CN113563881B - 稀土掺杂钽酸镁闪烁发光材料及其制备方法 - Google Patents

稀土掺杂钽酸镁闪烁发光材料及其制备方法 Download PDF

Info

Publication number
CN113563881B
CN113563881B CN202110912968.1A CN202110912968A CN113563881B CN 113563881 B CN113563881 B CN 113563881B CN 202110912968 A CN202110912968 A CN 202110912968A CN 113563881 B CN113563881 B CN 113563881B
Authority
CN
China
Prior art keywords
luminescent material
rare earth
grinding
scintillating
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110912968.1A
Other languages
English (en)
Other versions
CN113563881A (zh
Inventor
马云峰
郭超
徐家跃
秦康
吴金成
蒋毅坚
王森宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202110912968.1A priority Critical patent/CN113563881B/zh
Publication of CN113563881A publication Critical patent/CN113563881A/zh
Application granted granted Critical
Publication of CN113563881B publication Critical patent/CN113563881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7744Chalcogenides
    • C09K11/7746Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7756Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing neodynium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7759Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing samarium
    • C09K11/776Chalcogenides
    • C09K11/7761Chalcogenides with alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种稀土掺杂钽酸镁闪烁发光材料及其制备方法。所述稀土掺杂钽酸镁闪烁发光材料的化学通式为Mg4Ta2O9:RE,其中RE为稀土元素。制备方法为:按化学通式称取原料,将所有原料混合均匀;然后将混合物在空气气氛中依次预烧、煅烧,再自然冷却到室温,研磨即可。本发明中的闪烁发光材料采用高温固相法合成,在空气中稳定存在,工艺安全简单,容易控制。所制得的闪烁发光材料在X射线激发下,得到的不同稀土掺杂的Mg4Ta2O9:RE样品,光产额在13848~43917ph/MeV,最高可达CsI(Tl)的81%、Mg4Ta2O9和CdWO4的2.4倍。

Description

稀土掺杂钽酸镁闪烁发光材料及其制备方法
技术领域
本发明涉及一种高能射线探测用Mg4Ta2O9:RE(RE=Sc3+、Lu3+、Yb3+、Tm3+、Er3+、Y3+、Ho3+、Dy3+、Tb3+、Gd3+、Eu3+、Sm3+、Nd3+、Pr3+、Ce3+、La3+)闪烁发光材料及制备方法,属于高能射线探测用闪烁发光材料技术领域。
背景技术
无机闪烁晶体广泛应用于高能物理与核物理、天体物理、医学成像、地质勘探、安全检测及国防安全等领域。特别是机场安检、海关集装箱检查等,需要大量基于闪烁晶体的X射线成像探头,目前比较成熟的安检探头材料主要有CdWO4晶体、CsI(Tl)晶体等。CdWO4具有良好的射线阻止本领,几乎没有余辉,但亮度相对较低,并且Cd有毒。CsI:Tl具有良好的光产额和射线阻止本领,但其衰减时间比较长,并且Tl有毒。因此,探索新型无毒环保的具有优异性能的闪烁晶体,是当前安检应用领域的迫切需求和发展重心。
Mg4Ta2O9(简称MTO)晶体材料属于六方晶系,具有钛铁矿结构,空间群为P3c1(165),晶格常数为a=0.51611nm,c=1.40435nm,V=0.32396nm3。Mg4Ta2O9晶体的662keV137Csγ射线光产额为13000±2000ph/MeV,和CdWO4晶体(12000~15000ph/MeV)相当,约为CsI(Tl)晶体光产额(52000~56000ph/MeV)的24%;能量分辨率为6.2%,高于CdWO4晶体8.3%的能量分辨率,和CsI(Tl)的能量分辨率(5.7%)相当;其衰减时间为4.5μs,优于CdWO4晶体的14μs,长于CsI(Tl)晶体的1μs。该晶体环境友好,从生产、加工到应用、回收都没有有毒元素污染环境的问题,在射线成像探头方面有潜在的应用前景。
从组成角度讲,稀土在闪烁晶体发展中发挥了巨大的作用。大部分稀土离子(Ce3+→Yb3+)具有未完全充满的4f电子层,共有1639个能级,可能发生跃迁的数目高达199177个,是一个巨大的发光宝库,已广泛用作发光材料的激活剂和敏化剂。稀土离子独特的电子组态结构,会使Mg4Ta2O9晶体具有更加优异的发光性能,当稀土离子进行弱掺杂时,可以作为敏化剂,利用其丰富的能级结构吸收并传递能量至Ta-O八面体发光中心,提高Mg4Ta2O9晶体的光产额。当稀土离子进行重掺杂时,可以作为激活剂,Mg4Ta2O9基质吸收的能量转移至稀土离子的发光中心,利用其丰富的能级结构,发出紫外和可见光,成为具有优异闪烁性能的稀土闪烁晶体。
发明内容
本发明所要解决的技术问题是:如何结合稀土在闪烁材料领域的发光优势,将其掺入Mg4Ta2O9(简称MTO),以获得高光产额的高能射线辐射探测用的稀土掺杂钽酸镁闪烁材料。
为了解决上述技术问题,本发明提供了一种稀土掺杂钽酸镁闪烁发光材料,其化学通式为Mg4Ta2O9:RE,其中RE为稀土元素。
优选地,所述化学通式中的RE为Sc3+、Lu3+、Yb3+、Tm3+、Er3+、Y3+、Ho3+、Dy3+、Tb3+、Gd3+、Eu3+、Sm3+、Nd3+、Pr3+、Ce3+或La3+
优选地,所述化学通式中RE的掺杂量为0.25at%。
优选地,所述稀土掺杂钽酸镁闪烁发光材料在X射线激发下,光产额为13848~43917ph/MeV。
本发明还提供了上述稀土掺杂钽酸镁闪烁发光材料的制备方法,按化学通式称取原料,将所有原料混合均匀;然后将混合物在空气气氛中依次预烧、煅烧,再自然冷却到室温,研磨即可。
优选地,所述的原料为MgO、Ta2O5及根据化学通式的掺杂元素选择的Sc2O3、Lu2O3、Yb2O3、Tm2O3、Er2O3、Y2O3、Ho2O3、Dy2O3、Tb2O3、Gd2O3、Eu2O3、Sm2O3、Nd2O3、Pr2O3、Ce2O3或La2O3
优选地,所述MgO的加入量相对标准配比须过量3at%。
优选地,所述预烧的温度为1250~1300℃,时间为3~12小时。
优选地,所述煅烧的温度为1300~1400℃,时间为6~24小时。
本发明还提供了上述稀土掺杂钽酸镁闪烁发光材料在高能射线探测中的应用。
采用高温固相法合成的稀土掺杂钽酸镁体系在空气中能稳定存在,在高能射线激发下具有高的光输出。本发明可以为新型闪烁体材料的设计和制备提供理论和技术支持。
相对于现有技术,本发明具有如下优点和有益效果:
(1)本发明的闪烁发光材料采用高温固相法合成,制备工艺简单,操作安全,条件易于控制。
(2)本发明的闪烁发光材料无毒性和放射性元素,在空气中稳定存在,不易潮解。
(3)所发明的闪烁发光材料,在X射线激发下,得到的不同稀土掺杂的Mg4Ta2O9:RE样品光产额在13837-43917ph/MeV,优于未掺杂的Mg4Ta2O9,其中样品Mg4Ta2O9:Gd光产额最高,是CsI(Tl)的81%,是Mg4Ta2O9和CdWO4的2.4倍。
附图说明
图1为各实施例所制备的闪烁发光材料的X射线衍射图;
图2为Mg4Ta2O9:0.25at%Sc闪烁发光材料在X射线激发下测得的发射光谱图;
图3为Mg4Ta2O9:0.25at%Lu闪烁发光材料在X射线激发下测得的发射光谱图;
图4为Mg4Ta2O9:0.25at%Yb闪烁发光材料在X射线激发下测得的发射光谱图;
图5为Mg4Ta2O9:0.25at%Tm闪烁发光材料在X射线激发下测得的发射光谱图;
图6为Mg4Ta2O9:0.25at%Er闪烁发光材料在X射线激发下测得的发射光谱图;
图7为Mg4Ta2O9:0.25at%Y闪烁发光材料在X射线激发下测得的发射光谱图;
图8为Mg4Ta2O9:0.25at%Ho闪烁发光材料在X射线激发下测得的发射光谱图;
图9为Mg4Ta2O9:0.25at%Dy闪烁发光材料在X射线激发下测得的发射光谱图;
图10为Mg4Ta2O9:0.25at%Tb闪烁发光材料在X射线激发下测得的发射光谱图;
图11为Mg4Ta2O9:0.25at%Gd闪烁发光材料在X射线激发下测得的发射光谱图;
图12为Mg4Ta2O9:0.25at%Eu闪烁发光材料在X射线激发下测得的发射光谱图;
图13为Mg4Ta2O9:0.25at%Sm闪烁发光材料在X射线激发下测得的发射光谱图;
图14为Mg4Ta2O9:0.25at%Nd闪烁发光材料在X射线激发下测得的发射光谱图;
图15为Mg4Ta2O9:0.25at%Pr闪烁发光材料在X射线激发下测得的发射光谱图;
图16为Mg4Ta2O9:0.25at%Ce闪烁发光材料在X射线激发下测得的发射光谱图;
图17为Mg4Ta2O9:0.25at%La闪烁发光材料在X射线激发下测得的发射光谱图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Sc2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1250℃预烧3小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1300℃烧结6小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Sc曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图2所示,Mg4Ta2O9:0.25at%Sc的30keV X射线激发发射谱图表明其发射波长在352nm,半高宽为109nm,发光强度为Mg4Ta2O9的2.4倍,检测得到Mg4Ta2O9:0.25at%Sc的光产额为31450ph/MeV。
实施例2
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Lu2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1250℃预烧3小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1300℃烧结6小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Lu曲线所示。从图中曲线可看出,所有衍射峰与标准衍的射峰(PDF#38-1458)相对应。如图3所示,Mg4Ta2O9:0.25at%Lu的30keV X射线激发发射谱图表明其发射波长在354nm,半高宽为109nm,发光强度为Mg4Ta2O9的1.6倍,检测得到Mg4Ta2O9:0.25at%Lu的光产额为21394ph/MeV。
实施例3
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Yb2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1250℃预烧3小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1300℃烧结6小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Yb曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图4所示,Mg4Ta2O9:0.25at%Yb的30keV X射线激发发射谱图表明其发射波长在343nm,半高宽为89nm,发光强度为Mg4Ta2O9的1.1倍,检测得到Mg4Ta2O9:0.25at%Yb的光产额为13837ph/MeV。
实施例4
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Tm2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1250℃预烧3小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1300℃烧结6小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Tm曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图5所示,Mg4Ta2O9:0.25at%Tm的30keV X射线激发发射谱图表明其发射波长在355nm,半高宽为82nm,发光强度为Mg4Ta2O9的1.6倍,检测得到Mg4Ta2O9:0.25at%Tm的光产额为20471ph/MeV。另外XEL图中还显示Tm3+1D23F4能级跃迁,峰位位于459nm,发光强度是Mg4Ta2O9的1.3倍,半高宽为20nm。
实施例5
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Er2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1260℃预烧6小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1330℃烧结12小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Er曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图6所示,Mg4Ta2O9:0.25at%Er的30keV X射线激发发射谱图表明其发射波长在348nm,半高宽为96nm,发光强度为Mg4Ta2O9的1.2倍,检测得到Mg4Ta2O9:0.25at%Er的光产额为15620ph/MeV。
实施例6
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Y2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1260℃预烧6小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1330℃烧结12小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Y曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图7所示,Mg4Ta2O9:0.25at%Y的30keVX射线激发发射谱图表明其发射波长在344nm,半高宽为95nm,发光强度为Mg4Ta2O9的2.2倍,检测得到Mg4Ta2O9:0.25at%Y的光产额为28152ph/MeV。
实施例7
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Ho2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1260℃预烧6小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1330℃烧结12小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Ho曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图8所示,Mg4Ta2O9:0.25at%Ho的30keV X射线激发发射谱图表明其发射波长在349nm,半高宽为117nm,发光强度为Mg4Ta2O9的1.2倍,检测得到Mg4Ta2O9:0.25at%Ho的光产额为15353ph/MeV。
实施例8
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Dy2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1260℃预烧6小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1330℃烧结12小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Dy曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图9所示,Mg4Ta2O9:0.25at%Dy的30keV X射线激发发射谱图表明其发射波长在350nm,半高宽为91nm,发光强度为Mg4Ta2O9的1.1倍,检测得到Mg4Ta2O9:0.25at%Dy的光产额为13693ph/MeV。另外XEL图中还显示Dy3+4F9/26H13/2能级跃迁,峰位位于579nm,发光强度是Mg4Ta2O9的0.9倍,半高宽为12nm。
实施例9
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Tb2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1280℃预烧9小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1350℃烧结18小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Tb曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图10所示,Mg4Ta2O9:0.25at%Tb的30keV X射线激发发射谱图表明其发射波长在359nm,半高宽为98nm,发光强度为Mg4Ta2O9的1.9倍,检测得到Mg4Ta2O9:0.25at%Tb的光产额为24463ph/MeV。另外XEL图中还显示Tb3+5D47F5能级跃迁,峰位位于552nm,发光强度是Mg4Ta2O9的0.5倍,半高宽为13nm。
实施例10
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Gd2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1280℃预烧9小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1350℃烧结18小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Gd曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图11所示,Mg4Ta2O9:0.25at%Gd的30keV X射线激发发射谱图表明其发射波长在345nm,半高宽为92nm,发光强度为Mg4Ta2O9的3.4倍,检测得到Mg4Ta2O9:0.25at%Gd的光产额为43917ph/MeV。
实施例11
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Eu2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1280℃预烧9小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1350℃烧结18小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Eu曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图12所示,Mg4Ta2O9:0.25at%Eu的30keV X射线激发发射谱图表明其发射波长在347nm,半高宽为91nm,发光强度为Mg4Ta2O9的2.2倍,检测得到Mg4Ta2O9:0.25at%Eu的光产额为28653ph/MeV。另外XEL图中还显示Eu3+5D07F2能级跃迁,峰位位于612nm,发光强度是Mg4Ta2O9的2.9倍,半高宽为10nm。
实施例12
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Sm2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1280℃预烧9小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1350℃烧结18小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Sm曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图13所示,Mg4Ta2O9:0.25at%Sm的30keV X射线激发发射谱图表明其发射波长在348nm,半高宽为86nm,发光强度为Mg4Ta2O9的1.1倍,检测得到Mg4Ta2O9:0.25at%Sm的光产额为13848ph/MeV。
实施例13
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Nd2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1300℃预烧12小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1400℃烧结24小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Nd曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图14所示,Mg4Ta2O9:0.25at%Nd的30keV X射线激发发射谱图表明其发射波长在345nm,半高宽为90nm,发光强度为Mg4Ta2O9的2.1倍,检测得到Mg4Ta2O9:0.25at%Nd的光产额为27079ph/MeV。
实施例14
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Pr2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1300℃预烧12小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1400℃烧结24小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Pr曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图15所示,Mg4Ta2O9:0.25at%Pr的30keV X射线激发发射谱图表明其发射波长在347nm,半高宽为98nm,发光强度为Mg4Ta2O9的1.7倍,检测得到Mg4Ta2O9:0.25at%Pr的光产额为21492ph/MeV。
实施例15
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,Ce2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1300℃预烧12小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1400℃烧结24小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%Ce曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图16所示,Mg4Ta2O9:0.25at%Ce的30keV X射线激发发射谱图表明其发射波长在375nm,半高宽为124nm,发光强度为Mg4Ta2O9的1.1倍,检测得到Mg4Ta2O9:0.25at%Ce的光产额为14264ph/MeV。
实施例16
按化学计量比4.1097:1:0.005分别称取MgO,Ta2O5,La2O3,将上述原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1300℃预烧12小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1400℃烧结24小时,自然冷却至室温后研磨均匀,最终得到产品。
产物的X射线衍射峰如图1中Mg4Ta2O9:0.25at%La曲线所示。从图中曲线可看出,所有衍射峰与标准的衍射峰(PDF#38-1458)相对应。如图17所示,Mg4Ta2O9:0.25at%La的30keV X射线激发发射谱图表明其发射波长在347nm,半高宽为89nm,发光强度为Mg4Ta2O9的1.8倍,检测得到Mg4Ta2O9:0.25at%La的光产额为22752ph/MeV。

Claims (1)

1. 一种稀土掺杂钽酸镁闪烁发光材料的制备方法,其特征在于,按化学计量比4.1097:1:0.005分别称取MgO、Ta2O5、Gd2O3,将所有原料在玛瑙研钵中研磨,并加入无水乙醇作为分散剂,研磨均匀后装入刚玉坩埚,在空气气氛中于1280℃预烧9小时,自然冷却至室温后,将原料倒出在玛瑙研钵中继续充分研磨,再装入刚玉坩埚,在空气气氛中于1350℃烧结18小时,自然冷却至室温后研磨均匀,最终得到产品;所述稀土掺杂钽酸镁闪烁发光材料的化学式为Mg4Ta2O9 :Gd,所述化学式中Gd的掺杂量为0.25at%;所述稀土掺杂钽酸镁闪烁发光材料在X射线激发下,光产额为43917ph/MeV。
CN202110912968.1A 2021-08-10 2021-08-10 稀土掺杂钽酸镁闪烁发光材料及其制备方法 Active CN113563881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110912968.1A CN113563881B (zh) 2021-08-10 2021-08-10 稀土掺杂钽酸镁闪烁发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110912968.1A CN113563881B (zh) 2021-08-10 2021-08-10 稀土掺杂钽酸镁闪烁发光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113563881A CN113563881A (zh) 2021-10-29
CN113563881B true CN113563881B (zh) 2023-08-18

Family

ID=78171063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110912968.1A Active CN113563881B (zh) 2021-08-10 2021-08-10 稀土掺杂钽酸镁闪烁发光材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113563881B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861976B (zh) * 2021-11-03 2023-03-21 上海应用技术大学 一种钽酸镁异价掺杂铪、锆、钼、钨闪烁发光材料及其制备方法
CN114106828B (zh) * 2021-12-20 2022-11-11 内蒙古大学 一种Cr3+掺杂且具有宽带发射的近红外荧光粉及其制备方法
CN114456808B (zh) * 2022-02-22 2023-03-24 同济大学 一种钽酸盐基红色长余辉发光材料及其制备方法
CN116004231A (zh) * 2023-01-18 2023-04-25 海南大学 一种稀土掺杂的负热膨胀发光材料及其制备方法与应用
CN116875309A (zh) * 2023-06-28 2023-10-13 上海应用技术大学 一种高能射线探测用闪烁发光材料及其制备方法与用途
CN116925758A (zh) * 2023-07-20 2023-10-24 上海应用技术大学 一种真空紫外光激发的钽铌酸镁蓝紫色荧光粉及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132192A (en) * 1988-10-14 1992-07-21 Eastman Kodak Company Ordered corundum magnesium tantalum niobium oxide x-ray intensifying screens
CN101974331A (zh) * 2010-10-19 2011-02-16 同济大学 一种蓝光激发的红色荧光材料及制备方法
CN103031125A (zh) * 2009-06-17 2013-04-10 中国科学院上海硅酸盐研究所 用于白光led的铌酸盐或钽酸盐荧光材料及其制备方法
CN108221055A (zh) * 2018-01-09 2018-06-29 上海应用技术大学 一种本征发光的闪烁晶体钽酸镁及其制备方法和用途
CN113265252A (zh) * 2021-06-11 2021-08-17 上海大学 白光荧光粉、钽酸镁的制备方法
CN113462388A (zh) * 2021-07-01 2021-10-01 上海应用技术大学 一种稀土掺杂钽酸镁系列闪烁发光材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132192A (en) * 1988-10-14 1992-07-21 Eastman Kodak Company Ordered corundum magnesium tantalum niobium oxide x-ray intensifying screens
CN103031125A (zh) * 2009-06-17 2013-04-10 中国科学院上海硅酸盐研究所 用于白光led的铌酸盐或钽酸盐荧光材料及其制备方法
CN101974331A (zh) * 2010-10-19 2011-02-16 同济大学 一种蓝光激发的红色荧光材料及制备方法
CN108221055A (zh) * 2018-01-09 2018-06-29 上海应用技术大学 一种本征发光的闪烁晶体钽酸镁及其制备方法和用途
CN113265252A (zh) * 2021-06-11 2021-08-17 上海大学 白光荧光粉、钽酸镁的制备方法
CN113462388A (zh) * 2021-07-01 2021-10-01 上海应用技术大学 一种稀土掺杂钽酸镁系列闪烁发光材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method;Feng, He et al.,;《Physica B: Condensed Matter》;第411卷;第114-117页 *

Also Published As

Publication number Publication date
CN113563881A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN113563881B (zh) 稀土掺杂钽酸镁闪烁发光材料及其制备方法
CN113462388B (zh) 一种稀土掺杂钽酸镁系列闪烁发光材料及其制备方法和应用
CN113563882B (zh) 一种闪烁发光材料及其制备方法
US20180284300A1 (en) A method of shortening the scintillation
US9404036B2 (en) Alkali metal and alkali earth metal gadolinium halide scintillators
Nakauchi et al. Floating zone growth and scintillation properties of undoped and Ce-doped GdTaO4 crystals
Kang et al. GdBr3: Ce in glass matrix as nuclear spectroscopy detector
Dhabekar et al. Dosimetric characterization of highly sensitive OSL phosphor: LiCaAlF6: Eu, Y
Akatsuka et al. Scintillation properties of Nd-doped MSiO3 (M= Ca, Sr, Ba) single crystals
CN113861976B (zh) 一种钽酸镁异价掺杂铪、锆、钼、钨闪烁发光材料及其制备方法
Fukushima et al. Photoluminescence and scintillation properties of Pr-doped SrLu2O4 single crystals with different concentrations
Fukushima et al. Photoluminescence and scintillation properties of Ce-doped SrY2O4 single crystals
Fukushima et al. Photoluminescence and scintillation properties of Ce-doped SrLu2O4 single crystals
CN108441959A (zh) 掺铈铝酸钆镥石榴石晶体制备方法
CN113957386A (zh) 激子发光型卤化物闪烁体、薄膜、单晶、制备方法及应用
Shalapska et al. Effect of Au codoping on the scintillation properties of BaBrCl: Eu single crystals
CN108441960A (zh) 二价金属阳离子与铈共掺镥铝石榴石晶体制备方法
Fukushima et al. Investigation of scintillation properties of Hf-based oxide materials
Korzhik et al. Cross-sensitization of Ce3+ and Tb3+ luminescence in (Gd, Y) 3Al2Ga3O12 scintillation ceramics
CN106149054A (zh) 掺铈铝酸钆钇石榴石高温闪烁晶体及其制备方法
Kaczmarek et al. BaWO4: Pr single crystals co-doped with Na
Ezawa et al. Evaluation of scintillation and dosimetric properties of undoped and Tb-doped Ba3Y (PO4) 3 single crystals
CN108893779A (zh) 一种钙镁离子与铈共掺钇铝石榴石闪烁晶体及其制备方法
Zhong et al. Radioluminescence properties of Ce3+-activated MGd (PO3) 4 (M= Li, Na, K, Cs)
Laguta et al. Electron and Hole Trapping in Ce 3+-and Pr 3+-Doped Lutetium Pyrosilicate Scintillator Crystals Studied by Electron Paramagnetic Resonance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant