CN113549642B - Mycobacterium tuberculosis integrated expression plasmid and application thereof - Google Patents

Mycobacterium tuberculosis integrated expression plasmid and application thereof Download PDF

Info

Publication number
CN113549642B
CN113549642B CN202110230211.4A CN202110230211A CN113549642B CN 113549642 B CN113549642 B CN 113549642B CN 202110230211 A CN202110230211 A CN 202110230211A CN 113549642 B CN113549642 B CN 113549642B
Authority
CN
China
Prior art keywords
plasmid
mycobacterium tuberculosis
protein
seq
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110230211.4A
Other languages
Chinese (zh)
Other versions
CN113549642A (en
Inventor
毕利军
张阳萍
李平俊
张晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tibikon Biotechnology Guangdong Co ltd
Original Assignee
Tibikon Biotechnology Guangdong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tibikon Biotechnology Guangdong Co ltd filed Critical Tibikon Biotechnology Guangdong Co ltd
Priority to CN202110230211.4A priority Critical patent/CN113549642B/en
Publication of CN113549642A publication Critical patent/CN113549642A/en
Application granted granted Critical
Publication of CN113549642B publication Critical patent/CN113549642B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention relates to an integrated expression plasmid of mycobacterium tuberculosis and application thereof, wherein the plasmid comprises the following structural elements: (1) The screening marker of the resistance gene is used for constructing and screening the recombinant plasmid; (2) Gamma delta sequences respectively positioned at two sides of the resistance gene are used for knocking out the resistance; (3) elements for insertion and expression of a gene of interest; (4) Essential tag elements, replicon elements and Mycobacterium tuberculosis genome integration elements.

Description

Mycobacterium tuberculosis integrated expression plasmid and application thereof
Technical Field
The invention belongs to the technical field of biology, and particularly relates to an integrated expression plasmid of mycobacterium tuberculosis and application thereof.
Background
Tuberculosis is a chronic infectious disease caused by infection of tubercle bacillus, and remains one of infectious diseases seriously threatening human health. BCG is the only vaccine approved for tuberculosis prevention, but BCG has unstable protective effect on adults, and research on the development of protective vaccines such as recombinant BCG vaccine around recombinant mycobacteria has been a hot spot for tuberculosis vaccine research.
Conventionally, the efficiency of finally obtaining the nonreactive recombinant mycobacterium tuberculosis is low by integrating specific over-expressed protein in the mycobacterium tuberculosis genome, and the construction of the recombinant bacteria needs 1 year or more. The method for constructing the integrated over-expression recombinant mycobacterium can greatly improve the efficiency, provides a new genetic tool for accelerating the research of functional genomes of the mycobacterium, and provides great convenience for the research and development of non-antibody and anti-tuberculosis vaccines or tuberculosis prevention vaccines with high specific antigen content.
The current construction of overexpression strains without resistant mycobacteria integrated into the genome requires roughly the following steps:
(1) Constructing an integrated overexpression plasmid containing resistance;
(2) Screening and constructing successful plasmids, and transferring the plasmids into mycobacteria;
(3) Obtaining an overexpression strain containing resistance genes through resistance and expression screening,
(4) And (3) constructing a knockout resistant plasmid, constructing a knockout resistant bacteriophage, and obtaining an overexpression strain without resistant mycobacteria.
Therefore, in the traditional method, a complete recombinant mycobacterium strain with gene overexpression and resistance knockout is constructed, plasmid construction needs to be carried out for at least 4 times, complicated steps such as enzyme digestion, connection transformation, screening and the like need to be repeated for each construction, in addition, the process often needs 1 year or more due to the characteristic of slow growth of mycobacteria, so that the traditional method is extremely low in efficiency, and the research process is greatly limited.
Disclosure of Invention
The invention firstly relates to an integrated expression plasmid of mycobacterium tuberculosis, which comprises the following structural elements:
(1) The screening marker of the resistance gene is used for constructing and screening the recombinant plasmid;
(2) Gamma delta sequences respectively positioned at two sides of the resistance gene are used for knocking out the resistance;
(3) Elements for insertion and expression of a gene of interest;
(4) Necessary tag elements, replicon elements and integration elements of the mycobacterium tuberculosis genome.
The gamma delta sequence is shown in SEQ ID NO. 33.
Preferably, the first and second liquid crystal materials are,
the resistance genes are SacB and hyg resistance genes;
the element for inserting and expressing the target gene is hsp60 promoter;
the described label element is his label, the described replicon element is OIE replicon for passage in colibacillus, and the described mycobacterium tuberculosis genome integration element is attp and int gene;
most preferably, the first and second liquid crystal display panels are,
the plasmid is pTB01 plasmid, and the nucleotide sequence of the plasmid is shown in SEQ ID NO. 1.
The invention also relates to the following application of the integrated expression plasmid of mycobacterium tuberculosis:
(1) Preparing a mycobacterium tuberculosis strain with a specific over-expression protein integrated in a genome;
(2) Preparing the anti-tuberculosis vaccine or the tuberculosis prevention vaccine with higher specific antigen content.
A method for preparing a mycobacterium tuberculosis strain having an overexpressed target protein integrated into its genome, the method comprising the steps of:
(1) Inserting an expression gene of a target protein into the integrated expression plasmid of the mycobacterium tuberculosis;
(2) Amplifying and extracting the target protein-containing mycobacterium tuberculosis integrated expression plasmid;
(3) And transferring the integrated expression plasmid containing the target protein of the mycobacterium tuberculosis into the mycobacterium tuberculosis.
A method for preparing a tuberculosis vaccine with high content of specific target protein, which comprises the following steps:
(1) Inserting the expression gene of the target protein into the integrated expression plasmid of the mycobacterium tuberculosis;
(2) Amplifying and extracting the target protein-containing mycobacterium tuberculosis integrated expression plasmid;
(3) Transferring the integrated expression plasmid containing the target protein of the mycobacterium tuberculosis into the mycobacterium tuberculosis;
(4) Preparing the vaccine by using the mycobacterium tuberculosis with high expression of the target protein.
The invention also relates to an integrated expression plasmid of the mycobacterium tuberculosis with high expression of specific target proteins, wherein the specific target proteins are as follows: rv3899c (Va 07) protein, rv0287 (Va 16) protein, rv3803c (Va 25) protein.
The plasmids are respectively as follows:
pBT01s1-Va07 containing Rv3899c (Va 07) protein, the sequence of which is shown in SEQ ID NO. 2;
pBT01s1-Va16 containing Rv0287 (Va 16) protein, and the sequence is shown as SEQ ID NO. 5;
pBT01s1-Va25 containing Rv3803c (Va 25) protein, and the sequence is shown in SEQ ID NO. 8.
The beneficial effect of the invention is that,
in the existing construction of recombinant mycobacterium tuberculosis, the insertion of an antibiotic marker gene may cause a polar effect, so that the expression or silencing of genes downstream of the insertion site is caused, and the antibiotic marker is retained in a genome, thereby limiting the further use of the antibiotic marker in the strain.
The sucrose lethal gene SacB can be applied to a gene deletion reverse screening marker and a traceless deletion suicide vector [1].
The pTB01 vector constructed by the invention contains sacB gene coding sucrose levan, the sucrose can be catalyzed by the SacB gene coding sucrose levan, the sucrose can be hydrolyzed into glucose and fructose by the sacB gene coding sucrose levan, the fructose is polymerized into high molecular weight levan, and the high molecular weight levan is accumulated to have toxic effect on cells to cause cell death. Therefore, the sucrose lethal gene SacB is used for constructing a suicide vector, a resistance gene is not needed to replace a target gene, any possible polar effect of a resistance marker on a downstream gene is avoided, and the method has important significance for the function research of the tuberculosis gene.
The invention constructs a recombinant pTB01 plasmid vector, can obtain a mycobacterium over-expression strain which is integrated on a genome and does not contain resistance only by one-time plasmid construction, and shortens the construction process which usually needs 1 year or even longer to 2-3 months.
[ REFERENCE ] to:
[1]Jackson M,Reinaldo Camacho L,Gicquel B,Guilhot C.Gene Replacement and Transposon Delivery Using the Negative Selection Marker sacB.Methods Mol Med.2001;54:59-75.doi:10.1385/1-59259-147-7:059. PMID:21341069.
drawings
FIG. 1 is a schematic diagram of a vector construction process.
FIG. 2 shows an electrophoresis diagram of a recovered fragment containing fragment 1 having a γ δ (sacB-hyg) γ δ sequence, fragment 2 having an hsp60 promoter sequence, and fragment 3 having an oriE, attP, int, etc. (fragment 1 corresponding to primer A, fragment 2 corresponding to primer B, and fragment 3 corresponding to primer C).
FIG. 3, the results of verifying the recovery of pTB01 plasmid.
FIG. 4 shows the results of electrophoretic detection of the linearized pTB01 plasmid and Va07, va16 and Va25 fragments.
FIG. 5 shows the detection results of the amplified target plasmid.
FIG. 6, verification of the PCR of the structure of plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va 25: 6A, PCR results for plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 using pMV361-sFP-1 and pTB01-sRP1 as primers; 6B, PCR results for plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 using Hyg-F and Hyg-R as primers; 6C, PCR results for plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 using BCG-sFP-2 and pMV361-sRP-2 as primers; 6D, PCR was performed on plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 using pMV361-sFP-2 and BCG-sRP-2 as primers.
FIG. 7 is a schematic view of: carrying out protein electrophoresis verification on the BCG vaccine: 7A, rBCG-pTB01s1-Va07 protein electrophoresis picture; 7B, rBCG-pTB01s1-Va16 protein electrophoresis picture; 7C and rBCG-pTB01s1-Va16 protein electrophoresis picture.
FIG. 8 shows the results of plate screening of the anti-resorptive BCG vaccine.
FIG. 9 shows the results of amplifying sucrose-screened positive clones using primers Hyg-F and Hyg-R,
m1 represents 100bp Plus DNA ladder;
1 represents rBCG-pTB01s5-Va02-del. HygB, without target band;
2 represents rBCG-pTB01s1-Va04-del.HygB without target band;
3, rBCG-pTB01s1-Va07-del.HygB without a target band;
4 represents rBCG-pTB01s1-Va16-del.HygB without target band;
5 shows rBCG-pTB01s1-Va25-del. HygB, without target band;
6 represents rBCG-pTB01-del. HygB-1, which is a negative control and has no target band;
7' represents Trans5 alpha-pTB 01-1 as a positive control with a target band;
7 represents rBCG-pTB01-1, which is a positive control and has a target band;
ultrapure water, negative control, no strip, is indicated at 8.
Detailed Description
Example 1 construction and verification of pTB01 plasmid
1. Respectively carrying out PCR amplification on 3 fragments, wherein the fragment 1 contains a gamma delta (sacB-hyg) gamma delta sequence, the fragment 2 contains an hsp60 promoter sequence, and the fragment 3 contains oriE, attP, int and other sequences;
2. connecting three vector fragments by adopting a seamless cloning method;
3. transforming the competence of the Escherichia coli Trans5 alpha;
4. selecting single clone, extracting plasmid and enzyme digestion verification;
5. and finally, carrying out sequencing verification on the vector. The vector construction process is shown in FIG. 1.
The transformation process of the plasmid comprises the following steps:
the construction of the recombinant plasmid adopts a seamless cloning technology (In-
Figure BDA0002958838950000031
HD Cloning Kit User Manual,
Figure BDA0002958838950000032
Laboratories, Inc.Cat.Nos.Many(011614))。
The method is characterized in that the tail end of a vector and the tail end of a primer are provided with about 20 homologous bases, about 20 bases which are homologous with a vector sequence are respectively carried at two ends of an obtained PCR product, complementary pairing and cyclization are carried out by virtue of acting force between the bases, the PCR product can be directly used for transforming host bacteria without ligase, and gaps of linear plasmids (circular plasmids) entering the host bacteria are repaired by virtue of self enzyme systems. The construction method of the recombinant plasmid comprises the following steps:
1. respectively designing and synthesizing seamless cloning primers by taking a target sequence as a template;
the 3 fragments were PCR amplified separately using the designed primers using Polymerase Chain Reaction (PCR): fragment 1 contains the gamma delta (sacB-hyg) gamma delta sequence, fragment 2 contains the hsp60 promoter sequence, and fragment 3 contains the oriE, attP, int, etc. sequences:
(1) Fragment 1 contains the γ δ (sacB-hyg) γ δ signature sequence:
the gamma delta sequence is shown in SEQ ID NO. 33.
SEQ ID NO.33:
CCTGTATCCTAAATCAAATATCGGACAAGCAGTGTCTGTTATAACAAAAAATCGATTTAATAGACA CACCAACAGCATGGTTTTTATGTGTGCGATAATTTATAATATTTCGGACAGG。
Primers C1 and C2 were used with the plasmid p0004s (which was offered by the laboratory of the researchers in Wuhan Virus institute of China).
Primer C1:5 'CCAAGAATTGGCAGGTCCTG-3' (SEQ ID NO. 31)
And (3) primer C2:5 'CCAATCTTTGGCTAGAGTCTCTCTCTG-3' (SEQ ID NO. 32)
The PCR parameters were: 94 ℃/30sec,52 ℃/30sec,68 ℃/4min,30 cycles.
The PCR product is 3683bp long.
(2) Fragment 2 contains the characteristic sequences of oriE, attP, int:
primers A1 and A2 were used, and the pMV361 plasmid (which is a premium from the laboratory of the researchers in Deng, wuhan Virus, china academy of sciences) was used as a template.
Primer A1:5 'GGACTCTAGCCAAAGATTGGACCTCCACTAGTTCCATGACG 3' (SEQ ID NO. 11)
And (3) primer A2:5 'GCGCGCGTCGTTGTGGTCACCGTCTAGATTTCTGGCGGGACG 3' (SEQ ID NO. 12)
The PCR parameters were: 94 ℃/30sec,52 ℃/30sec,68 ℃/4min,30 cycles.
The PCR product was 2716bp in length.
(3) Fragment 3 was obtained containing the characteristic sequence of the hsp60 promoter:
using the primers B1 and B2, the synthetic plasmid PUC57-phsp60 (synthesized by Sommermay Biotech Co., ltd., nanjing) was used as a template.
Primer B1: CGGTGACCACAACGACGCGC (SEQ ID NO. 13)
And (3) primer B2: TACAGGACCTGCCAATTCTTGGGCTTAGCTGATCACCGCGG (SEQ ID NO. 14)
The PCR parameters were: 94 ℃/30sec,59 ℃/30sec,68 ℃/1min,30 cycles.
The PCR product is 559bp long.
(4) Detecting the amplification product by electrophoresis and cutting gel for recovery
The electrophoresis result of the amplified product is shown in figure 2, and three fragment genes are obtained by adopting a gel cutting recovery mode from three fragments respectively obtained in the three PCR steps, wherein the fragment 1 is a 3683bp gel strip, the fragment 2 is 2716bp, and the fragment 3 is 559bp. Using AxyPrep TM The DNA Gel Extraction Kit was recovered and stored at-20 ℃ for further use.
(5) The recovered target fragment was added to a test tube to carry out a recombination reaction to obtain pTB01 plasmid.
Using the seamless cloning technique, fragment 1 (5. Mu.l, 50 ng/. Mu.l), fragment 2 (4. Mu.l, 50 ng/. Mu.l), fragment 3 (1. Mu.l, 100 ng/. Mu.l), 5 XIn-fusion HD Enzyme Premix (4. Mu.l) were ligated to the ligation substrates and ligase, if indicated by volume only, with the addition of the instruction concentration, purified water (6. Mu.l), and the total of 20. Mu.l of the reaction system was incubated at 50 ℃ for 25min.
(6) Recombinant pTB01 plasmid transformed Escherichia coli
Transforming the reactant obtained in the step (5) into the competence of Trans5 alpha of Escherichia coli, coating the reactant in an LB plate containing kanamycin, and culturing overnight at 37 ℃, wherein the concrete steps are as follows:
adding 20 ul of seamless clone product into 100 ul of Trans5 alpha competence, carrying out ice bath for 30min, carrying out heat shock at 42 ℃ for 90sec, carrying out ice bath for 5min, adding 1mL of liquid LB, uniformly mixing, culturing at 37 ℃ and 200rpm for 1h, then centrifuging at 5000rpm for 5min, removing 1mL of supernatant, remaining 100 ul of heavy suspension thallus, completely coating an LB plate containing 150 ug/mL Hyg, and carrying out overnight culture at 37 ℃.
(7) Screening for Single clones
The positive strain is verified by enzyme digestion of the extracted plasmid, and the full-length DNA sequence is verified by sequencing reaction.
Selecting a single clone, shaking bacteria, extracting plasmids, using Van 91I to cut pTB01 plasmids by enzyme, wherein 2 fragments can be seen after the enzyme is cut by running gel, and the sizes of the 2 fragments are 3672bp containing a gamma delta (sacB-hyg) gamma delta sequence and the sizes of the other sequences are 3260bp. The electrophoresis results of the plasmid and the plasmid digestion products are shown in FIG. 3. And (3) selecting the plasmid with the correct restriction enzyme, performing whole plasmid sequencing to obtain the whole sequence information of the plasmid, wherein the sequencing result shows that the plasmid pTB01 is correctly constructed, and the full-length sequence of the plasmid is shown as SEQ ID No. 1.
Example 2 application of Mycobacterium Integrated expression plasmid pTB01
3 examples of applications using pTB01 as a vector are shown here to verify that the desired protein can be correctly expressed after electrotransformation of Mycobacterium vaccae BCG (preservation of the unit) after the recombinant vector is constructed using pTB01, and that a recombinant BCG with resistance to further inactivation can be obtained.
In example 1, rv3899c (CN 201510811331.8) is used as the target gene and is referred to as Va07 in the present invention.
Example 2, the gene with Rv0287 (CN 201310607242.2) as the target gene is named as Va16 in the invention.
Example 3, rv3803c (CN 201310608293.7) is the target gene, referred to as Va25 in the present invention.
1. Construction and amplification of pTB01s1-Va07, pTB01s1-Va16, pTB01s1-Va25
Using a vector ATG as an initiation codon, wherein the target gene does not contain the initiation codon, and the N end and the C end of the target gene simultaneously contain 8 × His tags;
in example 1, rBCG-pTB01s1-Va07 encodes Va07 protein CDS initiated by ATG vector, and the encoded protein has 434 amino acids, has a relative molecular weight of 44.0kDa and can be detected by His antibody (the nucleotide sequence is shown as SEQ ID NO.3, and the amino acid sequence is shown as SEQ ID NO. 4).
In example 2, the Va16 protein encoded by rBCG-pTB01s1-Va16 is CDS initiated by a vector ATG, and the encoded protein contains 121 amino acids, has a relative molecular weight of 13.0kDa and can be detected by a His antibody (the nucleotide sequence is shown as SEQ ID NO.6, and the amino acid sequence is shown as SEQ ID NO. 7).
In example 3, rBCG-pTB01s1-Va25 encodes Va25 protein CDS initiated by ATG vector, and the encoded protein contains 323 amino acids, has a relative molecular weight of 34.3kDa and can be detected by His antibody (the nucleotide sequence is shown in SEQ ID NO.9, and the amino acid sequence is shown in SEQ ID NO. 10).
The method comprises the following specific steps:
(1) Seamless cloning primer designed and synthesized respectively by taking pTB01 vector sequence as template
Linearizing the pTB01 vector by using a Polymerase Chain Reaction (PCR) amplification method by using a designed primer;
pTB01 linearized primer:
primers pTB01s1-LFP and pMV361-L1-RP were used with pTB01 plasmid as template.
Primer pTB01s1-LFP:5 'GAAGCTTATCGATGTCGACGTAGTC-3' (SEQ ID NO. 15)
Primer pMV361-L1-RP:5 'TGCGAAGTGATTCCTCCGGGATC-3' (SEQ ID NO. 16)
The PCR parameters were: 94 ℃/30sec,55 ℃/30sec,68 ℃/7min10sec,30 cycles.
The PCR product is 6897bp long.
(2) A seamless cloning primer was designed and synthesized using Va07, va16, and Va25 sequences as templates, respectively, and the target DNA fragment was amplified.
Va07:
Primer pTB01s1-Va07-FP:5 'GGAGGAATCACTTCGCAATGCATCATCATCATCACCACCACGTGACGGGGCAACCGG 3' (SEQ ID NO. 17)
Primer pTB01s1-Va07-RP:
5’-CGTCGACATCGATAAGCTTCGGCAGCGAACCCTCGTGAG-3’(SEQ ID NO.18)
the PCR product is 1291bp in length.
Va16:
Primer pTB01s1-Va16-FP:5' GGAGGAATCACTTCGCAATGCATCATCATCATCACCACCCAGACTTTTGGATGCTCATACC-
Primer pTB01s1-Va16-RP:
5’-CGTCGACATCGATAAGCTTCGAACCCGGTATAGGTCGAC-3’(SEQ ID NO.20)
the PCR product was 352bp in length.
Va25:
Primer pTB01s1-Va25-FP:
5’-GGAGGAATCACTTCGCAATGCATCATCATCATCATCACCACCACAAGGGTCGGTCGGCGC-3’ (SEQ ID NO.21)
primer pTB01s1-Va25-RP:
5’-CGTCGACATCGATAAGCTTCGCGGATCGCACCGACGATATCG-3’(SEQ ID NO.22)
the PCR product was 958bp in length.
(3) The collected target DNA fragment and the linearized vector are recombined to construct expression plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25
And (3) respectively carrying out nucleic acid electrophoresis on the amplification products obtained in the steps (1) and (2), cutting gel and recovering the amplification products, wherein the electrophoresis result is shown in figure 4.
And adding the recovered target DNA fragment and the linearized vector into a test tube to perform recombination reaction. The reaction system is as follows: 2.5. Mu.l of pTB01 vector linearized PCR product, 1.5. Mu.l of target gene PCR product, and 1. Mu.l of seamless clonase 5 XIn-fusion were added, and 5. Mu.l of the reaction system was mixed well. The reaction conditions are as follows: water bath at 50 deg.c for 25min.
(4) Transformation and amplification of a target plasmid
Transforming the recombinant plasmid vector obtained in the step (3) into a Trans5 alpha competent strain by referring to the method of example 1, selecting a single clone, amplifying a target strain and harvesting a target plasmid, and respectively selecting an upstream primer pMV361-sFP-1 and a downstream primer pTB01-sRP1 which are positioned at two ends of an inserted target gene as PCR screening primers of a screening colony to amplify a target gene fragment.
The upstream primer pMV361-sFP-1:5 'GGTCATGGGCCGAACATACTCAC-3' (SEQ ID NO. 23)
The downstream primer pTB01-sRP1:5 'TGGCTAGCTGATCACCGCG-3' (SEQ ID NO. 24)
The results show that:
va07 target gene PCR product is long: 1707bp
Va16 target gene PCR product length: 768bp
Va25 target gene PCR product length: 1374bp
The electrophoretogram of the target fragment is shown in FIG. 5, and the sequencing verification result shows that the target fragment is completely consistent with the theoretical sequence. Clones that were sequence verified to be correct were selected and retained. Plasmids were extracted with the kit. Recombinant plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 were obtained.
2. Preparation of recombinant BCG vaccine
Obtaining the recombinant BCG: rBCG-pTB01s1-Va07, rBCG-pTB01s1-Va16 and rBCG-pTB01s1-Va25.
(1) And (3) transformation: the recombinant plasmids pTB01s1-Va07, pTB01s1-Va16 and pTB01s1-Va25 were electrotransformed into BCG competent cells (prepared and stored in this unit), plated on a 7H10 plate containing hygromycin B, and incubated at 37 ℃ for 3 to 4 weeks.
Taking out BCG from a refrigerator at minus 80 ℃ to be competent, firstly putting the BCG on ice for dissolving, and then putting the BCG at room temperature for standby;
adding 10ul of plasmid into 200 mul of electrotransformation competent cells, standing at room temperature for 10min, and transferring into a 2mm electrotransfer cup;
electric shock: after the voltage is 2.5kV, the resistance is 1000 omega, and the electric shock is finished under the condition of 25 muF capacitance, 1ml of 7H9 (BD-271310, BD Difco/BBL) + OADC (BD 211886, BD Difco/BBL) liquid culture medium which is placed at room temperature in advance is added;
recovering and coating plates: after being transferred to a 1.5ml centrifuge tube for recovery overnight at 37 ℃, the tube is centrifuged at 5000r/min for 10min to remove most of the supernatant, and about 250. Mu.l of the remaining solution is plated with solid medium plates containing HygB (hygromycin) antibiotic 7H10 (BD-262710, BD Difco/BBL) + OADC. Standing and culturing at 37 ℃ for 3-4 weeks.
(2) Subculturing
For liquid culture, a T25 cell culture flask was used and 10ml of the medium was contained. After the plate colonies grow, picking the monoclonal colonies in the plate to liquid medium containing HygB resistance 7H9+ OADC. Standing and culturing at 37 ℃ for 3-4 weeks.
(3) And (5) PCR screening and verifying positive clones to obtain the recombinant BCG containing the recombinant plasmid.
And (3) molecular identification: the single clone is picked, and the positive strain is verified through colony PCR.
To determine that the recombinant BCG genome has inserted a recombinant plasmid containing the gene of interest, the PCR strategy includes the following 3 aspects:
the first detection scheme is as follows: PCR amplification of target Gene with primers pMV361-sFP-1 and pTB01-sRP1
The upstream primer pMV361-sFP-1:5 'GGTCATGGGCCGAACATACTCAC-3' (SEQ ID NO. 23)
The downstream primer pTB01-sRP1:5 'TGGCTAGCTGATCACCGCG-3' (SEQ ID NO. 24)
The PCR parameters were: 94 ℃/15sec,56 ℃/30sec,72 ℃/2min,30 cycles.
Va07 target gene PCR product length: 1707bp of
Va16 target gene PCR product length: 768bp
Va25 target gene PCR product is long: 1374bp
The results show that the target gene primers pMV361-sFP-1 and pTB01-sRP1 PCR both have bands, and the sizes of the bands are consistent. The results are shown in FIG. 6A;
and (2) detection scheme II: PCR amplification of HygB Gene with primers Hyg-F and Hyg-R
An upstream primer Hyg-F:5 'AACATCTTCTGTGGACCTGGC-3' (SEQ ID NO. 25)
Downstream primer Hyg-R:5 'GTGAAGCCGGAGATCCAG-doped 3' (SEQ ID NO. 26)
The PCR parameters were: 94 ℃/15sec,52 ℃/30sec,72 ℃/30sec,30 cycles.
The PCR product is long: 257bp
Gel image results show that primers Hyg-F and Hyg-R PCR both have bands, and the sizes of the bands accord with each other. The results are shown in FIG. 6B;
and a third detection scheme: PCR is carried out by using primers BCG-sFP-2 and pMV361-sRP-2 to amplify the upstream integration site sequence of the recombinant plasmid and the BCG host genome.
The upstream primer BCG-sFP-2:5 'GCAGGTCAAGCTCACCGCGATCGAC 3' (SEQ ID NO. 27)
The downstream primer pMV361-sRP-2:5 'TCCAGGTCTCTCCATCGATGATGAGC-3' (SEQ ID NO. 28)
The PCR parameters were: 94 ℃/15sec,57 ℃/30sec,72 ℃/1min,30 cycles.
The PCR product is long: 701bp
The gel diagram result shows that the PCR of the upstream primers BCG-sFP-2 and pMV361-sRP-2 have bands, and the sizes of the bands are consistent. The results are shown in FIG. 6C;
and (4) detecting a scheme IV: the downstream integration site sequence of the recombinant plasmid and BCG host genome is amplified by PCR with primers pMV361-sFP-2 and BCG-sRP-2.
The upstream primer pMV361-sFP-2:5 'TgcAATCCGTGCAACCTTG-3' (SEQ ID NO. 29)
The downstream primer BCG-sRP-2:5 'TCAACTGCTCGACGGTGCTCTTC-3' (SEQ ID NO. 30)
The PCR parameters were: 94 ℃/15sec,57 ℃/30sec,72 ℃/1min,30 cycles.
The PCR product is long: 585bp
The gel diagram result shows that the downstream primers BCG-sRP-2 and pMV361-sFP-2PCR have bands, and the sizes of the bands are consistent. The results are shown in FIG. 6D;
(4) Protein expression assay of positive clones:
for positive clones verified by PCR, the expression of the target protein needs to be further verified. The target protein is provided with a His label, so that the expression condition of the target protein can be detected by using a His antibody through a Western blot method. The detailed method comprises the following steps:
1) Extracting thallus total protein:
a proper amount of bacterial liquid cultured until the OD600 is about 1OD is taken, and the thalli are collected centrifugally. Washing with PBS for 2 times, adding lysis buffer solution and appropriate amount of zirconium beads, shaking to break bacteria, centrifuging, and collecting supernatant to obtain thallus holoprotein.
2) Preparation of samples and electrophoresis
The protein content was measured with a microspectrophotometer A280, and the prepared electrophoretic sample was diluted to a final concentration of 4mg/ml. And (3) placing the diluted sample in a boiling water bath at 100 ℃ for 10min, placing the sample to room temperature, taking 10 mu l of sample, performing Tricine SDS-PAGE electrophoresis under the condition that 60V runs for 30min, and adjusting to 120V to run for 60min.
3) Electrophoresis gel block examination and transfer membrane
Examination and dyeing: after the electrophoresis is finished, the gel is removed, the gel is placed into Coomassie brilliant blue dye liquor for dyeing for 4 hours, and then the gel is eluted, and the result is observed.
Film transferring: soaking the membrane-transferring consumables (NC membrane and filter paper) in membrane-transferring buffer solution for at least 10min. And after the electrophoresis is finished, removing the rubber block, and rotating the membrane by using a membrane rotating instrument.
4) Western blot detection
And (3) sealing: and (3) carrying out temperature sealing on the NC membrane subjected to the membrane transfer for 1h by using a 5% skim milk sealing solution.
Incubating the primary antibody: after blocking, primary antibody was added and incubated overnight (16-18 h) at 2-8 ℃ and washed 6 times with TBST for 5min each.
The primary antibody against the target protein was Anti-6 XHis-McAb Mouse, diluted with blocking solution 1 at a ratio of 2000 for use.
The primary antibody of the internal reference protein is Anti-Ecoli RNA polymerase beta, is derived from mice, and is used after being diluted by a ratio of 1.
5) Incubation of secondary antibody: after incubation for 2h at 37 ℃ with the addition of secondary antibody, wash 6 times with TBST for 5min each time.
6) Developing and fixing: adding ECL chemiluminescence liquid into a darkroom, covering with an X-ray film, exposing for a proper time, taking out, developing in a developing solution, and immediately transferring to a fixing solution for fixing after the target strip is developed. The film is dried to observe the result.
The rBCG-pTB01s1-Va07 strain has normal total protein check bands, and the expression of target proteins (44 kDa) expressing Va07 can be seen by Western blot, while BCG and rBCG-pTB01 controls have no expression and are in line with the expectation. The results are shown in FIG. 7A:
the rBCG-pTB01s1-Va16 strain has normal total protein check bands, and the expression of target protein (13 kDa) of expressed Va16 can be seen by Western blot, while BCG and rBCG-pTB01 controls have no expression and are in line with the expectation. The results are shown in FIG. 7B:
the rBCG-pTB01s1-Va25 strain has normal total protein check bands, and the expression of target protein (34.3 kDa) of Va25 can be seen by Western blot, while BCG and rBCG-pTB01 controls have no expression and are in line with the expectation. The results are shown in FIG. 7C:
3. obtaining the recombinant BCG vaccine rBCG-pTB01s1-Va07-del
The recombinant BCG vaccine rBCG-pTB01s1-Va07, rBCG-pTB01s1-Va16 and rBCG-pTB01s1-Va25 obtained in the last step contain hygromycin B resistance genes. The pJH532 plasmid is electrically transformed into the competence of the recombinant BCG, and the competence is coated on a 7H10 flat plate containing a sucrose screening pressure, so that the recombinant BCG without hygromycin B resistance can be obtained, and the detailed method comprises the following steps:
(1) rBCG-pTB01s1-Va07, rBCG-pTB01s1-Va16 and rBCG-pTB01s1-Va25 competence were prepared, respectively.
3 recombinant BCG strains were inoculated into liquid medium containing HygB resistance 7H9+ OADC at a ratio of 1. For liquid culture, a T75 cell culture flask was used and 50ml of the medium was filled. The culture was allowed to stand at 37 ℃ until the OD600 value became about 0.8, which was about 3 to 4 weeks.
And (3) collecting thalli: 50ml of the bacterial solution is poured into a 50ml centrifuge tube, centrifuged for 20min at 4000rpm, and the supernatant is discarded.
Washing for 3 times: adding 50ml sterilized 10% glycerol, mixing, centrifuging at 4000rpm for 25min, and removing supernatant;
resuspending the cells: 5-10 ml of 10% glycerol is added to dissolve and precipitate, and 210ul of the solution is subpackaged into 6 tubes for storage.
(2) Electrotransformation pJH532 plasmid
The pJH532 plasmid containing a dissociation enzyme gene is transformed into the recombinant BCG integrated with the recombinant plasmid (rBCG-pTB 01s1-Va07, rBCG-pTB01s1-Va16 and rBCG-pTB01s1-Va 25), the sacB-HygB gene clamped between two dissociation enzyme sites is dissociated from the genome of the recombinant BCG under the action of a dissociation enzyme and is integrated into the pJH532 plasmid, and the original recombinant BCG genome is deleted for sacB-Hyg, so that two strains are generated, wherein one strain is rBCG-pJH 532-sacB-HygB containing an episomal plasmid pJH532-sacB, and the strain cannot grow under the sucrose screening pressure; one is recombinant BCG vaccine with lost sacB-HygB gene, and the strain can grow normally under the screening pressure of cane sugar.
Sample adding: adding the 5ul pJH532 plasmid into the recombinant BCG competent cells respectively, and incubating for 10min at 37 ℃;
electric conversion: transferring the mixture into an electric rotating cup, and according to the parameters: the voltage is 2.5kV, the resistance is 1000 omega, and the capacitance is 25 muF for electric conversion.
And (3) resuscitation: immediately after electric shock, 1ml of 7H9+ OADC medium was added, transferred to a 1.5ml centrifuge tube and incubated overnight at 37 ℃ and 100 rpm.
Culturing: centrifuging at 5000rpm for 5min, removing the culture medium, uniformly mixing the residual about 250ul of bacterial liquid, respectively coating 50ul and 200ul of the mixture in a 7H9+ OADC plate containing 2% sucrose, and standing and culturing at 37 ℃ for 3-4 weeks.
Through 2% sucrose 7H9+ OADC plate culture, the recombinant BCG vaccine without sacB-HygB gene is screened. Due to the loss of the sacB-HygB gene, the strain grew normally in a medium containing 2% sucrose and failed to grow in a medium containing hygromycin B. Thereby obtaining the following recombinant BCG vaccine:
antibiotic rBCG-pTB01s1-Va07-del
Anti-disease rBCG-pTB01s1-Va16-del
Anti-disease rBCG-pTB01s1-Va25-del
(3) Culture characteristic verification of recombinant BCG vaccine for eliminating antibiotics
The results were different when the disarmed rBCG was cultured on solid plates containing different resistance 7H10+ OADC.
Growing in a plate containing 2% sucrose 7H10 +OADC; does not grow in the plate containing HygB 7H10+OADC; no growth in the OADC plate containing Kana 7H10 +; growing in an OADC plate without resistance of 7H10 +; the results are shown in fig. 8 and table 1:
TABLE 1 Flat-plate screening table for antibiotic recombinant BCG vaccine
Figure BDA0002958838950000091
(4) Molecular characterization
The primers Hyg-F and Hyg-R are used, the sucrose-screened positive clone strain is used as a template, the HygB gene is amplified by PCR, the result is shown in figure 9, the result is in line with expectation, and the result shows that the sucrose-screened positive clone strain is in line with the expectation.
An upstream primer Hyg-F:5' AACATCTTTCGTGGACCTGGC-3
Downstream primer Hyg-R:5' GTGAAGCCGGAGATCCAG-doped 3
The PCR parameters were: 94 ℃/15sec,52 ℃/30sec,72 ℃/30sec,30 cycles.
The PCR product is long: 257bp.
Finally, it should be noted that the above embodiments are only used to help those skilled in the art understand the essence of the present invention, and are not used to limit the protection scope of the present invention.
SEQUENCE LISTING
<110> Guangdong body Bi kang Biotech Co., ltd
<120> integration type expression plasmid combined with mycobacterium and application thereof
<160> 33
<170> PatentIn version 3.3
<210> 1
<211> 6934
<212> DNA
<213> Artificial sequence
<400> 1
ccaagaattg gcaggtcctg tatcctaaat caaatatcgg acaagcagtg tctgttataa 60
caaaaaatcg atttaataga cacaccaaca gcatggtttt tatgtgtgcg ataatttata 120
atatttcgga caggactcta gggtcgtcga ggtccacagg ccctcggcga cgttccgccg 180
ggcctcggcg accgccgcgt cgaggcgccg gtcgaagggg cagtcctcca cgggcagctc 240
gtggagggcg cgggccagct ccgccatcgc ctcgaccacg gcgaaccgct ggtgctcggg 300
ccactcctcg gccgccgcga cgccggggac ggcctccgtg acgagccacg cggcggtgtc 360
gtcggcaccg cgctcgacga cgcgggggac ggggatcggc ggggcctggg acggcgcctc 420
gccgtcgcag aaccaggcgg tgctttttaa cccatcacat atacctgccg ttcactatta 480
tttagtgaaa tgagatatta tgatattttc tgaattgtga ttaaaaaggc aactttatgc 540
ccatgcaaca gaaactataa aaaatacaga gaatgaaaag aaacagatag attttttagt 600
tctttaggcc cgtagtctgc aaatcctttt atgattttct atcaaacaaa agaggaaaat 660
agaccagttg caatccaaac gagagtctaa tagaatgagg tcgaaaagta aatcgcgcgg 720
gtttgttact gataaagcag gcaagaccta aaatgtgtaa agggcaaagt gtatactttg 780
gcgtcacccc ttacatattt taggtctttt tttattgtgc gtaactaact tgccatcttc 840
aaacaggagg gctggaagaa gcagaccgct aacacagtac ataaaaaagg agacatgaac 900
gatgaacatc aaaaagtttg caaaacaagc aacagtatta acctttacta ccgcactgct 960
ggcaggaggc gcaactcaag cgtttgcgaa agaaacgaac caaaagccat ataaggaaac 1020
atacggcatt tcccatatta cacgccatga tatgctgcaa atccctgaac agcaaaaaaa 1080
tgaaaaatat caagttcctg aattcgattc gtccacaatt aaaaatatct cttctgcaaa 1140
aggcctggac gtttgggaca gctggccatt acaaaacgct gacggcactg tcgcaaacta 1200
tcacggctac cacatcgtct ttgcattagc cggagatcct aaaaatgcgg atgacacatc 1260
gatttacatg ttctatcaaa aagtcggcga aacttctatt gacagctgga aaaacgctgg 1320
ccgcgtcttt aaagacagcg acaaattcga tgcaaatgat tctatcctaa aagaccaaac 1380
acaagaatgg tcaggttcag ccacatttac atctgacgga aaaatccgtt tattctacac 1440
tgatttctcc ggtaaacatt acggcaaaca aacactgaca actgcacaag ttaacgtatc 1500
agcatcagac agctctttga acatcaacgg tgtagaggat tataaatcaa tctttgacgg 1560
tgacggaaaa acgtatcaaa atgtacagca gttcatcgat gaaggcaact acagctcagg 1620
cgacaaccat acgctgagag atcctcacta cgtagaagat aaaggccaca aatacttagt 1680
atttgaagca aacactggaa ctgaagatgg ctaccaaggc gaagaatctt tatttaacaa 1740
agcatactat ggcaaaagca catcattctt ccgtcaagaa agtcaaaaac ttctgcaaag 1800
cgataaaaaa cgcacggctg agttagcaaa cggcgctctc ggtatgattg agctaaacga 1860
tgattacaca ctgaaaaaag tgatgaaacc gctgattgca tctaacacag taacagatga 1920
aattgaacgc gcgaacgtct ttaaaatgaa cggcaaatgg tacctgttca ctgactcccg 1980
cggatcaaaa atgacgattg acggcattac gtctaacgat atttacatgc ttggttatgt 2040
ttctaattct ttaactggcc catacaagcc gctgaacaaa actggccttg tgttaaaaat 2100
ggatcttgat cctaacgatg taacctttac ttactcacac ttcgctgtac ctcaagcgaa 2160
aggaaacaat gtcgtgatta caagctatat gacaaacaga ggattctacg cagacaaaca 2220
atcaacgttt gcgccaagct tcctgctgaa catcaaaggc aagaaaacat ctgttgtcaa 2280
agacagcatc cttgaacaag gacaattaac agttaacaaa taaaaacgca aaagaaaatg 2340
ccgatctcag gcggtggcgt acaccgtcgc ctcggtcggc ccgtagagat tggcgatccc 2400
gaccgcagca ccaccgagaa cgtccccgac gtggccgacc agcccgtcat cgtcaacgca 2460
tgatccgcgg tgcggacagg ccgtgtcgcg accggccgtg cggaattaag ccggcccgta 2520
ccctgtgaat agaggtccgc tgtgacacaa gaatccctgt tacttctcga ccgtattgat 2580
tcggatgatt cctacgcgag cctgcggaac gaccaggaat tctgggagcc gctggcccgc 2640
cgagccctgg aggagctcgg gctgccggtg ccgccggtgc tgcgggtgcc cggcgagagc 2700
accaaccccg tactggtcgg cgagcccggc ccggtcatca agctgttcgg cgagcactgg 2760
tgcggtccgg agagcctcgc gtcggagtcg gaggcgtacg cggtcctggc ggacgccccg 2820
gtgccggtgc cccgcctcct cggccgcggc gagctgcggc ccggcaccgg agcctggccg 2880
tggccctacc tggtgatgag ccggatgacc ggcaccacct ggcggtccgc gatggacggc 2940
acgaccgacc ggaacgcgct gctcgccctg gcccgcgaac tcggccgggt gctcggccgg 3000
ctgcacaggg tgccgctgac cgggaacacc gtgctcaccc cccattccga ggtcttcccg 3060
gaactgctgc gggaacgccg cgcggcgacc gtcgaggacc accgcgggtg gggctacctc 3120
tcgccccggc tgctggaccg cctggaggac tggctgccgg acgtggacac gctgctggcc 3180
ggccgcgaac cccggttcgt ccacggcgac ctgcacggga ccaacatctt cgtggacctg 3240
gccgcgaccg aggtcaccgg gatcgtcgac ttcaccgacg tctatgcggg agactcccgc 3300
tacagcctgg tgcaactgca tctcaacgcc ttccggggcg accgcgagat cctggccgcg 3360
ctgctcgacg gggcgcagtg gaagcggacc gaggacttcg cccgcgaact gctcgccttc 3420
accttcctgc acgacttcga ggtgttcgag gagaccccgc tggatctctc cggcttcacc 3480
gatccggagg aactggcgca gttcctctgg gggccgccgg acaccgcccc cggcgcctga 3540
cgccccggtc ctgtatccta aatcaaatat cggacaagca gtgtctgtta taacaaaaaa 3600
tcgatttaat agacacacca acagcatggt ttttatgtgt gcgataattt ataatatttc 3660
ggacaggact ctagccaaag attggacctc actagttcca tgagcgtcag accccgtaga 3720
aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac 3780
aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt 3840
tccgaaggta actggcttca gcagagcgca gataccaaat actgtccttc tagtgtagcc 3900
gtagttaggc caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat 3960
cctgttacca gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag 4020
acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc 4080
cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag 4140
cgccacgctt cccgagggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac 4200
aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg 4260
gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct 4320
atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct ggccttttgc 4380
tcacatgttc tttcctgcgt tatcccctga ttctgtggat aaccgtatta ccgcctttga 4440
gtgagctgat accgctcgcc gcagccgaac gaccgagcgc aacgcgtgcg gccgcggtac 4500
ccggggatcc tctagagtcg accaccaagg gcaccatctc tgcttgggcc accccgttgg 4560
ccgcagccag ctcgctgaga gccgtgaacg acagggcgaa cgccagcccg ccgacggcga 4620
gggttccgac cgctgcaact cccggtgcaa ccttgtcccg gtctattctc ttcactgcac 4680
cagctccaat ctggtgtgaa tgcccctcgt ctgttcgcgc aggcgggggg ctctattcgt 4740
ttgtcagcat cgaaagtagc cagatcaggg atgcgttgca accgcgtatg cccaggtcag 4800
aagagtcgca caagagttgc agacccctgg aaagaaaaat ggccagaggg cgaaaacacc 4860
ctctgaccag cggagcgggc gacgggaatc gaacccgcgt agctagtttg gaagaatggg 4920
tgtctgccga ccacatatgg gccggtcaag ataggttttt accccctctc ggctgcatcc 4980
tctaagtgga aagaaattgc aggtcgtaga agcgcgttga agcctgagag ttgcacagga 5040
gttgcaaccc ggtagccttg ttcacgacga gaggagacct agttggcacg tcgcggatgg 5100
ggatcgctga agactcagcg cagcgggagg atccaagcct catacgtcaa cccgcaggac 5160
ggtgtgaggt actacgcgct gcagacctac gacaacaaga tggacgccga agcctggctc 5220
gcgggcgaga agcggctcat cgagatggag acctggaccc ctccacagga ccgggcgaag 5280
aaggcagccg ccagcgccat cacgctggag gagtacaccc ggaagtggct cgtggagcgc 5340
gacctcgcag acggcaccag ggatctgtac agcgggcacg cggagcgccg catctacccg 5400
gtgctaggtg aagtggcggt cacagagatg acgccagctc tggtgcgtgc gtggtgggcc 5460
gggatgggta ggaagcaccc gactgcccgc cggcatgcct acaacgtcct ccgggcggtg 5520
atgaacacag cggtcgagga caagctgatc gcagagaacc cgtgccggat cgagcagaag 5580
gcagccgatg agcgcgacgt agaggcgctg acgcctgagg agctggacat cgtcgccgct 5640
gagatcttcg agcactaccg gatcgcggca tacatcctgg cgtggacgag cctccggttc 5700
ggagagctga tcgagcttcg ccgcaaggac atcgtggacg acggcatgac gatgaagctc 5760
cgggtgcgcc gtggcgcttc ccgcgtgggg aacaagatcg tcgttggcaa cgccaagacc 5820
gtccggtcga agcgtcctgt gacggttccg cctcacgtcg cggagatgat ccgagcgcac 5880
atgaaggacc gtacgaagat gaacaagggc cccgaggcat tcctggtgac cacgacgcag 5940
ggcaaccggc tgtcgaagtc cgcgttcacc aagtcgctga agcgtggcta cgccaagatc 6000
ggtcggccgg aactccgcat ccacgacctc cgcgctgtcg gcgctacgtt cgccgctcag 6060
gcaggtgcga cgaccaagga gctgatggcc cgtctcggtc acacgactcc taggatggcg 6120
atgaagtacc agatggcgtc tgaggcccgc gacgaggcta tcgctgaggc gatgtccaag 6180
ctggccaaga cctcctgaaa cgcaaaaagc ccccctccca aggacactga gtcctaaaga 6240
ggggggtttc ttgtcagtac gcgaagaacc acgcctggcc gcgagcgcca gcaccgccgc 6300
tctgtgcgga gacctgggca ccagccccgc cgccgccagg agcattgccg ttcccgccag 6360
aaatctagac ggtgaccaca acgacgcgcc cgctttgatc ggggacgtct gcggccgacc 6420
atttacgggt cttgttgtcg ttggcggtca tgggccgaac atactcaccc ggatcggagg 6480
gccgaggaca aggtcgaacg aggggcatga cccggtgcgg ggcttcttgc actcggcata 6540
ggcgagtgct aagaataacg ttggcactcg cgaccggtga gtgctaggtc gggacggtga 6600
ggccaggccc gtcgtcgcag cgagtggcag cgaggacaac ttgagccgtc cgtcgcgggc 6660
actgcgcccg gccagcgtaa gtagcggggt tgccgtcacc cggtgacccc cgtttcatcc 6720
ccgatccgga ggaatcactt cgcaatggcc aagacaattg cggatccagc tgcagaattc 6780
gaagcttatc gatgtcgacg tagtcatcat catcatcatc accaccacta actagcgtac 6840
gatcgactgc caggcatcaa ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt 6900
ttatgccatc atggccgcgg tgatcagcta gcca 6934
<210> 2
<211> 8150
<212> DNA
<213> Artificial sequence
<400> 2
ccaagaattg gcaggtcctg tatcctaaat caaatatcgg acaagcagtg tctgttataa 60
caaaaaatcg atttaataga cacaccaaca gcatggtttt tatgtgtgcg ataatttata 120
atatttcgga caggactcta gggtcgtcga ggtccaccaa gccctcggcg acgttccgcc 180
gggcctcggc gaccgccgcg tcgaggcgcc ggtcggaggg gcagtcctcc acgggcagct 240
cgtggagggc gcgggccagc tccgccatcg cctcgaccac ggcgaaccgc tggtgctcgg 300
gccactcctc ggccgccgcg acgccgggga cggcctccgt gacgagccac gcggcggtgt 360
cgtcggcacc gcgctcgacg acgcggggga cggggatcgg cggggcctgg cggcgcctcg 420
ccgtcgcaga accaggcggt gctttttaac ccatcacata tacctgccgt tcactattat 480
ttagtgaaat gagatattat gatattttct gaattgtgat taaaaaggca actttatgcc 540
catgcaacag aaactataaa aaatacagag aatgaaaaga aacagataga ttttttagtt 600
ctttaggccc gtagtctgca aatcctttta tgattttcta tcaaacaaaa gaggaaaata 660
gaccagttgc aatccaaacg agagtctaat agaatgaggt cgaaaagtaa atcgcgcggg 720
tttgttactg ataaagcagg caagacctaa aatgtgtaaa gggcaaagtg tatactttgg 780
cgtcacccct tacatatttt aggtcttttt ttattgtgcg taactaactt gccatcttca 840
aacaggaggg ctggaagaag cagaccgcta acacagtaca taaaaaagga gacatgaacg 900
atgaacatca aaaagtttgc aaaacaagca acagtattaa cctttactac cgcactgctg 960
gcaggaggcg caactcaagc gtttgcgaaa gaaacgaacc aaaagccata taaggaaaca 1020
tacggcattt cccatattac acgccatgat atgctgcaaa tccctgaaca gcaaaaaaat 1080
gaaaaatatc aagttcctga attcgattcg tccacaatta aaaatatctc ttctgcaaaa 1140
ggcctggacg tttgggacag ctggccatta caaaacgctg acggcactgt cgcaaactat 1200
cacggctacc acatcgtctt tgcattagcc ggagatccta aaaatgcgga tgacacatcg 1260
atttacatgt tctatcaaaa agtcggcgaa acttctattg acagctggaa aaacgctggc 1320
cgcgtcttta aagacagcga caaattcgat gcaaatgatt ctatcctaaa agaccaaaca 1380
caagaatggt caggttcagc cacatttaca tctgacggaa aaatccgttt attctacact 1440
gatttctccg gtaaacatta cggcaaacaa acactgacaa ctgcacaagt taacgtatca 1500
gcatcagaca gctctttgaa catcaacggt gtagaggatt ataaatcaat ctttgacggt 1560
gacggaaaaa cgtatcaaaa tgtacagcag ttcatcgatg aaggcaacta cagctcaggc 1620
gacaaccata cgctgagaga tcctcactac gtagaagata aaggccacaa atacttagta 1680
tttgaagcaa acactggaac tgaagatggc taccaaggcg aagaatcttt atttaacaaa 1740
gcatactatg gcaaaagcac atcattcttc cgtcaagaaa gtcaaaaact tctgcaaagc 1800
gataaaaaac gcacggctga gttagcaaac ggcgctctcg gtatgattga gctaaacgat 1860
gattacacac tgaaaaaagt gatgaaaccg ctgattgcat ctaacacagt aacagatgaa 1920
attgaacgcg cgaacgtctt taaaatgaac ggcaaatggt acctgttcac tgactcccgc 1980
ggatcaaaaa tgacgattga cggcattacg tctaacgata tttacatgct tggttatgtt 2040
tctaattctt taactggccc atacaagccg ctgaacaaaa ctggccttgt gttaaaaatg 2100
gatcttgatc ctaacgatgt aacctttact tactcacact tcgctgtacc tcaagcgaaa 2160
ggaaacaatg tcgtgattac aagctatatg acaaacagag gattctacgc agacaaacaa 2220
tcaacgtttg cgccaagctt cctgctgaac atcaaaggca agaaaacatc tgttgtcaaa 2280
gacagcatcc ttgaacaagg acaattaaca gttaacaaat aaaaacgcaa aagaaaatgc 2340
cgatctcagg cggtggcgta caccgtcgcc tcggtcggcc cgtagagatt ggcgatcccg 2400
accgcagcac caccgagaac gtccccgacg tggccgacca gcccgtcatc gtcaacgcct 2460
gaccgcggtg cggacaggcc gtgtcgcgac cggccgtgcg gaattaagcc ggcccgtacc 2520
ctgtgaatag aggtccgctg tgacacaaga atccctgtta cttctcgacc gtattgattc 2580
ggatgattcc tacgcgagcc tgcggaacga ccaggaattc tgggagccgc tggcccgccg 2640
agccctggag gagctcgggc tgccggtgcc gccggtgctg cgggtgcccg gcgagagcac 2700
caaccccgta ctggtcggcg agcccgaccc ggtcatcaag ctgttcggcg agcactggtg 2760
cggtccggag agcctcgcgt cggagtcgga ggcgtacgcg gtcctggcgg acgccccggt 2820
gccggtgccc cgcctcctcg gccgcggcga gctgcggccc ggcaccggag cctggccgtg 2880
gccctacctg gtgatgagcc ggatgaccgg caccacctgg cggtccgcga tggacggcac 2940
gaccgaccgg aacgcgctgc tcgccctggc ccgcgaactc ggccgggtgc tcggccggct 3000
gcacagggtg ccgctgaccg ggaacaccgt gctcaccccc cattccgagg tcttcccgga 3060
actgctgcgg gaacgccgcg cggcgaccgt cgaggaccac cgcgggtggg gctacctctc 3120
gccccggctg ctggaccgcc tggaggactg gctgccggac gtggacacgc tgctggccgg 3180
ccgcgaaccc cggttcgtcc acggcgacct gcacgggacc aacatcttcg tggacctggc 3240
cgcgaccgag gtcaccggga tcgtcgactt caccgacgtc tatgcgggag actcccgcta 3300
cagcctggtg caactgcatc tcaacgcctt ccggggcgac cgcgagatcc tggccgcgct 3360
gctcgacggg gcgcagtgga agcggaccga ggacttcgcc cgcgaactgc tcgccttcac 3420
cttcctgcac gacttcgagg tgttcgagga gaccccgctg gatctctccg gcttcaccga 3480
tccggaggaa ctggcgcagt tcctctgggg gccgccggac accgcccccg gcgcctgacg 3540
ccccggtcct gtatcctaaa tcaaatatcg gacaagcagt gtctgttata acaaaaaatc 3600
gatttaatag acacaccaac agcatggttt ttatgtgtgc gataatttat aatatttcgg 3660
acaggactct agccaaagat tggacctcac tagttccatg agcgtcagac cccgtagaaa 3720
agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 3780
aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 3840
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 3900
agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 3960
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 4020
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 4080
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 4140
ccacgcttcc cgaggggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 4200
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 4260
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 4320
ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 4380
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 4440
gagctgatac cgctcgccgc agccgaacga ccgagcgcaa cgcgtgcggc cgcggtaccc 4500
ggggatcctc tagagtcgac caccaagggc accatctctg cttgggccac cccgttggcc 4560
gcagccagct cgctgagagc cgtgaacgac agggcgaacg ccagcccgcc gacggcgagg 4620
gttccgaccg ctgcaactcc cggtgcaacc ttgtcccggt ctattctctt cactgcacca 4680
gctccaatct ggtgtgaatg cccctcgtct gttcgcgcag gcggggggct ctattcgttt 4740
gtcagcatcg aaagtagcca gatcagggat gcgttgcaac cgcgtatgcc caggtcagaa 4800
gagtcgcaca agagttgcag acccctggaa agaaaaatgg ccagagggcg aaaacaccct 4860
ctgaccagcg gagcgggcga cgggaatcga acccgcgtag ctagtttgga agaatgggtg 4920
tctgccgacc acatatgggc cggtcaagat aggtttttac cccctctcgg ctgcatcctc 4980
taagtggaaa gaaattgcag gtcgtagaag cgcgttgaag cctgagagtt gcacaggagt 5040
tgcaacccgg tagccttgtt cacgacgaga ggagacctag ttggcacgtc gcggatgggg 5100
atcgctgaag actcagcgca gcgggaggat ccaagcctca tacgtcaacc cgcaggacgg 5160
tgtgaggtac tacgcgctgc agacctacga caacaagatg gacgccgaag cctggctcgc 5220
gggcgagaag cggctcatcg agatggagac ctggacccct ccacaggacc gggcgaagaa 5280
ggcagccgcc agcgccatca cgctggagga gtacacccgg aagtggctcg tggagcgcga 5340
cctcgcagac ggcaccaggg atctgtacag cgggcacgcg gagcgccgca tctacccggt 5400
gctaggtgaa gtggcggtca cagagatgac gccagctctg gtgcgtgcgt ggtgggccgg 5460
gatgggtagg aagcacccga ctgcccgccg gcatgcctac aacgtcctcc gggcggtgat 5520
gaacacagcg gtcgaggaca agctgatcgc agagaacccg tgccggatcg agcagaaggc 5580
agccgatgag cgcgacgtag aggcgctgac gcctgaggag ctggacatcg tcgccgctga 5640
gatcttcgag cactaccgga tcgcggcata catcctggcg tggacgagcc tccggttcgg 5700
agagctgatc gagcttcgcc gcaaggacat cgtggacgac ggcatgacga tgaagctccg 5760
ggtgcgccgt ggcgcttccc gcgtggggaa caagatcgtc gttggcaacg ccaagaccgt 5820
ccggtcgaag cgtcctgtga cggttccgcc tcacgtcgcg gagatgatcc gagcgcacat 5880
gaaggaccgt acgaagatga acaagggccc cgaggcattc ctggtgacca cgacgcaggg 5940
caaccggctg tcgaagtccg cgttcaccaa gtcgctgaag cgtggctacg ccaagatcgg 6000
tcggccggaa ctccgcatcc acgacctccg cgctgtcggc gctacgttcg ccgctcaggc 6060
aggtgcgacg accaaggagc tgatggcccg tctcggtcac acgactccta ggatggcgat 6120
gaagtaccag atggcgtctg aggcccgcga cgaggctatc gctgaggcga tgtccaagct 6180
ggccaagacc tcctgaaacg caaaaagccc ccctcccaag gacactgagt cctaaagagg 6240
ggggtttctt gtcagtacgc gaagaaccac gcctggccgc gagcgccagc accgccgctc 6300
tgtgcggaga cctgggcacc agccccgccg ccgccaggag cattgccgtt cccgccagaa 6360
atctagacgg tgaccacaac gacgcgcccg ctttgatcgg ggacgtctgc ggccgaccat 6420
ttacgggtct tgttgtcgtt ggcggtcatg ggccgaacat actcacccgg atcggagggc 6480
cgaggacaag gtcgaacgag gggcatgacc cggtgcgggg cttcttgcac tcggcatagg 6540
cgagtgctaa gaataacgtt ggcactcgcg accggtgagt gctaggtcgg gacggtgagg 6600
ccaggcccgt cgtcgcagcg agtggcagcg aggacaactt gagccgtccg tcgcgggcac 6660
tgcgcccggc cagcgtaagt agcggggttg ccgtcacccg gtgacccccg tttcatcccc 6720
gatccggagg aatcacttcg caatgcatca tcatcatcat caccaccacg tgacggggca 6780
accggccgcg gctggcgcgc attcgctgtc ggaaggggca atgacggcga tgcagtcggg 6840
gtcggttccc ccgccgcagg ccactcctcc gataacgaca ccgcccgtgg tgtctgcgcc 6900
gaccatggct gcgggcatcg aagccacaca cgggccagtt gacacgccgg cgaacacctc 6960
gggcgctcca ccggcgtcga ccggtactac cgggccggtc gcgccgaccg tggtgaccgc 7020
cgggccggtg gcggcacccg ctgcgccggt ggttggtggc tcggctgtcc ccgcgggacc 7080
gctgccggct tacggctctg atctacggcc ccccgtcgtg gcagcccccg ccgtgccctc 7140
ggttcctacg gcgcccgtat ccggcgcgcc ggtggcgccc tcggcgtcat cggccccatc 7200
ggcgggtggg gcgctggttt ctccggtgga gcgcgcagcc tcgaaagctg tggctggaca 7260
ggctggtgcg agctcgtcga caatggccgg cgcctcggca ctgtcggcca ccgccggcgc 7320
gacggcgggc gcggtatcgg ctcgggcggc tgagcagcaa cgcctacagc gaatcgtgga 7380
tgccgtggcg cgccaggagc cgcgaatctc atgggcggcc gggctgcgcg acgacggcac 7440
caccaccctg ctggtcaccg atttggccgg cgggtggatt ccgccccacg tccggctgcc 7500
cgcgaacgtg acgctgctgg agccaaccgc gcgacgccgt gatgccgacg tgatcgactt 7560
gctgggcgcc gtcgtcgccg tggcagccca cgagtccaac acctacgttg ccgagccggg 7620
gccagatgcg cctgcgctga ccggtgatcg gtcagcgcgc tcggcgatac ccaaggtgga 7680
cgagttcggg ccgaccttgg tcgaagctgt gcgccgccgc gatagcctgc cgcggatcgc 7740
gcaggcgatc gcgctgccgg cggtacgcaa aaccggcgtg ctggaaaacg aagccgagct 7800
gctgcacggc tgcatcaccg cggtcaagga gtcggtgctc aaggcctatc ccagtcacga 7860
gctcaccgct gtcggggatt ggatgctgct ggcggcgatc gaggcactga tcgacgagca 7920
ggactacctc gccaactatc acctggcctg gtatgccgta accaccaggc gtggcggctc 7980
acgagggttc gctgccgaag cttatcgatg tcgacgtagt catcatcatc atcatcacca 8040
ccactaacta gcgtacgatc gactgccagg catcaaataa aacgaaaggc tcagtcgaaa 8100
gactgggcct ttcgttttat gccatcatgg ccgcggtgat cagctagcca 8150
<210> 3
<211> 1305
<212> DNA
<213> Artificial sequence
<400> 3
atgcatcatc atcatcatca ccaccacgtg acggggcaac cggccgcggc tggcgcgcat 60
tcgctgtcgg aaggggcaat gacggcgatg cagtcggggt cggttccccc gccgcaggcc 120
actcctccga taacgacacc gcccgtggtg tctgcgccga ccatggctgc gggcatcgaa 180
gccacacacg ggccagttga cacgccggcg aacacctcgg gcgctccacc ggcgtcgacc 240
ggtactaccg ggccggtcgc gccgaccgtg gtgaccgccg ggccggtggc ggcacccgct 300
gcgccggtgg ttggtggctc ggctgtcccc gcgggaccgc tgccggctta cggctctgat 360
ctacggcccc ccgtcgtggc agcccccgcc gtgccctcgg ttcctacggc gcccgtatcc 420
ggcgcgccgg tggcgccctc ggcgtcatcg gccccatcgg cgggtggggc gctggtttct 480
ccggtggagc gcgcagcctc gaaagctgtg gctggacagg ctggtgcgag ctcgtcgaca 540
atggccggcg cctcggcact gtcggccacc gccggcgcga cggcgggcgc ggtatcggct 600
cgggcggctg agcagcaacg cctacagcga atcgtggatg ccgtggcgcg ccaggagccg 660
cgaatctcat gggcggccgg gctgcgcgac gacggcacca ccaccctgct ggtcaccgat 720
ttggccggcg ggtggattcc gccccacgtc cggctgcccg cgaacgtgac gctgctggag 780
ccaaccgcgc gacgccgtga tgccgacgtg atcgacttgc tgggcgccgt cgtcgccgtg 840
gcagcccacg agtccaacac ctacgttgcc gagccggggc cagatgcgcc tgcgctgacc 900
ggtgatcggt cagcgcgctc ggcgataccc aaggtggacg agttcgggcc gaccttggtc 960
gaagctgtgc gccgccgcga tagcctgccg cggatcgcgc aggcgatcgc gctgccggcg 1020
gtacgcaaaa ccggcgtgct ggaaaacgaa gccgagctgc tgcacggctg catcaccgcg 1080
gtcaaggagt cggtgctcaa ggcctatccc agtcacgagc tcaccgctgt cggggattgg 1140
atgctgctgg cggcgatcga ggcactgatc gacgagcagg actacctcgc caactatcac 1200
ctggcctggt atgccgtaac caccaggcgt ggcggctcac gagggttcgc tgccgaagct 1260
tatcgatgtc gacgtagtca tcatcatcat catcaccacc actaa 1305
<210> 4
<211> 434
<212> PRT
<213> Artificial sequence
<400> 4
Met His His His His His His His His Val Thr Gly Gln Pro Ala Ala
1 5 10 15
Ala Gly Ala His Ser Leu Ser Glu Gly Ala Met Thr Ala Met Gln Ser
20 25 30
Gly Ser Val Pro Pro Pro Gln Ala Thr Pro Pro Ile Thr Thr Pro Pro
35 40 45
Val Val Ser Ala Pro Thr Met Ala Ala Gly Ile Glu Ala Thr His Gly
50 55 60
Pro Val Asp Thr Pro Ala Asn Thr Ser Gly Ala Pro Pro Ala Ser Thr
65 70 75 80
Gly Thr Thr Gly Pro Val Ala Pro Thr Val Val Thr Ala Gly Pro Val
85 90 95
Ala Ala Pro Ala Ala Pro Val Val Gly Gly Ser Ala Val Pro Ala Gly
100 105 110
Pro Leu Pro Ala Tyr Gly Ser Asp Leu Arg Pro Pro Val Val Ala Ala
115 120 125
Pro Ala Val Pro Ser Val Pro Thr Ala Pro Val Ser Gly Ala Pro Val
130 135 140
Ala Pro Ser Ala Ser Ser Ala Pro Ser Ala Gly Gly Ala Leu Val Ser
145 150 155 160
Pro Val Glu Arg Ala Ala Ser Lys Ala Val Ala Gly Gln Ala Gly Ala
165 170 175
Ser Ser Ser Thr Met Ala Gly Ala Ser Ala Leu Ser Ala Thr Ala Gly
180 185 190
Ala Thr Ala Gly Ala Val Ser Ala Arg Ala Ala Glu Gln Gln Arg Leu
195 200 205
Gln Arg Ile Val Asp Ala Val Ala Arg Gln Glu Pro Arg Ile Ser Trp
210 215 220
Ala Ala Gly Leu Arg Asp Asp Gly Thr Thr Thr Leu Leu Val Thr Asp
225 230 235 240
Leu Ala Gly Gly Trp Ile Pro Pro His Val Arg Leu Pro Ala Asn Val
245 250 255
Thr Leu Leu Glu Pro Thr Ala Arg Arg Arg Asp Ala Asp Val Ile Asp
260 265 270
Leu Leu Gly Ala Val Val Ala Val Ala Ala His Glu Ser Asn Thr Tyr
275 280 285
Val Ala Glu Pro Gly Pro Asp Ala Pro Ala Leu Thr Gly Asp Arg Ser
290 295 300
Ala Arg Ser Ala Ile Pro Lys Val Asp Glu Phe Gly Pro Thr Leu Val
305 310 315 320
Glu Ala Val Arg Arg Arg Asp Ser Leu Pro Arg Ile Ala Gln Ala Ile
325 330 335
Ala Leu Pro Ala Val Arg Lys Thr Gly Val Leu Glu Asn Glu Ala Glu
340 345 350
Leu Leu His Gly Cys Ile Thr Ala Val Lys Glu Ser Val Leu Lys Ala
355 360 365
Tyr Pro Ser His Glu Leu Thr Ala Val Gly Asp Trp Met Leu Leu Ala
370 375 380
Ala Ile Glu Ala Leu Ile Asp Glu Gln Asp Tyr Leu Ala Asn Tyr His
385 390 395 400
Leu Ala Trp Tyr Ala Val Thr Thr Arg Arg Gly Gly Ser Arg Gly Phe
405 410 415
Ala Ala Glu Ala Tyr Arg Cys Arg Arg Ser His His His His His His
420 425 430
His His
<210> 5
<211> 7211
<212> DNA
<213> Artificial sequence
<400> 5
ccaagaattg gcaggtcctg tatcctaaat caaatatcgg acaagcagtg tctgttataa 60
caaaaaatcg atttaataga cacaccaaca gcatggtttt tatgtgtgcg ataatttata 120
atatttcgga caggactcta gggtcgtcga ggtccaccaa gccctcggcg acgttccgcc 180
gggcctcggc gaccgccgcg tcgaggcgcc ggtcggaggg gcagtcctcc acgggcagct 240
cgtggagggc gcgggccagc tccgccatcg cctcgaccac ggcgaaccgc tggtgctcgg 300
gccactcctc ggccgccgcg acgccgggga cggcctccgt gacgagccac gcggcggtgt 360
cgtcggcacc gcgctcgacg acgcggggga cggggatcgg cggggcctgg cggcgcctcg 420
ccgtcgcaga accaggcggt gctttttaac ccatcacata tacctgccgt tcactattat 480
ttagtgaaat gagatattat gatattttct gaattgtgat taaaaaggca actttatgcc 540
catgcaacag aaactataaa aaatacagag aatgaaaaga aacagataga ttttttagtt 600
ctttaggccc gtagtctgca aatcctttta tgattttcta tcaaacaaaa gaggaaaata 660
gaccagttgc aatccaaacg agagtctaat agaatgaggt cgaaaagtaa atcgcgcggg 720
tttgttactg ataaagcagg caagacctaa aatgtgtaaa gggcaaagtg tatactttgg 780
cgtcacccct tacatatttt aggtcttttt ttattgtgcg taactaactt gccatcttca 840
aacaggaggg ctggaagaag cagaccgcta acacagtaca taaaaaagga gacatgaacg 900
atgaacatca aaaagtttgc aaaacaagca acagtattaa cctttactac cgcactgctg 960
gcaggaggcg caactcaagc gtttgcgaaa gaaacgaacc aaaagccata taaggaaaca 1020
tacggcattt cccatattac acgccatgat atgctgcaaa tccctgaaca gcaaaaaaat 1080
gaaaaatatc aagttcctga attcgattcg tccacaatta aaaatatctc ttctgcaaaa 1140
ggcctggacg tttgggacag ctggccatta caaaacgctg acggcactgt cgcaaactat 1200
cacggctacc acatcgtctt tgcattagcc ggagatccta aaaatgcgga tgacacatcg 1260
atttacatgt tctatcaaaa agtcggcgaa acttctattg acagctggaa aaacgctggc 1320
cgcgtcttta aagacagcga caaattcgat gcaaatgatt ctatcctaaa agaccaaaca 1380
caagaatggt caggttcagc cacatttaca tctgacggaa aaatccgttt attctacact 1440
gatttctccg gtaaacatta cggcaaacaa acactgacaa ctgcacaagt taacgtatca 1500
gcatcagaca gctctttgaa catcaacggt gtagaggatt ataaatcaat ctttgacggt 1560
gacggaaaaa cgtatcaaaa tgtacagcag ttcatcgatg aaggcaacta cagctcaggc 1620
gacaaccata cgctgagaga tcctcactac gtagaagata aaggccacaa atacttagta 1680
tttgaagcaa acactggaac tgaagatggc taccaaggcg aagaatcttt atttaacaaa 1740
gcatactatg gcaaaagcac atcattcttc cgtcaagaaa gtcaaaaact tctgcaaagc 1800
gataaaaaac gcacggctga gttagcaaac ggcgctctcg gtatgattga gctaaacgat 1860
gattacacac tgaaaaaagt gatgaaaccg ctgattgcat ctaacacagt aacagatgaa 1920
attgaacgcg cgaacgtctt taaaatgaac ggcaaatggt acctgttcac tgactcccgc 1980
ggatcaaaaa tgacgattga cggcattacg tctaacgata tttacatgct tggttatgtt 2040
tctaattctt taactggccc atacaagccg ctgaacaaaa ctggccttgt gttaaaaatg 2100
gatcttgatc ctaacgatgt aacctttact tactcacact tcgctgtacc tcaagcgaaa 2160
ggaaacaatg tcgtgattac aagctatatg acaaacagag gattctacgc agacaaacaa 2220
tcaacgtttg cgccaagctt cctgctgaac atcaaaggca agaaaacatc tgttgtcaaa 2280
gacagcatcc ttgaacaagg acaattaaca gttaacaaat aaaaacgcaa aagaaaatgc 2340
cgatctcagg cggtggcgta caccgtcgcc tcggtcggcc cgtagagatt ggcgatcccg 2400
accgcagcac caccgagaac gtccccgacg tggccgacca gcccgtcatc gtcaacgcct 2460
gaccgcggtg cggacaggcc gtgtcgcgac cggccgtgcg gaattaagcc ggcccgtacc 2520
ctgtgaatag aggtccgctg tgacacaaga atccctgtta cttctcgacc gtattgattc 2580
ggatgattcc tacgcgagcc tgcggaacga ccaggaattc tgggagccgc tggcccgccg 2640
agccctggag gagctcgggc tgccggtgcc gccggtgctg cgggtgcccg gcgagagcac 2700
caaccccgta ctggtcggcg agcccgaccc ggtcatcaag ctgttcggcg agcactggtg 2760
cggtccggag agcctcgcgt cggagtcgga ggcgtacgcg gtcctggcgg acgccccggt 2820
gccggtgccc cgcctcctcg gccgcggcga gctgcggccc ggcaccggag cctggccgtg 2880
gccctacctg gtgatgagcc ggatgaccgg caccacctgg cggtccgcga tggacggcac 2940
gaccgaccgg aacgcgctgc tcgccctggc ccgcgaactc ggccgggtgc tcggccggct 3000
gcacagggtg ccgctgaccg ggaacaccgt gctcaccccc cattccgagg tcttcccgga 3060
actgctgcgg gaacgccgcg cggcgaccgt cgaggaccac cgcgggtggg gctacctctc 3120
gccccggctg ctggaccgcc tggaggactg gctgccggac gtggacacgc tgctggccgg 3180
ccgcgaaccc cggttcgtcc acggcgacct gcacgggacc aacatcttcg tggacctggc 3240
cgcgaccgag gtcaccggga tcgtcgactt caccgacgtc tatgcgggag actcccgcta 3300
cagcctggtg caactgcatc tcaacgcctt ccggggcgac cgcgagatcc tggccgcgct 3360
gctcgacggg gcgcagtgga agcggaccga ggacttcgcc cgcgaactgc tcgccttcac 3420
cttcctgcac gacttcgagg tgttcgagga gaccccgctg gatctctccg gcttcaccga 3480
tccggaggaa ctggcgcagt tcctctgggg gccgccggac accgcccccg gcgcctgacg 3540
ccccggtcct gtatcctaaa tcaaatatcg gacaagcagt gtctgttata acaaaaaatc 3600
gatttaatag acacaccaac agcatggttt ttatgtgtgc gataatttat aatatttcgg 3660
acaggactct agccaaagat tggacctcac tagttccatg agcgtcagac cccgtagaaa 3720
agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 3780
aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 3840
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 3900
agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 3960
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 4020
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 4080
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 4140
ccacgcttcc cgaggggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 4200
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 4260
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 4320
ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 4380
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 4440
gagctgatac cgctcgccgc agccgaacga ccgagcgcaa cgcgtgcggc cgcggtaccc 4500
ggggatcctc tagagtcgac caccaagggc accatctctg cttgggccac cccgttggcc 4560
gcagccagct cgctgagagc cgtgaacgac agggcgaacg ccagcccgcc gacggcgagg 4620
gttccgaccg ctgcaactcc cggtgcaacc ttgtcccggt ctattctctt cactgcacca 4680
gctccaatct ggtgtgaatg cccctcgtct gttcgcgcag gcggggggct ctattcgttt 4740
gtcagcatcg aaagtagcca gatcagggat gcgttgcaac cgcgtatgcc caggtcagaa 4800
gagtcgcaca agagttgcag acccctggaa agaaaaatgg ccagagggcg aaaacaccct 4860
ctgaccagcg gagcgggcga cgggaatcga acccgcgtag ctagtttgga agaatgggtg 4920
tctgccgacc acatatgggc cggtcaagat aggtttttac cccctctcgg ctgcatcctc 4980
taagtggaaa gaaattgcag gtcgtagaag cgcgttgaag cctgagagtt gcacaggagt 5040
tgcaacccgg tagccttgtt cacgacgaga ggagacctag ttggcacgtc gcggatgggg 5100
atcgctgaag actcagcgca gcgggaggat ccaagcctca tacgtcaacc cgcaggacgg 5160
tgtgaggtac tacgcgctgc agacctacga caacaagatg gacgccgaag cctggctcgc 5220
gggcgagaag cggctcatcg agatggagac ctggacccct ccacaggacc gggcgaagaa 5280
ggcagccgcc agcgccatca cgctggagga gtacacccgg aagtggctcg tggagcgcga 5340
cctcgcagac ggcaccaggg atctgtacag cgggcacgcg gagcgccgca tctacccggt 5400
gctaggtgaa gtggcggtca cagagatgac gccagctctg gtgcgtgcgt ggtgggccgg 5460
gatgggtagg aagcacccga ctgcccgccg gcatgcctac aacgtcctcc gggcggtgat 5520
gaacacagcg gtcgaggaca agctgatcgc agagaacccg tgccggatcg agcagaaggc 5580
agccgatgag cgcgacgtag aggcgctgac gcctgaggag ctggacatcg tcgccgctga 5640
gatcttcgag cactaccgga tcgcggcata catcctggcg tggacgagcc tccggttcgg 5700
agagctgatc gagcttcgcc gcaaggacat cgtggacgac ggcatgacga tgaagctccg 5760
ggtgcgccgt ggcgcttccc gcgtggggaa caagatcgtc gttggcaacg ccaagaccgt 5820
ccggtcgaag cgtcctgtga cggttccgcc tcacgtcgcg gagatgatcc gagcgcacat 5880
gaaggaccgt acgaagatga acaagggccc cgaggcattc ctggtgacca cgacgcaggg 5940
caaccggctg tcgaagtccg cgttcaccaa gtcgctgaag cgtggctacg ccaagatcgg 6000
tcggccggaa ctccgcatcc acgacctccg cgctgtcggc gctacgttcg ccgctcaggc 6060
aggtgcgacg accaaggagc tgatggcccg tctcggtcac acgactccta ggatggcgat 6120
gaagtaccag atggcgtctg aggcccgcga cgaggctatc gctgaggcga tgtccaagct 6180
ggccaagacc tcctgaaacg caaaaagccc ccctcccaag gacactgagt cctaaagagg 6240
ggggtttctt gtcagtacgc gaagaaccac gcctggccgc gagcgccagc accgccgctc 6300
tgtgcggaga cctgggcacc agccccgccg ccgccaggag cattgccgtt cccgccagaa 6360
atctagacgg tgaccacaac gacgcgcccg ctttgatcgg ggacgtctgc ggccgaccat 6420
ttacgggtct tgttgtcgtt ggcggtcatg ggccgaacat actcacccgg atcggagggc 6480
cgaggacaag gtcgaacgag gggcatgacc cggtgcgggg cttcttgcac tcggcatagg 6540
cgagtgctaa gaataacgtt ggcactcgcg accggtgagt gctaggtcgg gacggtgagg 6600
ccaggcccgt cgtcgcagcg agtggcagcg aggacaactt gagccgtccg tcgcgggcac 6660
tgcgcccggc cagcgtaagt agcggggttg ccgtcacccg gtgacccccg tttcatcccc 6720
gatccggagg aatcacttcg caatgcatca tcatcatcat caccaccaca gccttttgga 6780
tgctcatatc ccacagttgg tggcctccca gtcggcgttt gccgccaagg cggggctgat 6840
gcggcacacg atcggtcagg ccgagcaggc ggcgatgtcg gctcaggcgt ttcaccaggg 6900
ggagtcgtcg gcggcgtttc aggccgccca tgcccggttt gtggcggcgg ccgccaaagt 6960
caacaccttg ttggatgtcg cgcaggcgaa tctgggtgag gccgccggta cctatgtggc 7020
cgccgatgct gcggccgcgt cgacctatac cgggttcgaa gcttatcgat gtcgacgtag 7080
tcatcatcat catcatcacc accactaact agcgtacgat cgactgccag gcatcaaata 7140
aaacgaaagg ctcagtcgaa agactgggcc tttcgtttta tgccatcatg gccgcggtga 7200
tcagctagcc a 7211
<210> 6
<211> 366
<212> DNA
<213> Artificial sequence
<400> 6
atgcatcatc atcatcatca ccaccacagc cttttggatg ctcatatccc acagttggtg 60
gcctcccagt cggcgtttgc cgccaaggcg gggctgatgc ggcacacgat cggtcaggcc 120
gagcaggcgg cgatgtcggc tcaggcgttt caccaggggg agtcgtcggc ggcgtttcag 180
gccgcccatg cccggtttgt ggcggcggcc gccaaagtca acaccttgtt ggatgtcgcg 240
caggcgaatc tgggtgaggc cgccggtacc tatgtggccg ccgatgctgc ggccgcgtcg 300
acctataccg ggttcgaagc ttatcgatgt cgacgtagtc atcatcatca tcatcaccac 360
cactaa 366
<210> 7
<211> 121
<212> PRT
<213> Artificial sequence
<400> 7
Met His His His His His His His His Ser Leu Leu Asp Ala His Ile
1 5 10 15
Pro Gln Leu Val Ala Ser Gln Ser Ala Phe Ala Ala Lys Ala Gly Leu
20 25 30
Met Arg His Thr Ile Gly Gln Ala Glu Gln Ala Ala Met Ser Ala Gln
35 40 45
Ala Phe His Gln Gly Glu Ser Ser Ala Ala Phe Gln Ala Ala His Ala
50 55 60
Arg Phe Val Ala Ala Ala Ala Lys Val Asn Thr Leu Leu Asp Val Ala
65 70 75 80
Gln Ala Asn Leu Gly Glu Ala Ala Gly Thr Tyr Val Ala Ala Asp Ala
85 90 95
Ala Ala Ala Ser Thr Tyr Thr Gly Phe Glu Ala Tyr Arg Cys Arg Arg
100 105 110
Ser His His His His His His His His
115 120
<210> 8
<211> 7817
<212> DNA
<213> Artificial sequence
<400> 8
ccaagaattg gcaggtcctg tatcctaaat caaatatcgg acaagcagtg tctgttataa 60
caaaaaatcg atttaataga cacaccaaca gcatggtttt tatgtgtgcg ataatttata 120
atatttcgga caggactcta gggtcgtcga ggtccaccaa gccctcggcg acgttccgcc 180
gggcctcggc gaccgccgcg tcgaggcgcc ggtcggaggg gcagtcctcc acgggcagct 240
cgtggagggc gcgggccagc tccgccatcg cctcgaccac ggcgaaccgc tggtgctcgg 300
gccactcctc ggccgccgcg acgccgggga cggcctccgt gacgagccac gcggcggtgt 360
cgtcggcacc gcgctcgacg acgcggggga cggggatcgg cggggcctgg cggcgcctcg 420
ccgtcgcaga accaggcggt gctttttaac ccatcacata tacctgccgt tcactattat 480
ttagtgaaat gagatattat gatattttct gaattgtgat taaaaaggca actttatgcc 540
catgcaacag aaactataaa aaatacagag aatgaaaaga aacagataga ttttttagtt 600
ctttaggccc gtagtctgca aatcctttta tgattttcta tcaaacaaaa gaggaaaata 660
gaccagttgc aatccaaacg agagtctaat agaatgaggt cgaaaagtaa atcgcgcggg 720
tttgttactg ataaagcagg caagacctaa aatgtgtaaa gggcaaagtg tatactttgg 780
cgtcacccct tacatatttt aggtcttttt ttattgtgcg taactaactt gccatcttca 840
aacaggaggg ctggaagaag cagaccgcta acacagtaca taaaaaagga gacatgaacg 900
atgaacatca aaaagtttgc aaaacaagca acagtattaa cctttactac cgcactgctg 960
gcaggaggcg caactcaagc gtttgcgaaa gaaacgaacc aaaagccata taaggaaaca 1020
tacggcattt cccatattac acgccatgat atgctgcaaa tccctgaaca gcaaaaaaat 1080
gaaaaatatc aagttcctga attcgattcg tccacaatta aaaatatctc ttctgcaaaa 1140
ggcctggacg tttgggacag ctggccatta caaaacgctg acggcactgt cgcaaactat 1200
cacggctacc acatcgtctt tgcattagcc ggagatccta aaaatgcgga tgacacatcg 1260
atttacatgt tctatcaaaa agtcggcgaa acttctattg acagctggaa aaacgctggc 1320
cgcgtcttta aagacagcga caaattcgat gcaaatgatt ctatcctaaa agaccaaaca 1380
caagaatggt caggttcagc cacatttaca tctgacggaa aaatccgttt attctacact 1440
gatttctccg gtaaacatta cggcaaacaa acactgacaa ctgcacaagt taacgtatca 1500
gcatcagaca gctctttgaa catcaacggt gtagaggatt ataaatcaat ctttgacggt 1560
gacggaaaaa cgtatcaaaa tgtacagcag ttcatcgatg aaggcaacta cagctcaggc 1620
gacaaccata cgctgagaga tcctcactac gtagaagata aaggccacaa atacttagta 1680
tttgaagcaa acactggaac tgaagatggc taccaaggcg aagaatcttt atttaacaaa 1740
gcatactatg gcaaaagcac atcattcttc cgtcaagaaa gtcaaaaact tctgcaaagc 1800
gataaaaaac gcacggctga gttagcaaac ggcgctctcg gtatgattga gctaaacgat 1860
gattacacac tgaaaaaagt gatgaaaccg ctgattgcat ctaacacagt aacagatgaa 1920
attgaacgcg cgaacgtctt taaaatgaac ggcaaatggt acctgttcac tgactcccgc 1980
ggatcaaaaa tgacgattga cggcattacg tctaacgata tttacatgct tggttatgtt 2040
tctaattctt taactggccc atacaagccg ctgaacaaaa ctggccttgt gttaaaaatg 2100
gatcttgatc ctaacgatgt aacctttact tactcacact tcgctgtacc tcaagcgaaa 2160
ggaaacaatg tcgtgattac aagctatatg acaaacagag gattctacgc agacaaacaa 2220
tcaacgtttg cgccaagctt cctgctgaac atcaaaggca agaaaacatc tgttgtcaaa 2280
gacagcatcc ttgaacaagg acaattaaca gttaacaaat aaaaacgcaa aagaaaatgc 2340
cgatctcagg cggtggcgta caccgtcgcc tcggtcggcc cgtagagatt ggcgatcccg 2400
accgcagcac caccgagaac gtccccgacg tggccgacca gcccgtcatc gtcaacgcct 2460
gaccgcggtg cggacaggcc gtgtcgcgac cggccgtgcg gaattaagcc ggcccgtacc 2520
ctgtgaatag aggtccgctg tgacacaaga atccctgtta cttctcgacc gtattgattc 2580
ggatgattcc tacgcgagcc tgcggaacga ccaggaattc tgggagccgc tggcccgccg 2640
agccctggag gagctcgggc tgccggtgcc gccggtgctg cgggtgcccg gcgagagcac 2700
caaccccgta ctggtcggcg agcccgaccc ggtcatcaag ctgttcggcg agcactggtg 2760
cggtccggag agcctcgcgt cggagtcgga ggcgtacgcg gtcctggcgg acgccccggt 2820
gccggtgccc cgcctcctcg gccgcggcga gctgcggccc ggcaccggag cctggccgtg 2880
gccctacctg gtgatgagcc ggatgaccgg caccacctgg cggtccgcga tggacggcac 2940
gaccgaccgg aacgcgctgc tcgccctggc ccgcgaactc ggccgggtgc tcggccggct 3000
gcacagggtg ccgctgaccg ggaacaccgt gctcaccccc cattccgagg tcttcccgga 3060
actgctgcgg gaacgccgcg cggcgaccgt cgaggaccac cgcgggtggg gctacctctc 3120
gccccggctg ctggaccgcc tggaggactg gctgccggac gtggacacgc tgctggccgg 3180
ccgcgaaccc cggttcgtcc acggcgacct gcacgggacc aacatcttcg tggacctggc 3240
cgcgaccgag gtcaccggga tcgtcgactt caccgacgtc tatgcgggag actcccgcta 3300
cagcctggtg caactgcatc tcaacgcctt ccggggcgac cgcgagatcc tggccgcgct 3360
gctcgacggg gcgcagtgga agcggaccga ggacttcgcc cgcgaactgc tcgccttcac 3420
cttcctgcac gacttcgagg tgttcgagga gaccccgctg gatctctccg gcttcaccga 3480
tccggaggaa ctggcgcagt tcctctgggg gccgccggac accgcccccg gcgcctgacg 3540
ccccggtcct gtatcctaaa tcaaatatcg gacaagcagt gtctgttata acaaaaaatc 3600
gatttaatag acacaccaac agcatggttt ttatgtgtgc gataatttat aatatttcgg 3660
acaggactct agccaaagat tggacctcac tagttccatg agcgtcagac cccgtagaaa 3720
agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa 3780
aaaaaccacc gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc 3840
cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt 3900
agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc 3960
tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac 4020
gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca 4080
gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg 4140
ccacgcttcc cgaggggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag 4200
gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt 4260
ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat 4320
ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc cttttgctgg ccttttgctc 4380
acatgttctt tcctgcgtta tcccctgatt ctgtggataa ccgtattacc gcctttgagt 4440
gagctgatac cgctcgccgc agccgaacga ccgagcgcaa cgcgtgcggc cgcggtaccc 4500
ggggatcctc tagagtcgac caccaagggc accatctctg cttgggccac cccgttggcc 4560
gcagccagct cgctgagagc cgtgaacgac agggcgaacg ccagcccgcc gacggcgagg 4620
gttccgaccg ctgcaactcc cggtgcaacc ttgtcccggt ctattctctt cactgcacca 4680
gctccaatct ggtgtgaatg cccctcgtct gttcgcgcag gcggggggct ctattcgttt 4740
gtcagcatcg aaagtagcca gatcagggat gcgttgcaac cgcgtatgcc caggtcagaa 4800
gagtcgcaca agagttgcag acccctggaa agaaaaatgg ccagagggcg aaaacaccct 4860
ctgaccagcg gagcgggcga cgggaatcga acccgcgtag ctagtttgga agaatgggtg 4920
tctgccgacc acatatgggc cggtcaagat aggtttttac cccctctcgg ctgcatcctc 4980
taagtggaaa gaaattgcag gtcgtagaag cgcgttgaag cctgagagtt gcacaggagt 5040
tgcaacccgg tagccttgtt cacgacgaga ggagacctag ttggcacgtc gcggatgggg 5100
atcgctgaag actcagcgca gcgggaggat ccaagcctca tacgtcaacc cgcaggacgg 5160
tgtgaggtac tacgcgctgc agacctacga caacaagatg gacgccgaag cctggctcgc 5220
gggcgagaag cggctcatcg agatggagac ctggacccct ccacaggacc gggcgaagaa 5280
ggcagccgcc agcgccatca cgctggagga gtacacccgg aagtggctcg tggagcgcga 5340
cctcgcagac ggcaccaggg atctgtacag cgggcacgcg gagcgccgca tctacccggt 5400
gctaggtgaa gtggcggtca cagagatgac gccagctctg gtgcgtgcgt ggtgggccgg 5460
gatgggtagg aagcacccga ctgcccgccg gcatgcctac aacgtcctcc gggcggtgat 5520
gaacacagcg gtcgaggaca agctgatcgc agagaacccg tgccggatcg agcagaaggc 5580
agccgatgag cgcgacgtag aggcgctgac gcctgaggag ctggacatcg tcgccgctga 5640
gatcttcgag cactaccgga tcgcggcata catcctggcg tggacgagcc tccggttcgg 5700
agagctgatc gagcttcgcc gcaaggacat cgtggacgac ggcatgacga tgaagctccg 5760
ggtgcgccgt ggcgcttccc gcgtggggaa caagatcgtc gttggcaacg ccaagaccgt 5820
ccggtcgaag cgtcctgtga cggttccgcc tcacgtcgcg gagatgatcc gagcgcacat 5880
gaaggaccgt acgaagatga acaagggccc cgaggcattc ctggtgacca cgacgcaggg 5940
caaccggctg tcgaagtccg cgttcaccaa gtcgctgaag cgtggctacg ccaagatcgg 6000
tcggccggaa ctccgcatcc acgacctccg cgctgtcggc gctacgttcg ccgctcaggc 6060
aggtgcgacg accaaggagc tgatggcccg tctcggtcac acgactccta ggatggcgat 6120
gaagtaccag atggcgtctg aggcccgcga cgaggctatc gctgaggcga tgtccaagct 6180
ggccaagacc tcctgaaacg caaaaagccc ccctcccaag gacactgagt cctaaagagg 6240
ggggtttctt gtcagtacgc gaagaaccac gcctggccgc gagcgccagc accgccgctc 6300
tgtgcggaga cctgggcacc agccccgccg ccgccaggag cattgccgtt cccgccagaa 6360
atctagacgg tgaccacaac gacgcgcccg ctttgatcgg ggacgtctgc ggccgaccat 6420
ttacgggtct tgttgtcgtt ggcggtcatg ggccgaacat actcacccgg atcggagggc 6480
cgaggacaag gtcgaacgag gggcatgacc cggtgcgggg cttcttgcac tcggcatagg 6540
cgagtgctaa gaataacgtt ggcactcgcg accggtgagt gctaggtcgg gacggtgagg 6600
ccaggcccgt cgtcgcagcg agtggcagcg aggacaactt gagccgtccg tcgcgggcac 6660
tgcgcccggc cagcgtaagt agcggggttg ccgtcacccg gtgacccccg tttcatcccc 6720
gatccggagg aatcacttcg caatgcatca tcatcatcat caccaccaca agggtcggtc 6780
ggcgctgctg cgggcgctct ggattgccgc actgtcattc gggttgggcg gtgtcgcggt 6840
agccgcggaa cccaccgcca aggccgcccc atacgagaac ctgatggtgc cgtcgccctc 6900
gatgggccgg gacatcccgg tggccttcct agccggtggg ccgcacgcgg tgtatctgct 6960
ggacgccttc aacgccggcc cggatgtcag taactgggtc accgcgggta acgcgatgaa 7020
cacgttggcg ggcaagggga tttcggtggt ggcaccggcc ggtggtgcgt acagcatgta 7080
caccaactgg gagcaggatg gcagcaagca gtgggacacc ttcttgtccg ctgagctgcc 7140
cgactggctg gccgctaacc ggggcttggc ccccggtggc catgcggccg ttggcgccgc 7200
tcagggcggt tacggggcga tggcgctggc ggccttccac cccgaccgct tcggcttcgc 7260
tggctcgatg tcgggctttt tgtacccgtc gaacaccacc accaacggtg cgatcgcggc 7320
gggcatgcag caattcggcg gtgtggacac caacggaatg tggggagcac cacagctggg 7380
tcggtggaag tggcacgacc cgtgggtgca tgccagcctg ctggcgcaaa acaacacccg 7440
ggtgtgggtg tggagcccga ccaacccggg agccagcgat cccgccgcca tgatcggcca 7500
agccgccgag gcgatgggta acagccgcat gttctacaac cagtatcgca gcgtcggcgg 7560
gcacaacgga cacttcgact tcccagccag cggtgacaac ggctggggct cgtgggcgcc 7620
ccagctgggc gctatgtcgg gcgatatcgt cggtgcgatc cgcgaagctt atcgatgtcg 7680
acgtagtcat catcatcatc atcaccacca ctaactagcg tacgatcgac tgccaggcat 7740
caaataaaac gaaaggctca gtcgaaagac tgggcctttc gttttatgcc atcatggccg 7800
cggtgatcag ctagcca 7817
<210> 9
<211> 972
<212> DNA
<213> Artificial sequence
<400> 9
atgcatcatc atcatcatca ccaccacaag ggtcggtcgg cgctgctgcg ggcgctctgg 60
attgccgcac tgtcattcgg gttgggcggt gtcgcggtag ccgcggaacc caccgccaag 120
gccgccccat acgagaacct gatggtgccg tcgccctcga tgggccggga catcccggtg 180
gccttcctag ccggtgggcc gcacgcggtg tatctgctgg acgccttcaa cgccggcccg 240
gatgtcagta actgggtcac cgcgggtaac gcgatgaaca cgttggcggg caaggggatt 300
tcggtggtgg caccggccgg tggtgcgtac agcatgtaca ccaactggga gcaggatggc 360
agcaagcagt gggacacctt cttgtccgct gagctgcccg actggctggc cgctaaccgg 420
ggcttggccc ccggtggcca tgcggccgtt ggcgccgctc agggcggtta cggggcgatg 480
gcgctggcgg ccttccaccc cgaccgcttc ggcttcgctg gctcgatgtc gggctttttg 540
tacccgtcga acaccaccac caacggtgcg atcgcggcgg gcatgcagca attcggcggt 600
gtggacacca acggaatgtg gggagcacca cagctgggtc ggtggaagtg gcacgacccg 660
tgggtgcatg ccagcctgct ggcgcaaaac aacacccggg tgtgggtgtg gagcccgacc 720
aacccgggag ccagcgatcc cgccgccatg atcggccaag ccgccgaggc gatgggtaac 780
agccgcatgt tctacaacca gtatcgcagc gtcggcgggc acaacggaca cttcgacttc 840
ccagccagcg gtgacaacgg ctggggctcg tgggcgcccc agctgggcgc tatgtcgggc 900
gatatcgtcg gtgcgatccg cgaagcttat cgatgtcgac gtagtcatca tcatcatcat 960
caccaccact aa 972
<210> 10
<211> 323
<212> PRT
<213> Artificial sequence
<400> 10
Met His His His His His His His His Lys Gly Arg Ser Ala Leu Leu
1 5 10 15
Arg Ala Leu Trp Ile Ala Ala Leu Ser Phe Gly Leu Gly Gly Val Ala
20 25 30
Val Ala Ala Glu Pro Thr Ala Lys Ala Ala Pro Tyr Glu Asn Leu Met
35 40 45
Val Pro Ser Pro Ser Met Gly Arg Asp Ile Pro Val Ala Phe Leu Ala
50 55 60
Gly Gly Pro His Ala Val Tyr Leu Leu Asp Ala Phe Asn Ala Gly Pro
65 70 75 80
Asp Val Ser Asn Trp Val Thr Ala Gly Asn Ala Met Asn Thr Leu Ala
85 90 95
Gly Lys Gly Ile Ser Val Val Ala Pro Ala Gly Gly Ala Tyr Ser Met
100 105 110
Tyr Thr Asn Trp Glu Gln Asp Gly Ser Lys Gln Trp Asp Thr Phe Leu
115 120 125
Ser Ala Glu Leu Pro Asp Trp Leu Ala Ala Asn Arg Gly Leu Ala Pro
130 135 140
Gly Gly His Ala Ala Val Gly Ala Ala Gln Gly Gly Tyr Gly Ala Met
145 150 155 160
Ala Leu Ala Ala Phe His Pro Asp Arg Phe Gly Phe Ala Gly Ser Met
165 170 175
Ser Gly Phe Leu Tyr Pro Ser Asn Thr Thr Thr Asn Gly Ala Ile Ala
180 185 190
Ala Gly Met Gln Gln Phe Gly Gly Val Asp Thr Asn Gly Met Trp Gly
195 200 205
Ala Pro Gln Leu Gly Arg Trp Lys Trp His Asp Pro Trp Val His Ala
210 215 220
Ser Leu Leu Ala Gln Asn Asn Thr Arg Val Trp Val Trp Ser Pro Thr
225 230 235 240
Asn Pro Gly Ala Ser Asp Pro Ala Ala Met Ile Gly Gln Ala Ala Glu
245 250 255
Ala Met Gly Asn Ser Arg Met Phe Tyr Asn Gln Tyr Arg Ser Val Gly
260 265 270
Gly His Asn Gly His Phe Asp Phe Pro Ala Ser Gly Asp Asn Gly Trp
275 280 285
Gly Ser Trp Ala Pro Gln Leu Gly Ala Met Ser Gly Asp Ile Val Gly
290 295 300
Ala Ile Arg Glu Ala Tyr Arg Cys Arg Arg Ser His His His His His
305 310 315 320
His His His
<210> 11
<211> 40
<212> DNA
<213> Artificial sequence
<400> 11
ggactctagc caaagattgg acctcactag ttccatgacg 40
<210> 12
<211> 40
<212> DNA
<213> Artificial sequence
<400> 12
gcgcgtcgtt gtggtcaccg tctagatttc tggcgggacg 40
<210> 13
<211> 20
<212> DNA
<213> Artificial sequence
<400> 13
cggtgaccac aacgacgcgc 20
<210> 14
<211> 42
<212> DNA
<213> Artificial sequence
<400> 14
tacaggacct gccaattctt ggtggctagc tgatcaccgc gg 42
<210> 15
<211> 25
<212> DNA
<213> Artificial sequence
<400> 15
gaagcttatc gatgtcgacg tagtc 25
<210> 16
<211> 22
<212> DNA
<213> Artificial sequence
<400> 16
tgcgaagtga ttcctccgga tc 22
<210> 17
<211> 60
<212> DNA
<213> Artificial sequence
<400> 17
ggaggaatca cttcgcaatg catcatcatc atcatcacca ccacgtgacg gggcaaccgg 60
<210> 18
<211> 39
<212> DNA
<213> Artificial sequence
<400> 18
cgtcgacatc gataagcttc ggcagcgaac cctcgtgag 39
<210> 19
<211> 66
<212> DNA
<213> Artificial sequence
<400> 19
ggaggaatca cttcgcaatg catcatcatc atcatcacca ccacagcctt ttggatgctc 60
atatcc 66
<210> 20
<211> 39
<212> DNA
<213> Artificial sequence
<400> 20
cgtcgacatc gataagcttc gaacccggta taggtcgac 39
<210> 21
<211> 60
<212> DNA
<213> Artificial sequence
<400> 21
ggaggaatca cttcgcaatg catcatcatc atcatcacca ccacaagggt cggtcggcgc 60
<210> 22
<211> 42
<212> DNA
<213> Artificial sequence
<400> 22
cgtcgacatc gataagcttc gcggatcgca ccgacgatat cg 42
<210> 23
<211> 23
<212> DNA
<213> Artificial sequence
<400> 23
ggtcatgggc cgaacatact cac 23
<210> 24
<211> 19
<212> DNA
<213> Artificial sequence
<400> 24
tggctagctg atcaccgcg 19
<210> 25
<211> 20
<212> DNA
<213> Artificial sequence
<400> 25
aacatcttcg tggacctggc 20
<210> 26
<211> 20
<212> DNA
<213> Artificial sequence
<400> 26
gtgaagccgg agagatccag 20
<210> 27
<211> 22
<212> DNA
<213> Artificial sequence
<400> 27
gcaggtcaag ctcaccgcga tc 22
<210> 28
<211> 23
<212> DNA
<213> Artificial sequence
<400> 28
tccaggtctc catctcgatg agc 23
<210> 29
<211> 22
<212> DNA
<213> Artificial sequence
<400> 29
tgcaactccc ggtgcaacct tg 22
<210> 30
<211> 23
<212> DNA
<213> Artificial sequence
<400> 30
tcaactgctc gacggtgctc ttc 23
<210> 31
<211> 20
<212> DNA
<213> Artificial sequence
<400> 31
ccaagaattg gcaggtcctg 20
<210> 32
<211> 22
<212> DNA
<213> Artificial sequence
<400> 32
ccaatctttg gctagagtcc tg 22
<210> 33
<211> 118
<212> DNA
<213> Artificial sequence
<400> 33
cctgtatcct aaatcaaata tcggacaagc agtgtctgtt ataacaaaaa atcgatttaa 60
tagacacacc aacagcatgg tttttatgtg tgcgataatt tataatattt cggacagg 118

Claims (5)

1. An integrated expression plasmid of mycobacterium tuberculosis, which comprises the following structural elements:
(1) The screening marker of the resistance gene is used for constructing and screening the recombinant plasmid; the resistance genes are SacB and hyg resistance genes;
(2) Gamma delta sequences respectively positioned at two sides of the resistance gene are used for knocking out the resistance; the gamma delta sequence is shown as SEQ ID NO. 33;
(3) Elements for insertion and expression of a gene of interest; the element for inserting and expressing the target gene is hsp60 promoter;
(4) Essential tag elements, replicons and mycobacterium tuberculosis genome integration elements; the tag element is a his tag, the replicon is an oriE gene, and the mycobacterium tuberculosis genome integration element is attp and int genes;
the plasmid is pTB01 plasmid, and the nucleotide sequence of the plasmid is shown in SEQ ID NO. 1.
2. The use of the integrative expression plasmid of Mycobacterium tuberculosis of claim 1, which comprises:
(1) Preparing a mycobacterium tuberculosis strain with a specific over-expression protein integrated in the genome;
or (2) preparing an anti-tuberculosis vaccine or a tuberculosis prevention vaccine with higher specific antigen content;
the strain or the vaccine contains the integrated expression plasmid of the mycobacterium tuberculosis with high expression of specific target protein, and the integrated expression plasmid of the mycobacterium tuberculosis with high expression of the specific target protein is respectively as follows:
a pBT01s1-Va07 plasmid containing an Rv3899c protein, and the sequence of the plasmid is shown as SEQ ID NO. 2; a pBT01s1-Va16 plasmid containing an Rv0287 protein, and the sequence of the plasmid is shown as SEQ ID NO. 5; the plasmid pBT01s1-Va25 containing the Rv3803c protein has the sequence shown in SEQ ID NO. 8.
3. A method for preparing a mycobacterium tuberculosis strain having a genome integrated with an overexpressed target protein, the method comprising the steps of:
(1) Inserting an expression gene of a target protein into the mycobacterium tuberculosis integrative expression plasmid of claim 1;
(2) Amplifying and extracting the target protein-containing mycobacterium tuberculosis integrated expression plasmid;
(3) Transferring the integrated expression plasmid containing the target protein of the mycobacterium tuberculosis into the mycobacterium tuberculosis;
the target protein-containing mycobacterium tuberculosis integrated expression plasmids are respectively as follows:
a pBT01s1-Va07 plasmid containing an Rv3899c protein, and the sequence of the plasmid is shown as SEQ ID NO. 2; a pBT01s1-Va16 plasmid containing an Rv0287 protein, and the sequence of the plasmid is shown as SEQ ID NO. 5; the plasmid pBT01s1-Va25 containing the Rv3803c protein has the sequence shown in SEQ ID NO. 8.
4. A method for preparing a tuberculosis vaccine with high content of specific target protein, which comprises the following steps:
(1) Inserting an expression gene of a target protein into the mycobacterium tuberculosis integrative expression plasmid of claim 1;
(2) Amplifying and extracting the target protein-containing mycobacterium tuberculosis integrated expression plasmid;
(3) Transferring the integrated expression plasmid containing the target protein of the mycobacterium tuberculosis into the mycobacterium tuberculosis;
(4) Preparing the vaccine by using the mycobacterium tuberculosis obtained in the step (3);
the target protein-containing mycobacterium tuberculosis integrated expression plasmids are respectively as follows:
a pBT01s1-Va07 plasmid containing an Rv3899c protein, the sequence of which is shown in SEQ ID NO. 2; a pBT01s1-Va16 plasmid containing an Rv0287 protein, and the sequence of the plasmid is shown as SEQ ID NO. 5;
the plasmid pBT01s1-Va25 containing the Rv3803c protein has the sequence shown in SEQ ID NO. 8.
5. A set of mycobacterium tuberculosis integrated expression plasmids which are prepared by taking the mycobacterium tuberculosis integrated expression plasmid as the basic vector of claim 1 and highly express specific target proteins, wherein the mycobacterium tuberculosis integrated expression plasmids which are highly expressed by the specific target proteins are respectively as follows:
pBT01s1-Va07 containing an Rv3899c protein, and the sequence of the pBT01s1-Va07 is shown in SEQ ID NO. 2;
pBT01s1-Va16 containing the Rv0287 protein, and the sequence of the pBT01s1-Va16 is shown as SEQ ID NO. 5;
pBT01s1-Va25 containing Rv3803c protein, and the sequence is shown in SEQ ID NO. 8.
CN202110230211.4A 2021-03-02 2021-03-02 Mycobacterium tuberculosis integrated expression plasmid and application thereof Active CN113549642B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110230211.4A CN113549642B (en) 2021-03-02 2021-03-02 Mycobacterium tuberculosis integrated expression plasmid and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110230211.4A CN113549642B (en) 2021-03-02 2021-03-02 Mycobacterium tuberculosis integrated expression plasmid and application thereof

Publications (2)

Publication Number Publication Date
CN113549642A CN113549642A (en) 2021-10-26
CN113549642B true CN113549642B (en) 2023-03-07

Family

ID=78101662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110230211.4A Active CN113549642B (en) 2021-03-02 2021-03-02 Mycobacterium tuberculosis integrated expression plasmid and application thereof

Country Status (1)

Country Link
CN (1) CN113549642B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005304A1 (en) * 1997-07-28 1999-02-04 Temple University - Of The Commonwealth System Of Higher Education Genetically engineered rhodococcus vaccine
US5869305A (en) * 1992-12-04 1999-02-09 The University Of Pittsburgh Recombinant viral vector system
KR100256890B1 (en) * 1992-12-04 2000-05-15 프란시스 제이. 코넬. Recombinant viral vector system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869305A (en) * 1992-12-04 1999-02-09 The University Of Pittsburgh Recombinant viral vector system
KR100256890B1 (en) * 1992-12-04 2000-05-15 프란시스 제이. 코넬. Recombinant viral vector system
WO1999005304A1 (en) * 1997-07-28 1999-02-04 Temple University - Of The Commonwealth System Of Higher Education Genetically engineered rhodococcus vaccine

Also Published As

Publication number Publication date
CN113549642A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
CN112111469B (en) Gamma-glutamyl kinase mutant and application thereof
KR20200086303A (en) Production of flavor compounds in host cells
CN114214336B (en) Lycium ruthenicum LrNOR gene and application of protein thereof
CN105754958B (en) A kind of mycobacteriophage that delivering autonomous light-emitting component and its application
KR101915949B1 (en) Gene expression cassette and expression vector comprising the same
CN113549642B (en) Mycobacterium tuberculosis integrated expression plasmid and application thereof
CN111849978B (en) Chromatin imaging method and chromatin imaging system based on Type I-F CRISPR/Cas
CN106834331B (en) rBCG for expressing fusion gene of Brucella melitensis P39 and L7/L12 and construction method thereof
CN104278031B (en) Promoter A regulated by xanthine as well as recombinant expression vector and application of promoter A
CN108410900B (en) Non-resistant lactobacillus plantarum anchoring expression vector p L PSa and preparation method thereof
CN111088267B (en) Method for improving cell density of liquid fermentation of clostridium solvolyticum
CN110241098A (en) The truncated-type high specific variant of the CRISPR nuclease SpCas9 of streptococcus pyogenes and its application
CN113201514B (en) Polypeptides having aspartokinase activity and their use for producing amino acids
CN112899211B (en) Method for increasing yield of 2-KLG in gluconobacter oxydans
CN114774472B (en) Construction and application of recombinant escherichia coli resistant to pentanediamine
CN110272881B (en) Endonuclease SpCas9 high specificity truncated variant TSpCas9-V1/V2 and application thereof
KR101291669B1 (en) Mycobacteria-Derived DNA Mismatch Repair Nucleotide Sequences and Uses Thereof
CN107475257B (en) Promoter-like gene for efficiently promoting expression of foreign protein and application thereof
CN107603979B (en) Promoter-like gene for efficiently expressing foreign protein and application thereof
RU2761660C1 (en) STRAIN OF ESCHERICHIA COLI BL21(DE3)/pET32v11-Flpo CELLS PRODUCING SITE-SPECIFIC Flpe RECOMBINASE
US20030219902A1 (en) Methods and vectors for facilitating site-specific recombination
CN106854654B (en) rBCG for expressing sheep brookfield strain L7/L12 gene and construction method and application thereof
CN115141856B (en) Recombinant clostridium and construction method and application thereof
CN106676124B (en) rBCG for expressing ovine brucella P39 gene and construction method and application thereof
CN114438113A (en) Recombinant rabies virus glycoprotein lactococcus lactis vector and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 528300 room 401-421, floor 1-3, building a, Foshan China Europe service center, No. 2, South Lingnan Avenue, xingle community, Lecong Town, Shunde District, Foshan City, Guangdong Province

Applicant after: Tibikon Biotechnology (Guangdong) Co.,Ltd.

Address before: 528300 rooms 624, 625, 626 and 627, building a, No.2 South Lingnan Avenue, Lecong Town, Shunde District, Foshan City, Guangdong Province

Applicant before: TB Healthcare Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant