CN113536515A - 一种针对高海拔的热设计参数等效换算方法及*** - Google Patents

一种针对高海拔的热设计参数等效换算方法及*** Download PDF

Info

Publication number
CN113536515A
CN113536515A CN202010305665.9A CN202010305665A CN113536515A CN 113536515 A CN113536515 A CN 113536515A CN 202010305665 A CN202010305665 A CN 202010305665A CN 113536515 A CN113536515 A CN 113536515A
Authority
CN
China
Prior art keywords
fan
altitude
under
thermal design
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010305665.9A
Other languages
English (en)
Inventor
王婷
孙保涛
段焱辉
俞鹏程
马振宇
于大鹏
任涛
刘玉柱
史虎
李诗怀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou CRRC Times Electric Co Ltd
Original Assignee
Zhuzhou CRRC Times Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou CRRC Times Electric Co Ltd filed Critical Zhuzhou CRRC Times Electric Co Ltd
Priority to CN202010305665.9A priority Critical patent/CN113536515A/zh
Publication of CN113536515A publication Critical patent/CN113536515A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Computer Hardware Design (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种针对高海拔的热设计参数等效换算方法及***,该方法先获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,然后基于各参照热设计参数采用对应的等效换算方案分别进行分析和计算,确定高海拔条件下强制风冷***的目标热设计参数,其中,目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。采用本发明的计算方案,针对电力电子器件强制风冷***的工作特性,基于热力学基本原理,建立对应的分析计算模型,通过简明的计算确定海拔高度影响下***的可靠热设计参数,为高海拔环境下电力电子装置散热设计和可靠性评估提供参考依据。

Description

一种针对高海拔的热设计参数等效换算方法及***
技术领域
本发明涉及热设计参数计算技术领域,尤其涉及一种针对高海拔的热设计参数等效换算方法及***。
背景技术
电力电子装置强制风冷***的散热方式包括传导、对流和辐射,其中由于辐射所占比例颇少,因此通常忽略其影响。电力电子装置强制风冷***主要由风机、风道、散热器和空气过滤器组成,其结构示意图如图1所示,冷却空气从空气过滤器进入,流经散热器、风道后,由风机将热空气排至***柜体的外部。***中的主要热源为功率器件(如半导体功率器件),电力电子功率器件的热量通过热传导的方式传递到散热器翅片表面,再通过对流换热,将热能传递到冷却空气中,通过风机将热量散发到周围环境中,海拔高度变化会影响风机性能、***流阻和冷却空气换热效率,从而对***散热性能产生影响。
目前对于高海拔的电力电子装置的热设计方法一般有以下几种:1、忽略海拔高度对其散热影响,采用常规零海拔热设计方法;2、认为与海拔呈线性关系,引入简单的线性关系实现高海拔的热设计及运算;3、参考相关的国家标准或行业标准。方法1和方法2势必会使计算结果存在很大误差,而相关国家标准制定时间较早,不能很好地满足目前电力电子装置低成本、高稳定性、强散热能力的设计需求。
发明内容
为解决上述问题,本发明提供了一种针对高海拔的热设计参数等效换算方法,在一个实施例中,该方法包括:
步骤S1、获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
步骤S2、基于各个参照热设计参数采用对应的等效换算方案分别进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
一个实施例中,在所述步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损以及环境空气密度与海拔参数的关联性进行分析计算,确定***在高海拔条件下的风机压损。
一个实施例中,进一步根据***在平原海拔条件下的风机压损以及环境空气密度构建下述数学模型,以计算***在高海拔条件下的风机压损:
Figure BDA0002455702570000021
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
一个实施例中,在步骤S2中,依据风机功率相似定律,利用参照热设计参数中的风机功率构建下述数学模型,以计算高海拔条件下电力电子装置强制风冷***的风机功率:
Figure BDA0002455702570000022
式中,Palt为高海拔条件下的风机功率,ρalt为高海拔条件下的空气密度;P0为平原海拔下的风机功率;ρ0为平原海拔下的环境空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
一个实施例中,在步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机风量:
依据风机压损与风机风量的关联性,基于得到的风机压损获取高海拔条件下电力电子装置强制风冷***的风机风量;
或者
依据风机功率与风机风量的关联性,基于得到的风机功率获取高海拔条件下电力电子装置强制风冷***的风机风量。
一个实施例中,在步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的台面温升:
通过平原海拔温升试验获得散热器的台面温升-雷诺数曲线,计算高海拔条件下的雷诺数,并根据计算得到的雷诺数结合所述温升-雷诺数曲线确定高海拔条件下的台面温升。
进一步地,高海拔条件下的雷诺数是基于获取的散热器的几何尺寸参数、运行风量结合海拔参数对应的空气密度计算得到的。
在一个可选的实施例中,所述方法还包括以下操作:
设计试验工装,在高海拔环境箱中控制海拔高度为单一环境变量,引入得到的所述目标热设计参数进行模拟试验,根据试验结果对作为等效换算结果的目标热设计参数的精确度进行评估。
基于上述任意一个或多个实施例的其他方面,本发明还提供一种针对高海拔的热设计参数等效换算***,该***包括:
计算参数获取模块,其用于获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
等效换算模块,其用于基于各个参照热设计参数采用对应的等效换算方案分别进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
在一个实施例中,所述等效换算模块通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损以及环境空气密度与海拔参数的关联性进行分析,构建下述数学模型,以计算电力电子装置强制风冷***在高海拔条件下的风机压损:
Figure BDA0002455702570000031
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
与最接近的现有技术相比,本发明还具有如下有益效果:
本发明提供的一种针对高海拔的热设计参数等效换算方法及***,基于各个高原海拔的参照热设计参数采用对应的等效换算方案分别进行分析和计算,确定高海拔条件下强制风冷***的目标热设计参数。采用本发明的计算方案,针对电力电子器件强制风冷***的工作特性,基于热力学基本原理,引入海拔高度变量参数,建立对应的分析计算模型,确定海拔高度影响下***的热设计参数,计算过程简明,且热设计参数的计算结果可靠性有保障,为高海拔环境下电力电子装置散热设计和可靠性评估提供参考依据,同时大大促进高海拔地区电力电子装置的稳定运行。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明实施例中的电力电子装置强制风冷***的组成结构示意图;
图2是本发明实施例涉及的电力电子装置强制风冷***中热源从半导体器件芯片到外部环境之间的热阻网络示意图;
图3是本发明一实施例中针对高海拔的热设计参数等效换算方法的流程示意图;
图4是本发明实施例提供的电力电子装置常用的散热器模型示意图;
图5是本发明实施例中针对高海拔的热设计参数等效换算方法的散热器台面温升-Re数关系曲线;
图6是本发明实施例涉及的混合流体状态下强制风冷***工作点示意图;
图7是本发明另一实施例中针对高海拔的热设计参数等效换算方法的流程示意图;
图8是本发明又一实施例提供的针对高海拔的热设计参数等效换算***的结构示意图;
图9是本发明实施例中针对高海拔的热设计参数等效换算***的运行原理流程图;
图10是本发明实施例中针对高海拔的热设计参数等效换算***的用户界面示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此本发明的实施人员可以充分理解本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程并依据上述实现过程具体实施本发明。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
目前对于高海拔的电力电子装置的热设计方法一般有以下几种:1、忽略海拔高度对其散热影响;2、认为与海拔呈线性关系;3、参考相关的国家标准、行业标准。前两种方法势必会使计算结果存在很大误差,而相关国家标准制定时间太早,已不能满足目前电力电子装置低成本、高稳定性、强散热能力的设计需求。
电力电子装置强制风冷***(后称之为***)的散热方式主要有传导、对流和辐射,其中辐射所占比例比较少,一般都会忽略其影响。电力电子装置强制风冷***主要由风机、风道、散热器和空气过滤器等组成,其结构示意图如图1,冷却空气从空气过滤器进入,流经散热器、风道后,由风机的风扇将热空气排出柜体外部。***中的主要热源为功率器件,电力电子功率器件的热量通过热传导的方式传递到散热器翅片表面,再通过对流换热,将热能传递到冷却空气中,通过风机将热量散发到周围环境中,海拔高度变化会影响风机性能、***流阻和冷却空气换热效率,从而对***的散热性能产生影响。
为解决上述问题,本发明提供一种针对高海拔的热设计参数等效换算方法及***,本发明的技术方案为高海拔环境的电力电子装置热设计和可靠性评估提供参考依据,通过原理分析和试验验证,以得出电力电子装置散热设计相关参数与海拔变化之间的计算关系,所述电子电力装置也包括大功率电子电力装置。
本发明技术方案针对电力电子器件强制风冷***的工作特性,基于热力学基本原理,引入海拔高度变量参数,建立强制风冷***数学模型,研究海拔高度对强制风冷***运行时的***流场和传热性能的影响。同时设计试验工装,在高海拔环境箱中控制海拔高度为单一环境变量进行模拟试验,试验结果验证了强制风冷***数学建模方法和结论的准确性。
为了方便研究海拔高度对散热器热阻的理论数学模型,作出以下几点假设:(1)散热器基板上为均匀热源,忽略热源布置对散热器扩散热阻影响;(2)空气环境温度为20℃;(3)忽略散热器辐射换热影响;(4)肋片为等截面直肋。热源从半导体器件芯片到外部环境之间的热阻网络如图2所示,图中,Rjc表示半导体器件芯片到封装底板外壳之间的热阻;Rch表示器件封装底板外壳到散热器基板之间的热阻;Rb表示散热器基板厚度方向的热阻;Rr表示散热器基板根部向四周环境的热阻;Rf表示散热器肋片到四周环境的热阻;Tj表示器件节温;Tc表示器件壳温;Th表示散热器底板温度;Tb表示经散热器基板传导后的温度;Ta表示外部空气环境温度。
下面参考附图对本发明各个实施例进行说明。
实施例一
图3示出了本发明实施例一提供的针对高海拔的热设计参数等效换算方法的流程示意图,参照图3可知,该方法包括如下步骤。
步骤S110、获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
该步骤中,实际应用时获取参数的过程中还获取:散热器的风量、散热器压降和散热器几何尺寸参数等;用于结合环境空气密度计算***内散热器对应的雷诺数,为计算强制风冷***在该海拔条件下的热设计参数提供数据支持。
步骤S120、基于各个参照热设计参数采用对应的等效换算方案进行分析和计算,确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
进一步地,在一个实施例中,上述步骤S120中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损以及环境空气密度与海拔参数的关联性进行分析计算,确定***在高海拔条件下的风机压损。
结合实际工况,空气的热物性参数包括:大气压力、空气密度、定压比热、导热系数、动力粘度、普朗特数等。随着海拔高度的升高,空气的热物性参数会相应的变化,具体的,随着海拔升高,空气密度会下降。
基于上述分析,强制风冷***的风机压损(也称为全压)与空气密度成正比,与转速的平方成正比,随着海拔升高空气密度下降,冷却风机的压力降低,由风机压力相似定律可知,具体的,在实际应用中,根据***在平原海拔条件下的风机压损以及环境空气密度构建下述数学模型,以计算***在高海拔条件下的风机压损:
Figure BDA0002455702570000061
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
进一步地,由风机功率相似定律(或功率相似关系)可知,两个相似的通风机,功率按无因次性能参数定义,具体可依据风机功率相似定律,利用参照热设计参数中的风机功率构建下述数学模型,以计算高海拔条件下电力电子装置强制风冷***的风机功率:
Figure BDA0002455702570000071
式中,Palt为高海拔条件下的风机功率,ρalt为高海拔条件下的空气密度;P0为平原海拔下的风机功率;ρ0为平原海拔下的环境空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
关于强制风冷***的风机,风机全压即阻力,是静压和动压之和,阻力越大,风量就越小。功率是动力,动力越大,风量也越大。全压一定的情况下,功率越大,风量也越大。基于此,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机风量:
依据风机压损与风机风量的关联性,基于得到的风机压损获取高海拔条件下电力电子装置强制风冷***的风机风量;或者
依据风机功率与风机风量的关联性,基于得到的风机功率获取高海拔条件下电力电子装置强制风冷***的风机风量。
通常情况下,领域内技术人员根据以下原则进行风机功率的计算:压力之比等于风量比的平方,等于功率比的立方。
进一步地,散热器是强制风冷***中关键部件之一,散热器热性能的变化会直接影响到大功率半导体器件的工作节温,因此有必要研究高海拔对散热器热性能参数的量化影响关系。图4为电力电子装置常用散热器模型,其中,W为散热器的宽度,H为散热器的总高度,L为散热器的长度,Hf为散热器翅片高度,t为散热器翅片厚度,d为散热器翅片间间隙,散热器的总翅片数为n,流过散热器的总风量为Q。
在散热器的迎面风速一定时,散热器的Re(雷诺数)数与空气密度成正比,Nu数和换热系数是关于Re数的函数。其中,Re表示雷诺数,表征流体流动情况的无量纲常数;Nu为努塞尔数,无量纲常数,表示流体传热过程中对流热量和传导热量之比
实际工程应用中,受热源大小、位置、数量等因素影响,在散热器内部还存由热传导引起的扩散热阻,扩散热阻只与散热器本身的几何特征有关。因此无论散热器台面热源如何布置,散热器的总热阻只与其Re数有关。根据散热器热阻理论推导过程可知,热源功率一定的条件下,不同海拔高度的散热器台面温升也是关于Re数的函数,以此为出发点,通过平原海拔温升试验得到散热器的温升-Re数曲线,然后计算不同海拔高度散热器的Re数大小,进而利用温升函数关系式换算出高海拔的温升情况,是一种可靠的计算策略。其中,高海拔条件下散热器的雷诺数是根据散热器的几何尺寸参数、运行风量结合海拔参数对应的空气密度计算的。
因此,本发明有:通过以下操作确定高海拔条件下电力电子装置强制风冷***的台面温升:
通过平原海拔温升试验获得散热器的台面温升-雷诺数曲线,计算高海拔条件下的雷诺数,并根据计算得到的雷诺数结合所述温升-雷诺数曲线确定高海拔条件下的台面温升。其中,根据实验数据拟合散热器的温升-Re数关系曲线,如图5所示,图中,横坐标为雷诺数Re,纵坐标为温升(K)。
具体的,高海拔条件下的雷诺数是基于获取的散热器的几何尺寸参数、运行风量结合海拔参数对应的空气密度计算确定的。
随着海拔升高空气密度下降,***中冷却风机的压力会降低,但相同转速下的体积流量保持不变。综合分析空气过滤器、散热器、风道、风机各阶段的流阻变化,可以得出不同流动状态下***工作点变化规律。大功率电力电子装置强制风冷***,随高海拔的升高,***的流动状态不再如平原海拔下是单纯的湍流,高海拔条件下***的流动状态一般是介于层流与湍流之间,属于混流状态,但更倾向于湍流。海拔升高会引起***工作点前移,体积流量会略微减少,工程应用过程中一般做湍流***考虑。混合流体状态下强制风冷***工作点示意图如图6。***的冷却介质在层流状态时,高海拔条件下***工作点对应的体积流量值会变小;***冷却介质在湍流状态时,高海拔条件下***工作点对应的体积流量值不变。
本发明的技术方案提出了应用于电力电子装置强制风冷***的考虑海拔因素影响的热设计参数计算方法,包括散热器台面温升、风机风量、风机压损和风机功率等物理量,计算效率高,通过简单的计算步骤得到可靠的计算结果,有助于高海拔地区电力电子装置的高效、稳定运行。
实施例二
本发明的技术方案针对电力电子器件强制风冷***的工作特性,基于热力学基本原理,引入海拔高度变量参数,建立强制风冷***数学模型,研究海拔高度对强制风冷***运行时的***流场和传热性能的影响。
本发明提供的针对高海拔的热设计参数等效换算方法包括如下步骤:
步骤S110、获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率。
该步骤中,实际应用时获取参数的过程中还获取:散热器的风量、散热器压降和散热器几何尺寸参数等;用于结合环境空气密度计算***内散热器对应的雷诺数,为计算强制风冷***在该海拔条件下的热设计参数提供数据支持。
步骤S120、基于各个参照热设计参数采用对应的等效换算方案进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
为保障本发明等效换算方法的可靠性,本发明还设计了试验工装,在高海拔环境箱中控制海拔高度为单一环境变量进行模拟试验,试验结果验证了强制风冷***数学建模方法和结论的准确性,具体的,图7示出了本发明另一实施例中针对高海拔的热设计参数等效换算方法的流程示意图,如图7所示,所述方法还包括以下操作:
设计试验工装,在高海拔环境箱中控制海拔高度为单一环境变量,引入得到的所述目标热设计参数进行模拟试验,根据试验结果对作为等效换算结果的目标热设计参数的精确度进行评估。试验结果验证了强制风冷***数学建模的可行性以及热设计参数等效换算方法结论的准确性。
实施例三
基于本发明上述一个或多个实施例的其他方面,为便于用户获取计算结果,本发明还提供一种针对高海拔的热设计参数等效换算***,该***用于执行上述任意一个或多个实施例中的方法和步骤,图8示出了本发明实施例中针对高海拔的热设计参数等效换算***的结构示意图,如图8所示,该实施例的***包括:
计算参数获取模块,其用于获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
实际应用时,所述计算参数获取模块还获取:散热器的风量、散热器压降和散热器几何尺寸参数等;用于结合环境空气密度计算***内散热器对应的雷诺数,为计算强制风冷***在该海拔条件下的热设计参数提供数据支持。
等效换算模块,其用于基于各个参照热设计参数采用对应的等效换算方案进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
所述等效换算模块通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损结合环境空气密度与海拔参数的关联性进行分析,构建下述数学模型,以计算电力电子装置强制风冷***在高海拔条件下的风机压损:
Figure BDA0002455702570000101
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。实际应用中,本发明实施例的***所设计的工具软件可借助其他计算机语言制作,如C、C#、C++等,该***的运行原理示意图如图9所示。具体的,在实现计算的过程中,用户打开本***对应的应用程序,根据计算需求输入零海拔的相关参数,包括零海拔条件下的环境参数和强制风冷***的热设计参数,然后由应用程序基于输入的参数进行拟合计算,获得相关参数之间的拟合曲线,进而输入待计算的高海拔条件的环境参数和其他相关中间计算参数,进而根据高海拔条件的参数基于得到的拟合曲线确定高海拔环境参数对应的热设计参数,并将获得的热设计参数展示给用户,计算完成且用户确认后退出应用程序。
在一个可选的实施例中,本***在确定了高海拔环境参数对应的热设计参数,对计算过程中各参数对应的关联曲线进行显示,例如雷诺数曲线、压损曲线、雷诺数/温升曲线等等。
进一步地,图10示出了本实施例中针对高海拔的热设计参数等效换算***的显示界面示意图,如图10所示,软件主要划分数据导入模块和计算模块,用户根据计算需求实施如下计算过程:1、输入平原海拔下强制风冷***的散热设计相关参数,包括散热器风量、环境温度、台面温升、散热器压降、散热器几何尺寸参数等;2、拟合计算雷诺数(Re数)与台面温升的关系、空气密度与风机压损的关系;3、根据散热器的几何尺寸和运行风量结合需求海拔参数对应的空气密度计算相应条件下散热器的雷诺数,并基于本发明的技术方案得到高海拔下的各散热设计参数。本发明设计的计算软件能够有效简化用户的计算过程。
具体的,本发明的等效换算模块还配置为:依据风机功率相似定律,利用参照热设计参数中的风机功率构建下述数学模型,以计算高海拔条件下电力电子装置强制风冷***的风机功率:
Figure BDA0002455702570000102
式中,Palt为高海拔条件下的风机功率,ρalt为高海拔条件下的空气密度;P0为平原海拔下的风机功率;ρ0为平原海拔下的环境空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
在一个实施例中,本发明的等效换算模块通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机风量:
依据风机压损与风机风量的关联性,基于得到的风机压损获取高海拔条件下电力电子装置强制风冷***的风机风量;或者
依据风机功率与风机风量的关联性,基于得到的风机功率获取高海拔条件下电力电子装置强制风冷***的风机风量。
在一个实施例中,本发明的等效换算模块通过以下操作确定高海拔条件下电力电子装置强制风冷***的台面温升:
通过平原海拔温升试验获得散热器的台面温升-雷诺数曲线,计算高海拔条件下的雷诺数,并根据计算得到的雷诺数结合所述温升-雷诺数曲线确定高海拔条件下的台面温升。
其中,高海拔条件下的雷诺数是基于高海拔条件下的空气密度,根据雷诺数与空气密度之间的函数关系来确定的。
在一个可选的实施例中,本发明针对高海拔的热设计参数等效换算***还包括结果验证模块,其用于设计试验工装,在高海拔环境箱中控制海拔高度为单一环境变量,引入得到的所述目标热设计参数进行模拟试验,根据试验结果对作为等效换算结果的目标热设计参数的精确度进行评估。试验结果验证了强制风冷***数学建模的可行性以及热设计参数等效换算方法结论的准确性。
本发明实施例提供的针对高海拔的热设计参数等效换算***中,各个模块或单元结构可以根据实际需求独立运行或组合运行,以实现相应的技术效果。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构、处理步骤或材料,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而不意味着限制。
说明书中提到的“一实施例”意指结合实施例描述的特定特征、结构或特征包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一实施例”并不一定均指同一个实施例。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

1.一种针对高海拔的热设计参数等效换算方法,其特征在于,所述方法包括:
步骤S1、获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
步骤S2、基于各个参照热设计参数采用对应的等效换算方案分别进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
2.如权利要求1所述的方法,其特征在于,在所述步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损以及环境空气密度与海拔参数的关联性进行分析计算,确定***在高海拔条件下的风机压损。
3.如权利要求2所述的方法,其特征在于,根据***在平原海拔条件下的风机压损以及环境空气密度构建下述数学模型,以计算***在高海拔条件下的风机压损:
Figure FDA0002455702560000011
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
4.如权利要求1或2所述的方法,其特征在于,在步骤S2中,依据风机功率相似定律,利用参照热设计参数中的风机功率构建下述数学模型,以计算高海拔条件下电力电子装置强制风冷***的风机功率:
Figure FDA0002455702560000012
式中,Palt为高海拔条件下的风机功率,ρalt为高海拔条件下的空气密度;P0为平原海拔下的风机功率;ρ0为平原海拔下的环境空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
5.如权利要求1~4中任一项所述的方法,其特征在于,在步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机风量:
依据风机压损与风机风量的关联性,基于得到的风机压损获取高海拔条件下电力电子装置强制风冷***的风机风量;
或者
依据风机功率与风机风量的关联性,基于得到的风机功率获取高海拔条件下电力电子装置强制风冷***的风机风量。
6.如权利要求1~5中任一项所述的方法,其特征在于,在步骤S2中,通过以下操作确定高海拔条件下电力电子装置强制风冷***的台面温升:
通过平原海拔温升试验获得散热器的台面温升-雷诺数曲线,计算高海拔条件下的雷诺数,并根据计算得到的雷诺数结合所述温升-雷诺数曲线确定高海拔条件下的台面温升。
7.如权利要求6所述的方法,其特征在于,高海拔条件下的雷诺数是基于获取的散热器的几何尺寸参数、运行风量结合海拔参数对应的空气密度计算得到的。
8.如权利要求1~7中任一项所述的方法,其特征在于,所述方法还包括以下操作:
设计试验工装,在高海拔环境箱中控制海拔高度为单一环境变量,引入得到的所述目标热设计参数进行模拟试验,根据试验结果对作为等效换算结果的目标热设计参数的精确度进行评估。
9.一种针对高海拔的热设计参数等效换算***,其特征在于,所述***包括:
计算参数获取模块,其用于获取电力电子装置强制风冷***在平原海拔条件下的热设计参数作为参照热设计参数,其中,所述参照热设计参数包括:电力电子装置强制风冷***的环境空气密度、台面温升、风机压损和风机功率;
等效换算模块,其用于基于各个参照热设计参数采用对应的等效换算方案分别进行分析和计算,进而确定高海拔条件下电力电子装置强制风冷***的目标热设计参数,其中,所述目标热设计参数包括以下参数中的至少一种:电力电子装置强制风冷***的风机压损、风机功率、风机风量以及台面温升。
10.如权利要求9中所述的***,其特征在于,所述等效换算模块通过以下操作确定高海拔条件下电力电子装置强制风冷***的风机压损:
依据热力学原理,利用电力电子装置强制风冷***在平原海拔条件下的风机压损以及环境空气密度与海拔参数的关联性进行分析,构建下述数学模型,以计算电力电子装置强制风冷***在高海拔条件下的风机压损:
Figure FDA0002455702560000031
式中,palt为高海拔条件下的风机压损,ρalt为高海拔条件下的环境空气密度;p0为平原海拔下的风机压损;ρ0为平原海拔下的空气密度;nalt为高海拔条件下的风机转速,n0为平原海拔下的风机转速。
CN202010305665.9A 2020-04-17 2020-04-17 一种针对高海拔的热设计参数等效换算方法及*** Pending CN113536515A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010305665.9A CN113536515A (zh) 2020-04-17 2020-04-17 一种针对高海拔的热设计参数等效换算方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305665.9A CN113536515A (zh) 2020-04-17 2020-04-17 一种针对高海拔的热设计参数等效换算方法及***

Publications (1)

Publication Number Publication Date
CN113536515A true CN113536515A (zh) 2021-10-22

Family

ID=78123297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010305665.9A Pending CN113536515A (zh) 2020-04-17 2020-04-17 一种针对高海拔的热设计参数等效换算方法及***

Country Status (1)

Country Link
CN (1) CN113536515A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062562A (zh) * 2022-08-11 2022-09-16 锦浪科技股份有限公司 一种电源设备的风冷***设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528935A (zh) * 2016-10-10 2017-03-22 北京航天控制仪器研究所 一种用于捷联式海洋重力仪的热设计方法
US20170185057A1 (en) * 2011-04-14 2017-06-29 Suntracker Technologies Ltd. System and method for the optimization of radiance modelling and controls in predictive daylight harvesting
CN107742049A (zh) * 2017-11-13 2018-02-27 中国北方车辆研究所 一种高原变海拔工况装甲车辆散热***设计方法
CN110611418A (zh) * 2018-06-15 2019-12-24 株洲中车时代电气股份有限公司 一种功率单元风冷散热***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170185057A1 (en) * 2011-04-14 2017-06-29 Suntracker Technologies Ltd. System and method for the optimization of radiance modelling and controls in predictive daylight harvesting
CN106528935A (zh) * 2016-10-10 2017-03-22 北京航天控制仪器研究所 一种用于捷联式海洋重力仪的热设计方法
CN107742049A (zh) * 2017-11-13 2018-02-27 中国北方车辆研究所 一种高原变海拔工况装甲车辆散热***设计方法
CN110611418A (zh) * 2018-06-15 2019-12-24 株洲中车时代电气股份有限公司 一种功率单元风冷散热***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙保涛 等: "大功率强迫风冷散热器高海拔冷却性能研究", 《电力电子技术》 *
黄延平: "电器空气冷却***受海拔影响的理论分析", 《机械工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115062562A (zh) * 2022-08-11 2022-09-16 锦浪科技股份有限公司 一种电源设备的风冷***设计方法
CN115062562B (zh) * 2022-08-11 2022-11-04 锦浪科技股份有限公司 一种电源设备的风冷***设计方法

Similar Documents

Publication Publication Date Title
Wang et al. Development of 30 Watt high-power LEDs vapor chamber-based plate
Wang Development of vapour chamber‐based VGA thermal module
Chen et al. Analytical analysis and experimental verification of trapezoidal fin for assessment of heat sink performance and material saving
Wang et al. Experimental investigation of the thermal performance of a heat sink with U-shaped heat pipes
CN115358014A (zh) 一种功率器件风冷散热器模型、优化方法及性能计算方法
CN113536515A (zh) 一种针对高海拔的热设计参数等效换算方法及***
Liu et al. Investigation of heat transfer characteristics of high-altitude intercooler for piston aero-engine based on multi-scale coupling method
Shrigondekar et al. Investigations on performance of single-phase immersion cooling system
Huang et al. An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip
CN107526868B (zh) 一种用于雷达电子机柜***的热设计方法
CN106289826A (zh) 一种cpu散热器性能测试***
Liu et al. The influence of tip clearance and shape of pin fins on the heat transfer performance and friction factor in aluminum silicon alloy heat exchanger
CN114611232A (zh) 一种三维热阻网络模型及壳温和最大散热功率预测方法
Wang et al. Vapor chamber in high-end vga card
Sanchez et al. Experimental and Numerical Investigation of Liquid-to-Air Heat Exchangers
Huang et al. Theoretical and experimental study of the effect of mini channel finned heatsink on thermoelectric generator performance in air-cooled environment
Yazawa et al. Thermofluid Design of Energy Efficient and Compact Heat Sinks
CN105718640B (zh) 一种检测t组件热性能的方法
Lv et al. A research on the flow characteristics of a splitter-based water cooling system for computer boards
CN117419944B (zh) 一种自然对流下翅片散热器散热性的测试方法
CN116070467B (zh) 一种3u加固服务器内部gpu卡的散热仿真分析方法
Kwok et al. Fast analytical modeling of dynamic thermal behavior of semiconductor devices and circuits
CN103968805A (zh) 一种利用风扇背压进行服务器工作海拔高度测试修正的方法
GANDJALIKHAN et al. Comparison between two methods for enhancing heat transfer in separated convection flows-second law analysis
CN117434111B (zh) 一种自然对流下翅片散热器的热阻测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211022