CN113525107B - 燃料电池客车的燃料电池***工作功率的控制方法及*** - Google Patents

燃料电池客车的燃料电池***工作功率的控制方法及*** Download PDF

Info

Publication number
CN113525107B
CN113525107B CN202110570980.9A CN202110570980A CN113525107B CN 113525107 B CN113525107 B CN 113525107B CN 202110570980 A CN202110570980 A CN 202110570980A CN 113525107 B CN113525107 B CN 113525107B
Authority
CN
China
Prior art keywords
fuel cell
state
cell system
power
state switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110570980.9A
Other languages
English (en)
Other versions
CN113525107A (zh
Inventor
黄兴
郑丽萍
文江涛
蔡志锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Bus Manufacturing Co ltd
Original Assignee
Wuhan Bus Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Bus Manufacturing Co ltd filed Critical Wuhan Bus Manufacturing Co ltd
Priority to CN202110570980.9A priority Critical patent/CN113525107B/zh
Publication of CN113525107A publication Critical patent/CN113525107A/zh
Application granted granted Critical
Publication of CN113525107B publication Critical patent/CN113525107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种燃料电池客车的燃料电池***工作功率的控制方法及***,其基于控制参数值制定生成燃料电池***状态切换策略;实时采集车辆的各项数据,根据车辆的各项数据计算控制参数值,根据计算结果判断是否满足状态切换条件;在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换;通过综合考虑车辆的能耗需求与燃料电池***的工作效率制定出燃料电池***状态切换策略,从而能够基于车辆实际能量需求来控制燃料电池***的工作功率,使燃料电池***在工作时能够基于车辆当前能量需求状态处于相对高效功率区工作,避免不同功率切换及频繁启停,提高氢燃料的转换效率,且延长了燃料电池***的工作寿命。

Description

燃料电池客车的燃料电池***工作功率的控制方法及***
技术领域
本发明涉及燃料电池汽车控制技术领域,尤其是涉及一种燃料电池客车的燃料电池***工作功率的控制方法及***。
背景技术
我国新能汽车产业的快速发展给燃料电池汽车的发展奠定了良好的基础,以氢气为燃料的燃料电池汽车同纯电动汽车相比,除了具有优越的环保性能以外,还克服纯电动汽车续航里程不足与充电时间长的问题。
燃料电池客车以燃料电池发动机作为动力源,为了平衡动力***的需求功率,同时车辆还匹配了动力电池***作为储能装置。为了更好的经济性,燃料电池***的额定功率一般比电池功率小,燃料电池的的功率不能满足电机峰值功率的需求,燃料电池一般用作***的能量补给,用来补充车辆动力***的能量的平衡,功率的平衡通过动力电池来实现。
燃料电池工作能量流向具有单向性,在现有的技术下,工作响应速度较慢,而车辆需求功率是动态快速变化的,因此燃料电池工作功率调节来响应车辆的动态需求功率是难以实现的。
现有的技术或者说一般的燃料电池客车对燃料电池的功率控制是大多数是根据电池的SOC,以及车辆电机的需求功率来对燃料电池***的启停以及工作功率的控制。
由于现有技术对燃料电池工作功率的控制是基于电池SOC状态或车辆的功率需求的大小,一般情况,电池SOC低、车辆电机功率需求大,燃料电池的工作功率就设置相对较大,电池SOC高、车辆电机功率需求小,燃料电池的工作功率就设置相对较小,燃料电池的工作功率设置大小难以综合考虑燃料电池的工作效率、燃料电池的使用寿命、电池的充放电能力,进而造成燃料电池***在不同功率频繁切换及频繁启停,且氢燃料的转换效率低。
发明内容
本发明的目的在于克服上述技术不足,提出一种燃料电池客车的燃料电池***工作功率的控制方法及***,解决现有燃料电池的工作功率设置难以综合考虑车辆的能耗需求与燃料电池***的工作效率而造成的燃料电池***在不同功率频繁切换及频繁启停且氢燃料的转换效率低的问题。
为达到上述技术目的,本发明提供一种燃料电池客车的燃料电池***工作功率的控制方法,其包括如下步骤:
基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略;
实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换。
本发明还提供一种燃料电池客车的燃料电池***工作功率的控制***,其包括如下功能模块:
策略制定模块,用于基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略;
计算判断模块,用于实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
状态切换模块,用于在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换。
与现有技术相比,本发明通过综合考虑车辆的能耗需求与燃料电池***的工作效率制定出燃料电池***状态切换策略,从而能够基于车辆实际能量需求来控制燃料电池***的工作功率,使燃料电池***在工作时能够基于车辆当前能量需求状态处于相对高效功率区工作,避免不同功率切换及频繁启停,提高氢燃料的转换效率,且延长了燃料电池***的工作寿命。
附图说明
图1是本发明实施例所述的一种燃料电池客车的燃料电池***工作功率的控制方法的流程框图;
图2是图1中步骤S1的子流程框图;
图3是本发明实施例所述的一种燃料电池客车的燃料电池***工作功率的控制***的模块框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的实施例提供了一种燃料电池客车的燃料电池***工作功率的控制方法,其包括如下步骤:
S1、基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略。
其中,所述燃料电池***进入每个状态后对电池总电流积分运算值用来衡量燃料电池进入某一状态的功率工作条件下,车辆动力电池总电量相对电池额定电量是增加还是减少(负值表示增加,正值表示减少,Cr为电池的额定容量),增加与减少的额度。所述燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s用来衡量燃料电池进入某一状态的功率工作条件下,车辆动力电池最近30s总电量是增加还是减少(负值表示电池电量增加,正值表示电池电量减少),衡量近30s电池电量变化趋势。所述电池的SOC值用于设置燃料电池进入不同功率的判断的阀值。所述电池当前状态下可承受的充电功率Pc用于检验燃料电池欲进入下一个功率工作,动力电池是否可承受在下一个持续充电功率的工作。
在matlab***中制作生成燃料电池***状态切换策略,并将所述燃料电池***状态切换策略导入整车控制器中。如图2所示,所述燃料电池***状态切换策略的制定方法包括如下步骤:
S11、设定燃料电池***的多种工作状态;
所述燃料电池***的工作状态可以根据工作环境和车辆工作需要进行设定,本发明例举5个燃料电池的不同的工作功率,每个工作功率燃料电池控制器FCU进行***参数最优化标定,整车控制器根据车辆需求选择燃料电池不同的工作功率工作。一般来说,燃料电池在不同的工作功率下对应的工作效率不同,燃料电池的电堆的效率在不同的负荷率下不同,燃料电池***附件(如空压机)也会消耗很大一部分能量,附件耗能跟电堆的工作功率也并非线性关系,因此燃料电池工作效率在不同的功率下差异很大,一般燃料电池在较小功率与最大功率附件工作的效率相对较低,在燃料电池工作功率中间区间内效率相对较高。本方案基于燃料电池***列举的5个不同工作功率下的工作状态,其中状态1~状态5分别对应不同的工作功率P1、P2、P3、P4、P5,且P5>P4>P3>P2>P1;对应的工作效率为η1、η2、η3、η4、η5321、η345),燃料电池***的工作效率在中间区间相对较高,大功率与小功率的工作效率相对低。
S12、基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc设置多个状态切换条件。
根据上述设定的燃料电池***的5种工作状态,相应的设置所述状态切换条件如下:
状态切换条件1表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>85%)且(P1≤Pc);
状态切换条件2表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<80%)且(P2≤Pc);
状态切换条件3表达式:
(C_all<-0.4Cr)且(C_30s<0)且(SOC>80%)且(P2≤Pc)
状态切换条件4表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<75%)且(P3≤Pc);
状态切换条件5表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>40%)且(P3≤Pc)
状态切换条件6表达式:
(C_all>0.4Cr)且(C_30s>0)且(SOC<35%)且(P4≤Pc);
状态切换条件7表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>35%)且(P4≤Pc)
状态切换条件8表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<30%)且(P5≤Pc)。
S13、设置每一个状态切换条件对应一个燃料电池***的工作状态切换动作。
具体的,所述燃料电池***开机条件为SOC<50%,关机条件:SOC>90%。
当燃料电池***开机时,默认进入P3功率工作状态;
当所述四项控制参数值满足状态切换条件3时,所述燃料电池***自P3功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件1时,所述燃料电池***自P2功率工作状态切换至P1功率工作状态;
当所述四项控制参数值满足状态切换条件2时,所述燃料电池***自P1功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件4时,所述燃料电池***自P2功率工作状态切换至P3功率工作状态;
当所述四项控制参数值满足状态切换条件6时,所述燃料电池***自P3功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件8时,所述燃料电池***自P4功率工作状态切换至P5功率工作状态;
当所述四项控制参数值满足状态切换条件7时,所述燃料电池***自P5功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件5时,所述燃料电池***自P4功率工作状态切换至P3功率工作状态。
S2、实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
S3、在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换。
本发明所述一种燃料电池客车的燃料电池***工作功率的控制方法,其通过综合考虑车辆的能耗需求与燃料电池***的工作效率制定出燃料电池***状态切换策略,从而能够基于车辆实际能量需求来控制燃料电池***的工作功率,使燃料电池***在工作时能够基于车辆当前能量需求状态处于相对高效功率区工作,避免不同功率切换及频繁启停,提高氢燃料的转换效率,且延长了燃料电池***的工作寿命。
基于上述一种燃料电池客车的燃料电池***工作功率的控制方法,本发明还提供一种燃料电池客车的燃料电池***工作功率的控制***,如图3所示,其包括如下功能模块:
策略制定模块10,用于基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略;
计算判断模块20,用于实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
状态切换模块30,用于在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换。
本实施例一种燃料电池客车的燃料电池***工作功率的控制***的执行方式与上述燃料电池客车的燃料电池***工作功率的控制方法基本相同,故不作详细赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各实施例的模块、单元和/或方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种燃料电池客车的燃料电池***工作功率的控制方法,其特征在于,包括如下步骤:
基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略;
实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换;
所述状态切换条件如下:
状态切换条件1表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>85%)且(P1≤Pc);
状态切换条件2表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<80%)且(P2≤Pc);
状态切换条件3表达式:
(C_all<-0.4Cr)且(C_30s<0)且(SOC>80%)且(P2≤Pc);
状态切换条件4表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<75%)且(P3≤Pc);
状态切换条件5表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>40%)且(P3≤Pc);
状态切换条件6表达式:
(C_all>0.4Cr)且(C_30s>0)且(SOC<35%)且(P4≤Pc);
状态切换条件7表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>35%)且(P4≤Pc);
状态切换条件8表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<30%)且(P5≤Pc);
所述燃料电池***状态切换策略如下;
设定燃料电池***具有工作功率为P1、P2、P3、P4、P5总共5种工作状态,其中P5>P4>P3>P2>P1,对应的工作效率为η1、η2、η3、η4、η5,η321、η345,燃料电池***的工作效率在中间区间相对较高,大功率与小功率的工作效率相对低;
当燃料电池***开机时,默认进入P3功率工作状态;
当所述四项控制参数值满足状态切换条件3时,所述燃料电池***自P3功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件1时,所述燃料电池***自P2功率工作状态切换至P1功率工作状态;
当所述四项控制参数值满足状态切换条件2时,所述燃料电池***自P1功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件4时,所述燃料电池***自P2功率工作状态切换至P3功率工作状态;
当所述四项控制参数值满足状态切换条件6时,所述燃料电池***自P3功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件8时,所述燃料电池***自P4功率工作状态切换至P5功率工作状态;
当所述四项控制参数值满足状态切换条件7时,所述燃料电池***自P5功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件5时,所述燃料电池***自P4功率工作状态切换至P3功率工作状态;
其中C_all表示电池总电流积分运算值,Cr为电池的额定容量。
2.根据权利要求1所述燃料电池客车的燃料电池***工作功率的控制方法,其特征在于,所述燃料电池***状态切换策略的制定方法包括如下步骤:
设定燃料电池***的多种工作状态;
基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc设置多个状态切换条件;
设置每一个状态切换条件对应一个燃料电池***的工作状态切换动作。
3.根据权利要求1所述燃料电池客车的燃料电池***工作功率的控制方法,其特征在于,在matlab***中制作生成燃料电池***状态切换策略,并将所述燃料电池***状态切换策略导入整车控制器中。
4.根据权利要求1所述燃料电池客车的燃料电池***工作功率的控制方法,其特征在于,所述燃料电池***开机条件为SOC<50%,关机条件:SOC>90%。
5.一种燃料电池客车的燃料电池***工作功率的控制***,其特征在于,包括如下功能模块:
策略制定模块,用于基于燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc四项控制参数值制定生成燃料电池***状态切换策略;
计算判断模块,用于实时采集车辆的各项数据,根据车辆的各项数据计算燃料电池***进入每个状态后对电池总电流积分运算值、燃料电池***进入每个状态后对电池总电流最新30秒积分运算值C_30s、电池的SOC值、电池当前状态下可承受的充电功率Pc,根据计算结果判断是否满足状态切换条件;
状态切换模块,用于在计算结果满足任一状态切换条件时,控制燃料电池***进行相应状态切换;
所述状态切换条件如下:
状态切换条件1表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>85%)且(P1≤Pc);
状态切换条件2表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<80%)且(P2≤Pc);
状态切换条件3表达式:
(C_all<-0.4Cr)且(C_30s<0)且(SOC>80%)且(P2≤Pc);
状态切换条件4表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<75%)且(P3≤Pc);
状态切换条件5表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>40%)且(P3≤Pc);
状态切换条件6表达式:
(C_all>0.4Cr)且(C_30s>0)且(SOC<35%)且(P4≤Pc);
状态切换条件7表达式:
(C_all<-0.05Cr)且(C_30s<0)且(SOC>35%)且(P4≤Pc);
状态切换条件8表达式:
(C_all>0.05Cr)且(C_30s>0)且(SOC<30%)且(P5≤Pc);
所述燃料电池***状态切换策略如下;
设定燃料电池***具有工作功率为P1、P2、P3、P4、P5总共5种工作状态,其中P5>P4>P3>P2>P1,对应的工作效率为η1、η2、η3、η4、η5,η321、η345,燃料电池***的工作效率在中间区间相对较高,大功率与小功率的工作效率相对低;
当燃料电池***开机时,默认进入P3功率工作状态;
当所述四项控制参数值满足状态切换条件3时,所述燃料电池***自P3功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件1时,所述燃料电池***自P2功率工作状态切换至P1功率工作状态;
当所述四项控制参数值满足状态切换条件2时,所述燃料电池***自P1功率工作状态切换至P2功率工作状态;
当所述四项控制参数值满足状态切换条件4时,所述燃料电池***自P2功率工作状态切换至P3功率工作状态;
当所述四项控制参数值满足状态切换条件6时,所述燃料电池***自P3功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件8时,所述燃料电池***自P4功率工作状态切换至P5功率工作状态;
当所述四项控制参数值满足状态切换条件7时,所述燃料电池***自P5功率工作状态切换至P4功率工作状态;
当所述四项控制参数值满足状态切换条件5时,所述燃料电池***自P4功率工作状态切换至P3功率工作状态;
其中C_all表示电池总电流积分运算值,Cr为电池的额定容量。
CN202110570980.9A 2021-05-25 2021-05-25 燃料电池客车的燃料电池***工作功率的控制方法及*** Active CN113525107B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110570980.9A CN113525107B (zh) 2021-05-25 2021-05-25 燃料电池客车的燃料电池***工作功率的控制方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110570980.9A CN113525107B (zh) 2021-05-25 2021-05-25 燃料电池客车的燃料电池***工作功率的控制方法及***

Publications (2)

Publication Number Publication Date
CN113525107A CN113525107A (zh) 2021-10-22
CN113525107B true CN113525107B (zh) 2024-01-09

Family

ID=78094761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110570980.9A Active CN113525107B (zh) 2021-05-25 2021-05-25 燃料电池客车的燃料电池***工作功率的控制方法及***

Country Status (1)

Country Link
CN (1) CN113525107B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107962959A (zh) * 2017-10-19 2018-04-27 山东科技大学 一种有轨电车用燃料电池混合动力模糊自治管理***
JP2019125461A (ja) * 2018-01-15 2019-07-25 株式会社豊田自動織機 燃料電池システム
CN110182071A (zh) * 2019-05-10 2019-08-30 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法
CN110549876A (zh) * 2019-09-27 2019-12-10 江铃重型汽车有限公司 一种能量输出控制方法、装置和氢燃料混合动力汽车
CN111055728A (zh) * 2019-12-16 2020-04-24 金龙联合汽车工业(苏州)有限公司 氢燃料电池与动力电池混合动力客车的能量控制方法
CN111993955A (zh) * 2020-07-20 2020-11-27 北汽福田汽车股份有限公司 一种燃料电池***控制方法、装置及车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580977B2 (en) * 2001-01-16 2003-06-17 Ford Global Technologies, Llc High efficiency fuel cell and battery for a hybrid powertrain
JP6456899B2 (ja) * 2016-11-04 2019-01-23 株式会社豊田自動織機 燃料電池車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107962959A (zh) * 2017-10-19 2018-04-27 山东科技大学 一种有轨电车用燃料电池混合动力模糊自治管理***
JP2019125461A (ja) * 2018-01-15 2019-07-25 株式会社豊田自動織機 燃料電池システム
CN110182071A (zh) * 2019-05-10 2019-08-30 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法
CN110549876A (zh) * 2019-09-27 2019-12-10 江铃重型汽车有限公司 一种能量输出控制方法、装置和氢燃料混合动力汽车
CN111055728A (zh) * 2019-12-16 2020-04-24 金龙联合汽车工业(苏州)有限公司 氢燃料电池与动力电池混合动力客车的能量控制方法
CN111993955A (zh) * 2020-07-20 2020-11-27 北汽福田汽车股份有限公司 一种燃料电池***控制方法、装置及车辆

Also Published As

Publication number Publication date
CN113525107A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN110040004B (zh) 一种增程式纯电动汽车的功率跟随控制方法和***
CN110112440B (zh) 一种燃料电池***、控制方法、车载供电***及车辆
KR101550976B1 (ko) 연료 전지 차량의 공기 공급 제어 방법
JP3657582B2 (ja) 燃料電池制御システム
CN101809797B (zh) 燃料电池***
US8008801B2 (en) Vehicle power supply device
KR100952967B1 (ko) 전압 제어 시스템 및 전압 제어 시스템을 포함한 차량
CN110588383B (zh) 一种氢能汽车动力***及其能量管理方法
EP1437256B1 (en) Power source device for electric motor
US7380621B2 (en) Hybrid system
CN110015211B (zh) 一种混合动力汽车燃料电池***的控制方法
CN101051694A (zh) 一种燃料电池发电***功率输出的控制方法和控制***
CN113103925B (zh) 跟随式氢燃料电池客车整车能量控制方法
CN109263631B (zh) 一种混合动力汽车动力源动力限制方法
CN111426894B (zh) 一种燃料电池汽车整车***效率测试实验方法
WO2022038567A1 (en) Control method of locomotive dynamic device, locomotive dynamic device and locomotive
CN108340801A (zh) 一种电动汽车限功率方法
KR20200079419A (ko) 연료 전지 시스템
CN113525107B (zh) 燃料电池客车的燃料电池***工作功率的控制方法及***
WO2006080471A1 (ja) 電源装置
US11165080B2 (en) Fuel cell system
CN112201814A (zh) 一种高效双电堆燃料电池发动机装置及方法
CN111252020A (zh) 一种能量协调控制方法、***及车辆
JP6774011B2 (ja) 燃料電池システム
CN111845462B (zh) 一种燃料电池功率分配控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant