layer 46, a reducing agent is arranged in the reduction layer 45, the hot air reacts with the coke at the first oxidation layer 44 and the second oxidation layer 46 to form carbon dioxide, and the carbon dioxide, high-temperature steam, the coke and the catalyst form hydrogen-rich synthetic gas at the reduction layer 45; the reduction layer 45 is communicated with an air outlet 411, the hydrogen-rich synthetic gas is discharged from the air outlet 411, and the air outlet 411 is communicated with the gas power generation system to provide a hydrogen-rich mixed gas for the gas power generation system.
The electric heating gasification furnace 4 in the system utilizes the surplus electric energy provided by wind energy power generation and light energy power generation to prepare hydrogen, the gas power generation system can utilize the hydrogen to generate electricity in a multi-form, not only can consume surplus electric power such as wind energy and/or solar energy and the like, stabilize the fluctuation of new energy and intermittently improve the utilization rate of the new energy, power grid peak clipping and valley filling, and improve the demand response capability of the new energy, but also can meet the demands of users on multiple energy sources such as electricity, hydrogen, heat and gas in a multi-energy combined supply mode.
The electric heating gasifier 4 in the present application is a multi-stage gasifier, hot air enters the shell from the first air inlet 48 and the third air inlet 410 respectively to react to generate carbon dioxide, and the carbon dioxide and water vapor are reduced together at the reducing layer 45 to obtain hydrogen-rich synthetic gas, wherein the reactions include: carbon dioxide reacts with carbon to produce carbon monoxide, carbon monoxide reacts with water to produce carbon dioxide and hydrogen, and carbon monoxide reacts with water to produce carbon dioxide and hydrogen; the electric heating gasification furnace 4 has high efficiency and is convenient for achieving the effects of energy conservation and low carbon.
The first air inlet 48 and the third air inlet 410 are disposed on the same side as the second air inlet 49, and the air outlet 411 is disposed opposite to the second air inlet 49. The arrangement is such that the hot air is in sufficient contact with and reacts with the coke and the high temperature steam is able to react with the coke to obtain a higher hydrogen content in the hydrogen rich synthesis gas at the outlet 411.
The coupling system further comprises a methanol synthesizer 10, wherein the methanol synthesizer 10 is connected with the electric heating gasification furnace 4 and is used for synthesizing methanol, and the waste heat collector 11 is connected with the methanol synthesizer 10 so as to collect waste heat of the methanol synthesizer 10. The methanol synthesizer 10 can further convert hydrogen energy and carbon dioxide into zero-carbon fuel such as methanol, thereby realizing high-efficiency conversion of hydrogen energy based on carbon capture and promoting decarburization in the fields of industry, transportation and the like.
In the present embodiment, the methanol synthesizer 10 is Cu/ZnO/Al 2 O 3 Copper-based catalyst and the like, preparing methanol at 288 ℃ and 76bar parameters, and directionally regulating and controlling CO by the methanol synthesizer 10 2 The reaction path with the hydrogen source improves the conversion efficiency, realizes the preparation of the zero-carbon fuel methanol, and can be directly used for deep decarburization in the fields of the prior energy system, the booster industry, the traffic and the like.
The photovoltaic power generation power supply 1 and/or the wind power generation power supply 2 are/is connected with the power grid through a transformer for use.
The power generation system is connected to the electric heating gasification furnace 4 through a PSA purifier 5 and a hydrogen storage tank 6 for hydrogen purification and storage.
The power generation system includes a fuel cell 7, a gas turbine 8, and an internal combustion engine 9, the fuel cell 7, the gas turbine 8, and the internal combustion engine 9 each generating power by consuming hydrogen generated by the electric heating gasification furnace 4.
The heat exchanger 12 is a two-stage heat exchanger 12, the first stage of the heat exchanger exchanges heat between tail gas and cold water through the hybrid condenser, the second stage of the heat exchanger exchanges heat with hot water produced by the first stage through the plate heat exchanger 12, and finally the hot water produced by the plate heat exchanger 12 is used for meeting the heat demand of users, so that the purposes of high efficiency and energy conservation are achieved.
Example 2
The multi-energy conversion method for coupling hydrogen and electric heating gas by using the coupling system of the electric heating gasification furnace of the embodiment comprises the following steps:
step 1, connecting a photovoltaic power generation power supply 1 and/or a wind power generation power supply 2 with a power grid to provide surplus electric energy for the power grid;
step 2, connecting the high-temperature steam heat pump 3 and the electric heating gasification furnace 4 with a power grid, and simultaneously connecting the high-temperature steam heat pump 3 and the electric heating gasification furnace 4, so that the high-temperature steam heat pump 3 generates steam with the temperature of at least 100 ℃ and the steam is introduced into the electric heating gasification furnace 4 to enable the electric heating gasification furnace 4 to generate hydrogen-rich synthetic gas:
step 2.1, adding biomass/garbage from a filling port 41 of the electric heating gasification furnace 4;
step 2.2, drying the biomass/garbage at the drying layer 42 in sequence and cracking the biomass/garbage at the cracking layer 43 to form coke, wherein the coke falls under the action of gravity and fills the first oxidation layer 44, the reduction layer 45 and the second oxidation layer 46;
step 2.3, introducing hot air into the first oxide layer 44 and the ash layer 47 of the electric heating gasification furnace 4, so that coke reacts to generate carbon dioxide;
step 2.4, introducing high-temperature steam into the electric heating gasification furnace 4, so that the high-temperature steam, carbon dioxide, coke and a reducing agent react to generate hydrogen-rich synthetic gas;
step 3, connecting a gas power generation system to the electric heating gasifier 4 and the power grid, so that the gas power generation system generates power by using the hydrogen-rich synthetic gas and transmits the generated power to the power grid, wherein the power generation system comprises a fuel cell 7, a gas turbine 8 and an internal combustion engine 9, and the fuel cell 7, the gas turbine 8 and the internal combustion engine 9 generate power by consuming hydrogen generated by the electric heating gasifier 4; simultaneously, a methanol synthesizer 10 is connected with the electric heating gasifier 4 for synthesizing methanol;
step 4, collecting the waste heat of the fuel gas power generation system and the methanol synthesizer 10 by adopting a waste heat collector 11; the waste heat collector 11 is respectively connected with the fuel cell 7, the gas turbine 8, the internal combustion engine 9 and the methanol synthesizer 10 so as to collect waste heat of the methanol synthesizer 10;
in the present embodiment, the methanol synthesizer 10 is Cu/ZnO/Al 2 O 3 Copper-based catalysts and the like, and methanol is prepared at 288 ℃ and 76bar parameters;
step 5, connecting the heat exchanger 12 and the lithium bromide unit 13 with the waste heat collector 11, so that the heat exchanger 12 and the lithium bromide unit 13 can utilize waste heat in the waste heat collector 11 to supply heat and cool for users;
and 6, connecting the electric heating gasifier 4 with a natural gas pipe network, so that the hydrogen-rich synthetic gas enters the natural gas pipe network and supplies gas to the natural gas pipe network.
The method is simple to operate, is beneficial to realizing energy conservation, low carbon and multi-energy continuous supply, and realizes multi-element efficient clean utilization of energy.
While the invention has been described in terms of specific embodiments, it will be appreciated by those skilled in the art that the invention is not limited thereto but includes, but is not limited to, those shown in the drawings and described in the foregoing detailed description. Any modifications which do not depart from the functional and structural principles of the present invention are intended to be included within the scope of the appended claims.

Claims (6)

1. A coupling system using an electrically heated gasifier, comprising:
the power grid provides surplus electric energy through a photovoltaic power generation power supply and/or a wind power generation power supply;
the electric heating gasification furnace is powered by the power grid to generate hydrogen-rich mixed gas;
the high-temperature steam heat pump is powered by the power grid and is connected with the electric heating gasification furnace to provide steam for the electric heating gasification furnace;
the fuel gas power generation system is connected with the electric heating gasification furnace and the power grid, generates power by using the hydrogen-rich mixed gas and transmits the generated electric energy to the power grid;
the waste heat collector is connected with the gas power generation system and used for collecting waste heat of the gas power generation system;
the heat exchanger is connected with the waste heat collector and is used for supplying heat to a user; the heat exchanger is a two-stage heat exchanger, the first stage of the heat exchanger exchanges heat between tail gas and cold water through the hybrid condenser, and the second stage of the heat exchanger exchanges heat between the tail gas and hot water produced by the first stage through the plate heat exchanger;
the lithium bromide unit is connected with the waste heat collector and used for cooling a user;
the natural gas pipe network is connected with the electric heating gasification furnace so as to supply gas to a user;
the electric heating gasification furnace is provided with a shell with a filling port at the top, and a resistance wire is arranged on the shell so as to control the temperature in a sectional manner; the inside of the shell is sequentially provided with:
a drying layer, which is heated by the radiation of the resistance wire to control the temperature so that the filler entering from the filler opening is dried to form a drying material;
the cracking layer is heated by radiation of the resistance wire to control the temperature so that the dry material sinking under the action of gravity is subjected to pyrolysis reaction to form coke;
the first air inlet is communicated with the first oxidation layer, and the first air inlet is communicated with a hot air source so that hot air enters the first oxidation layer;
the second air inlet is communicated with the high-temperature steam heat pump, so that high-temperature steam enters the reduction layer;
a second oxide layer;
the third air inlet is communicated with the ash slag layer, and the third air inlet is communicated with a hot air source, so that hot air enters the ash slag layer and the second oxidation layer;
the first air inlet and the third air inlet are arranged on the same side as the second air inlet, and the air outlet is arranged opposite to the second air inlet;
the coke falls under the action of gravity and fills the first oxidation layer, the reduction layer and the second oxidation layer, a reducing agent is arranged in the reduction layer, the hot air reacts with the coke at the first oxidation layer and the second oxidation layer to form carbon dioxide, and the carbon dioxide, high-temperature steam, the coke and the catalyst form hydrogen-rich synthetic gas at the reduction layer; the reduction layer is communicated with an air outlet, the hydrogen-rich synthetic gas is discharged from the air outlet, and the air outlet is communicated with the gas power generation system to provide hydrogen-rich mixed gas for the gas power generation system.
2. The coupling system using an electric heating gasification furnace according to claim 1, further comprising a methanol synthesizer connected to the electric heating gasification furnace for synthesizing methanol, wherein the waste heat collector is connected to the methanol synthesizer for collecting waste heat of the methanol synthesizer.
3. The coupling system using an electric heating gasification furnace according to claim 1, wherein the photovoltaic power generation power source and/or the wind power generation power source are connected to the power grid through a transformer for use.
4. The coupling system using an electric heating gasification furnace according to claim 1, wherein the power generation system is connected to the electric heating gasification furnace through a PSA purifier and a hydrogen storage tank for hydrogen purification and storage.
5. The coupling system using an electric heating gasification furnace according to claim 1, wherein the power generation system comprises a fuel cell, a gas turbine, and an internal combustion engine, each of which generates power by consuming hydrogen generated by the electric heating hydrogen production gasification furnace.
6. A method of multi-energy conversion using the coupling system of any one of claims 1-5, comprising:
step 1, connecting a photovoltaic power generation power supply and/or a wind power generation power supply with a power grid, and providing surplus electric energy for the power grid;
step 2, connecting the high-temperature steam heat pump and the electric heating gasifier with a power grid, and simultaneously connecting the high-temperature steam heat pump and the electric heating gasifier to enable the high-temperature steam heat pump to generate steam with the temperature of at least 100 ℃ and enable the steam to enter the electric heating gasifier to enable the electric heating gasifier to generate hydrogen-rich synthetic gas:
step 2.1, adding biomass/garbage from a filling port of the electric heating gasification furnace;
step 2.2, drying the biomass/garbage in sequence at a drying layer and cracking the biomass/garbage at a cracking layer to form coke, wherein the coke falls under the action of gravity and fills a first oxidation layer, a reduction layer and a second oxidation layer;
step 2.3, hot air is introduced into a first oxidation layer and an ash slag layer of the electric heating gasification furnace, so that coke reacts to generate carbon dioxide;
step 2.4, introducing high-temperature steam into the electric heating gasification furnace, so that the high-temperature steam, carbon dioxide, coke and a reducing agent react to generate hydrogen-rich synthetic gas;
step 3, connecting a gas power generation system with the electric heating gasifier and the power grid, so that the gas power generation system generates power by utilizing the hydrogen-rich synthetic gas and transmits the generated electric energy to the power grid;
step 4, collecting the waste heat of the gas power generation system by adopting a waste heat collector;
step 5, connecting the heat exchanger and the lithium bromide unit with the waste heat collector so that the heat exchanger and the lithium bromide unit can utilize waste heat in the waste heat collector to supply heat and cool for users;
and 6, connecting the electric heating gasifier with a natural gas pipe network, so that the hydrogen-rich synthetic gas enters the natural gas pipe network and supplies gas to the natural gas pipe network.
CN202110907641.5A 2021-08-09 2021-08-09 Coupling system using electric heating gasifier and multi-energy conversion method thereof Active CN113565681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110907641.5A CN113565681B (en) 2021-08-09 2021-08-09 Coupling system using electric heating gasifier and multi-energy conversion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110907641.5A CN113565681B (en) 2021-08-09 2021-08-09 Coupling system using electric heating gasifier and multi-energy conversion method thereof

Publications (2)

Publication Number Publication Date
CN113565681A CN113565681A (en) 2021-10-29
CN113565681B true CN113565681B (en) 2023-07-07

Family

ID=78170893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110907641.5A Active CN113565681B (en) 2021-08-09 2021-08-09 Coupling system using electric heating gasifier and multi-energy conversion method thereof

Country Status (1)

Country Link
CN (1) CN113565681B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396644A (en) * 2021-12-10 2022-04-26 中国华能集团清洁能源技术研究院有限公司 Multistage heating system based on hydrogen energy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226395C (en) * 2001-11-08 2005-11-09 国家电力公司热工研究院 Double-section dry coal powder gasifying furnace
CN101565629B (en) * 2007-08-24 2013-01-23 周开根 Process, system and device for waste biomass multi-production processing
CN104119959A (en) * 2013-04-27 2014-10-29 穆华 Inverse-combustion dual-medium domestic waste gasifier
CN104845691A (en) * 2015-06-15 2015-08-19 西北农林科技大学 Method and device for synthesizing natural gas from wind/solar hybrid generation pyrolysis catalytic biomass
CN107011946A (en) * 2016-01-27 2017-08-04 杜新国 The technique that biomass is converted into methanol with combustible in rubbish
CN108315357A (en) * 2018-04-10 2018-07-24 中国华能集团清洁能源技术研究院有限公司 The method and system of combustible are coupled using regenerative resource and biomass
CN109995081A (en) * 2019-04-15 2019-07-09 杨清萍 A kind of clean energy resource power generating and hydrogen producing, hydrogen energy storage cogeneration system
CN209872942U (en) * 2019-04-18 2019-12-31 青海民族大学 Solar-assisted rural biomass biogas utilization combined supply system
CN211871883U (en) * 2019-11-12 2020-11-06 深圳龙澄高科技环保股份有限公司 Range-dividing domestic garbage drying pyrolysis purification technology
CN110923011A (en) * 2019-12-10 2020-03-27 中国科学院工程热物理研究所 Coal grading conversion gasification method and device
CN212777602U (en) * 2020-08-19 2021-03-23 内蒙古恒瑞新能源有限责任公司 Biomass boiler and wind power clean heat supply and gas supply power supply system

Also Published As

Publication number Publication date
CN113565681A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
CN109687002B (en) Distributed combined cooling heating and power system
Hou et al. Thermodynamic performance study of the integrated MR-SOFC-CCHP system
CN113583712B (en) Multi-energy coupling complementary and sequential conversion system and method
CN109950574B (en) Water hydrogen power generation system based on natural energy
CN110544785A (en) natural gas self-heating reforming proton exchange membrane fuel cell distributed cogeneration system and method
CN102544549A (en) Combined heat and power (CHP) supply system based on fuel cell
CN109004244A (en) Solid oxide fuel cell association system based on solar energy preparing hydrogen by reforming methanol
CN208955118U (en) A kind of solid oxide fuel cell exhaust treatment system based on electrolytic tank of solid oxide
CN109686998A (en) Association circulating power generation system based on the cooling fuel cell of gas turbine
CN208589494U (en) Solid oxide fuel cell association system based on solar energy preparing hydrogen by reforming methanol
CN112993347A (en) Energy device and power generation system based on solid oxide battery
CN210516883U (en) Natural gas self-heating reforming proton exchange membrane fuel cell distributed cogeneration system
CN109473702A (en) A kind of solid oxide fuel cell exhaust treatment system and processing method
CN201985204U (en) Heat-power co-generation system based on fuel cell
CN113565681B (en) Coupling system using electric heating gasifier and multi-energy conversion method thereof
CN214958724U (en) Multi-energy combined supply system constructed based on hydrogen energy storage
CN114024326A (en) Wind-solar hydrogen production coupling power generation and energy storage system and method for peak regulation
CN116317175B (en) Solar-driven RSOC distributed poly-generation system and co-generation method thereof
CN209586523U (en) A kind of oxygen-enriched combusting electricity generation system that integrated solar methane dry type is reformed
CN209266502U (en) Association circulating power generation system based on the cooling fuel cell of gas turbine
CN204204965U (en) A kind of integral coal gasification molten carbonate fuel cell electrification structure
CN109595074B (en) Gas turbine system and heat storage and release method thereof
CN109723557A (en) The oxygen-enriched combusting carbon dioxide electricity generation system that integrated solar methane dry type is reformed
CN115660142A (en) Source-load-storage coordination optimization scheduling method for park comprehensive energy system
CN114865026A (en) Carbon chemical energy storage and supply system based on solid oxide fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant