CN113508026B - 用于增材制造中的构建厚度控制的方法和设备 - Google Patents

用于增材制造中的构建厚度控制的方法和设备 Download PDF

Info

Publication number
CN113508026B
CN113508026B CN202080016011.2A CN202080016011A CN113508026B CN 113508026 B CN113508026 B CN 113508026B CN 202080016011 A CN202080016011 A CN 202080016011A CN 113508026 B CN113508026 B CN 113508026B
Authority
CN
China
Prior art keywords
layer
resin
additive manufacturing
build
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080016011.2A
Other languages
English (en)
Other versions
CN113508026A (zh
Inventor
梅雷迪思·埃莉萨·杜伯曼
玛丽·凯瑟琳·汤普森
克里斯多佛·巴恩希尔
杨熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN113508026A publication Critical patent/CN113508026A/zh
Application granted granted Critical
Publication of CN113508026B publication Critical patent/CN113508026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种使用增材制造设备(10)逐层形成零件(74)的方法。增材制造设备(10)包括树脂支撑件(190)、台(14)、测量***(76)和致动器(32),致动器构造成改变台(14)和树脂支撑件(190)的相对位置。该方法包括如下步骤:进行增材制造循环,包括以下步骤:沉积未固化的树脂层(110);将台(14)移动到目标位置;固化未固化的树脂层(110);和将台(14)从目标位置移开;重复增材制造循环;进行测量处理,其中测量处理包括以下步骤:使用测量***(76)进行指示结构的实际位置的测量;将结构的实际位置与结构的预期位置进行比较以确定误差;以及使用误差修改目标位置。

Description

用于增材制造中的构建厚度控制的方法和设备
技术领域
本发明总体上涉及增材制造,并且更具体地涉及一种用于在增材制造中确定构建层厚度并调整构建轮廓以实现零件的预定最终尺寸的设备和方法。
背景技术
增材制造是一种材料逐层堆积以形成部件的处理。每一层都是在包括多个步骤的循环中制作的。一种现有技术方法是流延(tape casting)工艺。在此处理中,将树脂作为具有所需厚度的层沉积到从供应卷轴送出的柔性辐射透明带上。台或上板降低到树脂上,使得由台的表面或加工零件的表面中的一个限定的工作表面定位成使得工作表面刚好接触树脂或在带和上板之间压缩其并限定层厚度。辐射能量用于通过射线透明带固化树脂。一旦第一层的固化完成,上板就会向上缩回,同时带走固化的材料。然后将带推进以暴露新的清洁部分,准备在随后的新循环中沉积额外的树脂。
另一种现有技术方法采用一桶(vat)液体辐射能量可固化光聚合物“树脂”和固化能量源(例如激光)。同样,DLP 3D 打印使用二维图像投影机来一次一层地构建部件。对于每一层,投影机会在液体表面上或通过限定树脂的受约束表面的透明物体闪烁部件的横截面的辐射图像。暴露在辐射下会在树脂中固化并固结图案,并将其接合到先前固化的层以产生构建层。其他类型的增材制造处理利用其他类型的辐射能量源来在树脂中固结图案。
工作表面和树脂表面的相对位置通常相对于具有大体固定位置的增材制造设备的部件来限定。例如,在流延成型中,相对位置可以由树脂层的支撑平台的位置来限定。然而,工作表面的相对位置可能因构建固化的加工零件的层厚度的变化而变化。通过改变树脂层的厚度可以引入进一步的变化。
因此,传统的增材制造方法的一个问题是工作表面和树脂表面的相对位置会随着循环而变化。
传统的增材制造方法的另一个问题是误差会累积,从而对零件的最终尺寸产生不利影响。
另一个问题是台的起始位置可能不正确。
另一个问题是要固化的树脂层的厚度可能不正确。
发明内容
这些问题中的至少一个通过被构造为确定工作表面和树脂表面的相对位置的增材制造设备来解决。更具体地,提供了一种设备和方法来测量工作表面相对于树脂表面的相对位置并相应地调整期望的构建层厚度。
根据本文所述技术的一个方面,一种使用增材制造设备逐层生产零件的方法。增材制造设备包括树脂支撑件、台、测量***和被构造为改变台和树脂支撑件的相对位置的致动器。该方法包括以下步骤:进行包括以下步骤的增材制造循环:沉积未固化的树脂层;将台移动到目标位置;固化未固化的树脂层;以及将台移离目标位置;重复增材制造循环;执行测量处理,其中测量处理包括以下步骤:使用测量***进行指示结构的实际位置的测量;将结构的实际位置与结构的预期位置进行比较以确定误差;以及使用误差来修改目标位置。
根据在此描述的技术的一个方面,一种增材制造设备,包括树脂支撑件、台、辐射能量设备和致动器,以及测量***。树脂支撑件限定构建表面,该构建表面被构造为支撑未固化的树脂层。台被构造为保持一个或多个固化的树脂层的堆叠布置,一个或多个固化的树脂层形成限定与台相对定位的表面的零件。辐射能量设备与台相对定位,使得可操作以以预定图案产生和投射辐射能量。致动器被构造为改变台和树脂支撑件的相对位置。测量***被构造为用于测量一个或多个结构相对于树脂支撑件的位置。作为示例而非限制,该结构是以下之一:台、未固化的树脂层的表面、零件的表面、以及它们的组合。
根据本文描述的技术的一个方面,一种使用增材制造设备形成零件的方法,该增材制造设备包括被构造为支撑构建区内未固化的树脂层的树脂支撑件、被构造为保持形成零件的至少一部分的一个或多个固化的树脂层的堆叠布置的台、测量***和被构造为改变台和树脂支撑件的相对位置的致动器,该方法包括以下步骤:根据构建配置文件操作增材制造设备以产生零件的固化的构建层;使用测量***测量零件的尺寸;确定尺寸是否包含误差;通过修改构建配置文件以包括补偿层来响应误差的确定,其中选择补偿层的厚度来补偿误差。
附图说明
结合附图参考以下描述可以最好地理解本发明,其中:
图1是示例性流延增材制造设备的示意性侧视图,该设备包括用于测量结构的位置的装置;
图2是图1所示的流延增材制造设备的一部分的一个实施例的示意图;
图3示出了增材制造设备中台和平台的初始相对位置的程式化表示;
图4示出了图3中的台和平台的进一步相对位置;
图5示出了图3中的台和平台的进一步相对位置;
图6示出了故障模式的程式化表示;
图7示出了故障模式的程式化表示;
图8示出了另一种故障模式的程式化表示;
图9示出了根据所公开技术的增材制造方法的两个循环的结果;
图10是基于桶的增材制造设备的一部分的示意图,示出了工作表面和树脂表面的相对位置。
图11示出了单层基于桶的增材制造设备,其中树脂层通过与台的接触被进一步限定;和
图12是图11的单层基于桶的增材制造设备的视图,示出了在图10的基于桶的增材制造设备中使用的替代固化机制。
实施方式
参考附图,其中相同的附图标记在各个视图中表示相同的元件,图1示意性地示出了一种用于增材制造的合适设备10的示例,其具有改进的构建层控制并因此改进了关于最终零件厚度的准确性。下面提供了一种方法,用于在构建零件时利用设备10经由零件厚度来监控零件几何形状,并且用于修改构建配置文件以校正构建处理中可能发生的错误。如本文所用,术语“构建配置文件”是指用于操作设备10以利用增材制造来构建一组层以共同限定具有预定最终尺寸的零件的指令或指令集。
设备 10 包括树脂处理组件 11,根据所示实施例,其是流延设备20。树脂处理组件11包括构造为确定工作表面75和树脂表面77的相对位置的测量***76。测量***76示于图1中,用附图标记76A表示测量***76的一种可能的替代位置。
参考图 3-8,所公开的技术适用于减少使用常规增材制造设备和方法发生的错误和不精确构建层开发的数量和幅度。这种设备和方法没有考虑关键表面(例如,工作表面75和树脂表面77)的实际相对位置。如下文将详细描述但在此描述是为了突出所公开技术解决的错误,增材制造设备包括台14。现在参考图3,台14限定了表面30,在该表面上形成零件74。零件74限定表面75,通过转移位于表面75附近并由膜12支撑的树脂层110的固化部分,在该表面上添加零件的新层。层110限定树脂表面77。如图 4 所示,无差错操作涉及表面75 和表面 77 之间预定量的接触。预定量的接触导致层110的固化部分转移以形成零件74的新构建层79并限定新表面75。层 110 的新部分移动到零件 74 下方以限定新表面 77。这种构造如图 5 所示。
在考虑形成单个构建层 79 时,至少有两种类型的错误是典型的。如图6所示,当台14和零件74移动到适合零件74的现有几何形状的构建位置时,层110的厚度不足以允许表面77接触表面75。在这种情况下,层 110 的固化部分不会转移到零件 74。在第二种错误情况下(如图 7 所示),层 110 太厚,以至于当台 14 和零件 74 移动到适合零件 74 的现有几何形状的构建位置时,表面 75 实际上穿透表面 77, 导致零件变形并还可能损坏零件。
在考虑影响整个零件的形成的基于层的错误时,存在至少三种典型的错误。在第三种错误情况下,也如图 6 所示,先前层 110 的厚度错误导致零件 74 的一系列层 79,其中一些或全部太薄(图 9中显示了这方面的进一步示例 并在下面详细讨论)。结果,零件74没有预期的那么高,并且当台14移动到适合预期几何形状的构建位置时,如果材料层110的厚度是和预期一样厚或更薄,表面75不接触材料层110。在第四种错误情况中,也如图7所示,先前构建层79的厚度错误导致了一系列层,其中一些或全部层太厚。因此,零件74比预期高,使得当台14移动到适合预期几何形状的构建位置时,表面75穿透表面77,导致零件变形或损坏。在第五种错误情况下,如图8所示,先前构建层79的厚度错误导致零件74比预期高得多。因此,当台14被移动到构建位置时,台14被降低到如此远以至于它“碰撞”到层110中,从而损坏零件。它还可以推动零件74穿过材料层110以接触膜12或甚至推动穿过膜12以损坏机器。如图8所示,膜12以这样的力接触零件74,使得膜12在几个位置分离,导致腹板损坏或断裂。所公开的技术通过提供用于准确地限定层110的厚度以使零件74能够被正确构造的设备和方法来解决这些错误。
应当理解,除了流延成型之外的装备的构造可以用于设备10并且可以执行下面描述的方法。那些其他构造包括不同类型的树脂处理装备,例如桶和/或板。该方法适用于较低粘度的树脂、浆状物和糊状物,以及较高粘度的树脂和/或粉末。应当理解,可以使用其他构造的装备来实施该方法。示例性设备10的基本部件包括材料沉积装置106和树脂处理组件11,其在图1中是流延设备20。流延设备20包括支撑膜或带12,以及辐射能量设备18。
参照图1,流延设备20包括间隔开的辊15,柔性聚合物带或箔12在其间延伸。箔12的一部分由支撑板190从下方支撑。将为辊15和支撑板190提供合适的机械支撑件(框架、支架等-未示出)。箔12是“树脂支撑件”的示例。
支撑板190和箔12两者都是透明的或者包括透明的一个或多个部分。如本文所用,术语“透明”是指允许选定波长的辐射能量通过的材料。例如,如下所述,用于固化的辐射能量可以是紫外光或可见光谱中的激光。透明材料的非限制性示例包括聚合物、玻璃和结晶矿物,例如蓝宝石或石英。
将提供适当的装置,例如马达、致动器、反馈传感器和/或已知类型的控制器(未示出)以驱动辊15 以保持箔片 12 使其适当在辊15之间张紧并将箔12从一个辊15缠绕到另一个辊15上。
在辊15之间延伸的箔12限定第一“构建表面”24,其被示为是平面的,但也可以是弧形的(取决于支撑板的形状)。为了便于描述,第一构建表面24可以被认为平行于设备10的XY平面定向,并且垂直于XY平面的方向被表示为Z方向(X、Y和Z是三个相互垂直的方向)。
第一构建表面24可以被构造为“不粘”的,即,抵抗固化树脂的粘附。不粘特性可以通过诸如箔12的化学性质、其表面光洁度和/或施加的涂层的变量的组合来体现。在一个示例中,可以施加永久性或半永久性不粘涂层。合适涂层的一个非限制性示例是聚四氟乙烯(“PTFE”)。在一个示例中,第一构建表面24的全部或一部分可结合具有不粘特性的受控粗糙度或表面纹理(例如突起、凹坑、凹槽、脊等)。在一个示例中,箔12可以全部或部分地由透氧材料制成。
提供了一些用于将树脂R以大体均匀的层施加或沉积到第一构建表面24的装置。图1示意性地示出了为此目的构造的材料沉积器106。
设备10包括台14,其是限定平面表面30的结构,平面表面30能够平行于位于支撑板190上的膜12的部分的构建表面24定向。提供了一些用于相对于构建表面24平行于Z方向移动台14的装置。在图1中,这些装置被示意性地描绘为连接在台14和静止支撑结构34之间的简单致动器32,可以理解诸如气压缸、液压缸、滚珠丝杠电动致动器、线性电动致动器或三角洲(delta)驱动器的装置可用于此目的。除了使台14可移动之外或作为替代,箔12和/或支撑板190可以平行于Z方向移动。
设备10包括辐射能量设备18,其被构造为固化层110的至少一部分。辐射能量设备18可以包括任何装置或装置的组合,其可操作以在树脂R上以合适的图案和合适的能量水平以及其他操作特性产生和投射辐射能量,以在构建处理中固化树脂R,下面更详细地描述。
在如图1所示的一个示例性实施例中,辐射能量设备16可以包括“投影机”48,在本文中通常用于指代可操作以生成具有合适能级和其他操作特性的辐射能量图案化图像来固化树脂R的任何装置。如本文所用,术语“图案化图像”是指包括单个像素的阵列的辐射能量的投射。图案化成像装置的非限制性示例包括DLP投影机或另一数字微镜装置、2D LED阵列、2D激光阵列或光学寻址光阀。在所示示例中,投影机48包括:辐射能量源50,例如UV灯;图像形成设备52,其可操作以接收来自辐射能量源50的源束54并生成图案图像59(图6-8)以投射到树脂R的表面上;以及可选的聚焦光学器件58,例如一个或多个透镜。
辐射能量源50可以包括可操作以生成具有合适能量水平和频率特性的束来固化树脂R的任何装置。在所示示例中,辐射能量源50包括UV闪光灯。
图像形成设备52可以包括一个或多个反射镜、棱镜和/或透镜,并且设置有合适的致动器,并且被布置成使得来自辐射能量源50的源束54可以转换为与树脂R的表面重合的X-Y 平面中的像素化图像。在所示示例中,图像形成设备52可以是数字微镜装置。例如,投影机48可以是市售的数字光处理(“DLP”)投影机。
作为一种选择,投影机48可以结合附加装置(例如致动器、反射镜等),附加装置被构造为选择性地移动图像形成设备52或投影机48的其他部分,具有光栅化或移动图案化图像59(图6-8中示出)相对于构建表面24的位置的效果。换句话说,图案化图像可以从标称位置或起始位置移开。例如,这允许单个图像形成设备52覆盖更大的构建区域。用于控制(mastering)或移动来自图像形成设备52的图案化图像的装置是市售的。这种类型的图像投射在本文中可以被称为“平铺图像”。
在另一个示例性实施例中(如图 12 所示,与下面进一步讨论的基于桶的树脂传输***有关),除了其他类型的辐射能量装置之外,辐射能量设备18可以包括“扫描束设备”60,本文使用的“扫描束设备”60泛指可操作以生成具有合适能级和其他操作特性的辐射能量束来固化树脂R并以期望图案在树脂R的表面上扫描束的任何装置。在所示示例中,扫描束设备60包括辐射能量源62和束转向设备64。
辐射能量源62可以包括可操作以生成具有合适功率和其他操作特性的束来固化树脂R的任何装置。合适的辐射能量源的非限制性示例包括激光或电子束枪。
束转向设备64可以包括一个或多个反射镜、棱镜和/或透镜,并且可以设置有合适的致动器,并且布置成使得来自辐射能量源62的束66可以被聚焦到期望的斑点尺寸并转向到与树脂R的表面重合的平面中的期望位置。束66在本文中可被称为“构建束”。可以使用其他类型的扫描束设备。例如,使用多个构建束的扫描束源是已知的,其中辐射能量源本身可通过一个或多个致动器移动的扫描束源也是已知的。
设备10可以包括控制器68。图1中的控制器68是控制设备10、台14、辐射能量设备18、传送机构、沉积器106和上述各种致动器的操作所需的硬件和软件的概括表示。例如,控制器60可以通过在一个或多个处理器上运行的软件来体现,该一个或多个处理器体现在一个或多个装置(例如可编程逻辑控制器(“PLC”)或微型计算机)中。这样的处理器可以例如通过有线或无线连接联接到传感器和操作部件。同一处理器或多个处理器可用于检索和分析传感器数据、用于统计分析和用于反馈控制。
可选地,设备10的部件可以被壳体70包围,壳体70可以用于使用气体端口72提供保护或惰性气体气氛。可选地,壳体70内的压力可以维持在大于或小于大气的期望水平。可选地,壳体70可以是温度和/或湿度控制的。可选地,可以基于诸如时间间隔、温度、湿度和/或化学物质浓度的因素来控制壳体70的通风。
树脂R包含辐射能量可固化并且能够在固化状态下将填料(如果使用的话)粘附或粘合在一起的材料。如本文所用,术语“辐射能量可固化”是指响应于特定频率和能级的辐射能量的施加而固结的任何材料。例如,树脂R可以包括已知类型的光聚合物树脂,该光聚合物树脂包含用作引发聚合反应的光引发剂化合物,使树脂从液态变为固态。替代地,树脂R可包含含有可通过施加辐射能量蒸发掉的溶剂的材料。未固化树脂R可以以固体(例如粒状)或液体形式(包括糊状物或浆状物)提供。
根据所示的流延实施例,树脂R的粘度处于更高的粘度,使得需要与刮刀或整平装置(例如台14)接触。可以根据需要选择树脂R的组成以适合特定应用。可以使用不同组成的混合物。
可以选择树脂R以具有在进一步处理(例如下面描述的烧结处理)期间脱气或烧掉的能力。
树脂R可以包含填料。填料可以与树脂R预混合。填料包含颗粒,通常将颗粒限定为“极少量的物质”。填料可包括与所选树脂R化学和物理相容的任何材料。颗粒的形状可以是规则的或不规则的,尺寸可以是均匀的或不均匀的,并且可以具有可变的纵横比。例如,颗粒可以采取粉末、小球体或细粒的形式,或者可以被成形为像小棒或纤维。
可以根据需要选择填料的组分,包括其化学和微观结构,以适合特定应用。例如,填料可以是金属的、陶瓷的、聚合物的和/或有机的。潜在填料的其他示例包括金刚石、硅和石墨。可以使用不同组分的混合物。
填料可以是“可熔的”,这意味着填料能够经由施加足够的能量而固结成团。例如,可熔性是许多可用粉末(包括但不限于:聚合物、陶瓷、玻璃和金属)的特性。
可选择填料与树脂R的比例以适合特定应用。通常,可以使用任意量的填料,只要组合材料能够流动和被整平,并且有足够的树脂R在固化状态下将填料颗粒保持在一起。
现在将参考图1和图2详细描述设备10的操作的示例。应当理解,作为生产部件和使用设备10的前体,零件74被软件建模为沿着Z轴排列的平面层79的堆叠。取决于所使用的固化方法的类型,每一层可被划分为像素网格。实际零件74可以被建模和/或制造为数十或数百层的堆叠。合适的软件建模处理在本领域中是已知的。
操作树脂处理组件 11 以在构建区 23 中提供新的树脂 R。在材料沉积之后,设备10被定位以限定选定的层增量。层增量由沉积层的厚度和台 14 的操作的某种组合限定。对于图 10 所示的桶***,它将是树脂填充到桶中的深度。
例如,台14可以定位成使得新零件的表面30或加工零件的现有表面75正好接触施加的树脂R,如图11所示,或者台14可以用于压缩和移位树脂 R 以明确限定层增量。层增量影响增材制造处理的速度和零件 74 的分辨率。层增量可以是可变的,较大的层增量用于加速零件74的不需要高准确度的部分中的处理,而在需要较高准确度的地方使用较小的层增量,以处理速度为代价。
如上所述,设备10包括测量***76。测量***76被构造为确定设备10内的结构的位置。如图所示,测量***76可以被构造为确定结构之间的距离。可以如下文进一步描述的那样使用这样的距离来确定新构建层79的厚度,即层增量。
层增量最终是利用工作表面75和树脂表面77的Z方向上的相对位置(在图2中显示为距离a)的知识来限定的。应当理解,确定工作表面75和树脂表面77的相对位置可以根据诸如支撑件190的接触表面191的参考位置来完成。因此,支撑件190的表面191的Z方向的位置被限定为Z=0。树脂表面77相对于接触表面191的位置是膜12和树脂层110的厚度的组合厚度。为了本文公开的技术的目的,可以假设膜12的厚度和树脂层110的厚度都是恒定的。因此,树脂表面77相对于诸如支撑件190的参考的位置是恒定的。应当理解,在正常操作期间,树脂表面77的位置会因层110的厚度的变化而变化。这种变化可发生在沿 Y 轴的机器方向 (MD)和沿 X 轴的横向方向 (TD)上。
一旦树脂R已经被施加并且层增量被限定,辐射能量设备18被用于固化如图3所示构建的零件74的二维横截面或层。
在使用投影机48的情况下,投影机48通过箔12将代表零件74的横截面的图案化图像59投射到树脂R。该处理在本文中称为“选择性”固化。
一旦第一层的固化完成,台14与箔12分离,例如通过使用致动器32升高台14。应当理解,树脂R和/或固化层不一定与12的表面接合、粘附或结合。因此,如本文所用,术语“分离”是指使两个元件彼此分开的过程,并不一定意味着破坏结合或使一个元件从另一个元件中分离的行为。在测量过程中,可以根据下面描述的方法的一方面来利用参考块78。
图1和图2中示出的参考块78是与零件74相邻定位的一组固化层,并且如图所示,代表零件74在最大位置处的厚度。在这点上,块78通过固化厚度等于每个构建层79的最大厚度的树脂而形成。块78可以是围绕零件74的框架,如图所示在零件74完成时被移除。或者参考块78可以是围绕零件74的周边定位的一个或多个离散块,当零件74完成时将被移除。
应当理解,在一些实施例中,构建块78代表的高度不同于零件74在最大位置处的厚度。在这点上,构建块78可以表示与零件74的边界的周长内的预定位置和高度相等的高度。换句话说,构建块78可以表示在预定X或Y坐标处沿着线预定距离的点处的高度。因此,构建块78可以表示预定XY和Z坐标处的高度。因为构建块78可以被构造成沿着X和Y坐标在高度上变化,所以它可以代表不同的高度并因此代表不同的XYZ坐标组合。构建块78可以是如图所示的整体结构。或者,构建块78可以是多个结构。
通过对其操作的描述可以更好地理解本发明。根据本文所述技术的一个方面,提供了一种使用增材制造设备10逐层生产零件74的方法。如上所述,增材制造设备10包括树脂支撑件190、台14、测量***76和构造为改变台14和树脂支撑件190的相对位置的致动器32。该方法包括以下步骤:进行增材制造循环,包括以下步骤:沉积未固化的树脂层110;将台14移动至目标位置(例如距树脂支撑件190的表面191预定距离);通过使用测量***76确定台14的实际位置并将该实际位置与目标位置进行比较,来双重检查台14的实际位置;如果台14不在目标位置的预定范围内,则重复将台14移动到目标位置的步骤;在台14的一次或多次移动之后,固化未固化的树脂层110;将台14移离目标位置;重复增材制造循环;进行测量处理,其中测量处理包括以下步骤:使用测量***76进行指示结构相对于树脂支撑件190的实际位置的测量;将结构的实际位置与结构的预期位置进行比较以确定误差;并使用误差来修改目标位置。
现在参考可以用上述方法执行的附加步骤,应当理解,可以在每个循环中进行进行测量处理的步骤。并且因此进行使用误差的步骤的步骤可以在进行测量处理的每个循环期间进行。如上所述,每次进行测量步骤时,通过将结构的实际位置与结构的期望位置进行比较来确定误差。例如,如果将实际位置表示为距离的度量,并且将实际距离与期望距离或设定点距离进行比较。通过将后续步骤误差添加到所有先前误差的总和,利用使用测量***的多个步骤来确定累积误差。可选地,累积误差可以通过零件厚度的单次测量来确定,这将捕获零件构建过程中累积的总误差。
待测结构可以是台14、未固化树脂层110的表面、零件74的表面75、膜12的表面、台的表面30中的任何一个或多个,及其组合。如上所述,优选地,参考点是树脂支撑结构190,并且更具体地,树脂支撑结构的表面24。应当理解,膜12的厚度是通过常规方法计算的。如常规已知的,关于特定参考点(例如结构190)进行的测量用于确定结构的相对位置。
现在参考图2,下表标识了可用于上述方法中的各种测量,如图2所示。所指示的测量是示例并且可以利用其他测量。应当理解,通常这些测量值将被表示为距离,然而它们可以使用利用具有共同预定原点的上述X、Y和Z轴的坐标系来表示。
距离 上部结构 下部结构
A 工作表面75 树脂表面 77
B 台14的表面30 树脂表面77
C 台14的表面30 膜12的表面
D 工作表面75 膜12的表面
E 台14的表面30 支撑结构190的表面24
F 工作表面75 支撑结构190的表面24
G 台14的表面30 参考块78
预期在上述方法中使用的常用测量将是距离A。例如,目标位置将是由所需结构移动预定距离 A 确定的位置。预定距离A是零件74的表面75之间的距离,其可由用于如上所述指示表面75的特定XYZ坐标的参考块78限定。因此,台14移动距离A将使表面75定位成使其紧邻树脂110的表面77。台 14 的移动超过距离 A 将导致表面 75 被推入层 110 以至少部分地移位表面 77。如上所述,以此方式可以在固化之前立即限定层110的期望厚度。
使用的另一种常用测量是零件74相对于台14的表面30的高度“距离G”。可以如以下在用于控制最终零件高度的方法的描述中进一步详细描述的那样使用距离G。
可选地,可以不是点对点地确定预定距离,而是通过待测表面的多个点的实际位置或距离的平均值。在这点上,测量***76被构造为通过测量结构上多个位置的距离来确定结构的平面。应当理解,用于确定平均距离的位置可以随循环变化。在这点上,测量***可以被构造为在第一循环后测量第一组多个位置并在第二循环后测量第二组多个位置,其中第二组多个位置不同于第一组多个位置。
测量***76被构造为生成指示上述位置或距离的信号。计算机68可以利用该信号作为其中信号是反馈的闭环控制回路的一部分。闭环控制回路被构造为相对于预期高度调节台14的高度,如相对于参考(例如树脂支撑结构190)确定的。预期高度可被视为控制回路中的设定点。可以基于等于预定层厚度加上等于累积误差的量的调整距离来确定设定点。可以为每个循环调整设定点以适应误差。或者可选地,可以在预定数量的循环之后调整设定点,使得台被构造为在预定数量的循环之后移动调整的距离。
如上所述,测量***76可用于确定每层或每组层的构建厚度的误差量并存储或累积该误差。该存储值是可用于控制最终零件高度的累积误差。累积误差表示为一个值,该值根据每个新获取的测量误差量进行正或负调整。可以监控累积误差并将其与阈值累积误差值进行比较。阈值累积误差值是零件 74 或零件 74 的指定部分的高度中的最大允许误差。
当累积误差等于或大于阈值误差值时,计划补偿层。补偿层要么是当前在构建配置文件计划中被选择进行修改的现有计划层,要么是要添加到构建配置文件中的新层。补偿层的尺寸设计成使得基于上述设定点,零件74的厚度在可接受的限度内。
应当理解,选择用于修改的现有计划层作为补偿层必须考虑计划层的特性。作为示例而非限制,计划层的特性可以选自以下:总计划层厚度;总补偿层厚度;计划层的几何形状;及其组合。作为示例而非限制,计划层的几何形状的相关特性可以包括:层内几何形状的形状、尺寸、位置,计划几何形状的关键尺寸和较不关键尺寸的存在,以及它们的组合。
在图示的实施例中,具有不同于具有均匀厚度的直线截面的几何形状的计划层不被用作补偿层。换句话说,在所示实施例中,其中限定有微结构的层不用作补偿层。
为了产生补偿层,可以调整台14以限定最终补偿层厚度。这种方法可能无法提供足够的厚度范围。当补偿层的厚度与计划层的厚度相差很大时,补偿层厚度由沉积时未固化树脂层的厚度确定。换言之,可能需要通过增加或减少未固化树脂层 110 的厚度来实现补偿层厚度。应当理解,取决于零件74的几何形状和累积误差的量,多个补偿层可用于校正累积误差。
以下方法利用补偿层。该方法包括以下步骤:根据构建配置文件操作增材制造设备10以产生零件的固化层;通过操作测量***76来测量尺寸,例如预定厚度或距离(例如距离G),以获得测量值;将测量值与构建配置文件设置的预定目标进行比较以确定是否存在测量误差;将测量误差加到累积误差值;将累积误差值与阈值误差值进行比较;当累积误差值超过阈值误差值时,通过通过以下步骤产生补偿层来响应误差的确定:选择以下之一用作补偿层:先前计划的层和新的层;通过使用累积误差值来确定补偿层的厚度并相应地修改构建配置文件;构建补偿层。
应当理解,当确定要跳过先前计划的层时,补偿层可以具有零厚度。可选地,可以在指定数量的层或单个层之后立即产生和构建补偿层,而不是基于累积误差值与阈值误差值进行比较。
图9示出了根据上述方法进行两个循环的零件74的示例。一组分类帐(ledger)行81描绘了构建配置文件中的六个计划层。如图所示,在第五循环之后,前五层的每层都构建得太薄了。误差量累积。因此,选择第六层作为补偿层。生产第六层使其比原计划厚。通过较厚的第六层和前五层的组合,零件总厚度与计划厚度相匹配。
还应当理解,控制器68可以被构造为停止或暂停构建零件,即停止或暂停“构建”。在这点上,可以在控制器68内限定最大校正,使得它可以被构造为确定累积误差是否太大而无法校正。在这种情况下,可以暂停构建以在进一步评估或取消后恢复。
上文已经描述了用于增材制造的方法和设备。本说明书(包括任何所附权利要求、摘要和附图)中公开的所有特征和/或如此公开的任何方法或处理的所有步骤可以以任何组合方式组合,除非组合中至少一些这样的特征和/或步骤是相互排斥的。
除非另有明确说明,否则在本说明书(包括任何随附的权利要求、摘要和附图)中公开的每个特征可以被用于相同、等效或相似目的的替代特征替换。因此,除非另有明确说明,所公开的每个特征仅是等效或相似特征的一般系列的一个示例。
本发明不限于前述实施例的细节。本发明扩展到本说明书(包括任何随附的权利要求、摘要和附图)中公开的特征的任何新颖的一个或任何新颖的组合,或如此披露的任何方法或处理的步骤的任何新颖的一个或任何新颖的组合。
本发明的附加方面由以下编号的条项提供:
1. 一种使用增材制造设备形成零件的方法,所述增材制造设备包括被构造为在构建区内支撑未固化的树脂层的树脂支撑件、被构造为保持形成零件的至少一部分的一个或多个固化的树脂层的堆叠布置的台、测量***和致动器,该致动器被构造为改变台和树脂支撑件的相对位置,该方法包括以下步骤:进行包括以下步骤的增材制造循环:沉积未固化的树脂层;将台移动到目标位置;固化未固化的树脂层;以及将台移离目标位置;重复增材制造循环;进行测量处理,其中测量处理包括以下步骤:使用测量***进行指示结构的实际位置的测量;将结构的实际位置与结构的预期位置进行比较以确定误差;以及使用误差修改目标位置。
2.根据前述条项中任一项所述的方法,其中每个循环进行进行测量处理的步骤。
3.根据前述条项中任一项所述的方法,其中进行使用误差的步骤的步骤在进行测量处理的每个循环期间进行。
4.根据前述条项中任一项所述的方法,其中利用使用测量***的多个步骤来确定总误差。
5.根据前述条项中任一项所述的方法,其中结构是以下之一:台、未固化的树脂层的表面、零件的表面、以及它们的组合。
6.根据前述条项中任一项所述的方法,其中测量***被构造为通过测量结构上的一组多个位置来确定结构的平面。
7.根据前述条项中任一项所述的方法,其中结构是零件。
8.根据前述条项中任一项所述的方法,其中测量***被构造为在第一循环之后测量第一组多个位置并且在第二循环之后测量第二组多个位置,并且其中第二组多个位置不同于第一组多个位置。
9. 根据前述条项中任一项所述的方法,包括定位在台上的参考位置。
10.根据前述条项中任一项所述的方法,其中参考位置由固化的树脂层限定。
11.根据前述条项中任一项所述的方法,其中参考位置由零件限定。
12.根据前述条项中任一项所述的方法,其中设备被构造为使得参考位置可以由与零件并行地构建在台上的块限定。
13.根据前述条项中任一项所述的方法,其中块是围绕零件定位的框架。
14.根据前述条项中任一项所述的方法,其中结构是零件的表面。
15.根据前述条项中任一项所述的方法,其中信号是由计算机利用以相对于预期高度调整台的高度的反馈。
16.根据前述条项中任一项所述的方法,其中台被构造为移动等于预定层厚度加上等于累积误差的量的调整距离。
17.根据前述条项中任一项所述的方法,其中固化的树脂层在循环中产生并且台被构造为在预定数量的循环之后移动调整的距离。
18. 一种增材制造设备,包括:树脂支撑件,树脂支撑件限定构建表面,构建表面被构造为支撑未固化的树脂层;台,台被构造为保持一个或多个固化的树脂层的堆叠布置,一个或多个固化的树脂层形成零件,零件限定与台相对定位的表面;辐射能量设备,辐射能量设备与台相对定位,从而可操作以以预定图案产生并投射辐射能量;致动器,致动器被构造为改变台和树脂支撑件的相对位置;测量***,测量***被构造为用于测量一个或多个结构相对于树脂支撑件的位置;并且其中,结构为以下之一:台、未固化的树脂层的表面、零件的表面、以及它们的组合。
19.根据前述条项中任一项所述的增材制造设备,其中测量***包括激光测距仪,并且待测量的结构是零件的表面和未固化的树脂的表面,并且测量***被构造为生成指示零件的表面相对于未固化的树脂的表面的位置的信号,并且基于信号确定台的移动。
20.根据前述条项中任一项所述的增材制造设备,其中未固化的树脂层被构造为通过第一范围的光频率固化,并且测量***包括产生第二范围的光频率的光学传感器,并且第二范围与第一范围不同。
21.根据前述条项中任一项所述的增材制造设备,包括位于台上的参考位置。
22. 一种使用增材制造设备形成零件的方法,增材制造设备包括被构造为在构建区内支撑未固化的树脂层的树脂支撑件、被构造为保持形成零件的至少一部分的一个或多个固化的树脂层的堆叠布置的台、测量***和被构造为改变台和树脂支撑件的相对位置的致动器,所述方法包括以下步骤:根据构建配置文件操作增材制造设备,以产生零件的固化的构建层;使用测量***测量零件的尺寸;确定尺寸是否包含误差;通过修改构建配置文件以包括补偿层来响应误差的确定,其中选择补偿层的厚度来补偿错误。
23.根据前述条项中任一项所述的方法,进一步包括以下步骤:将误差加到累积误差值上;通过利用累积误差值来确定补偿层的厚度;并且其中累积误差值在多个循环内形成。
24.根据前述条项中任一项所述的方法,进一步包括以下步骤:将累积误差值与阈值误差值进行比较;和当累积误差值超过阈值误差值时,进行产生补偿层的步骤。
25.根据前述条项中任一项所述的方法,进一步包括以下步骤:选择以下之一用作补偿层:先前计划的层和新层。
26.根据前述条项中任一项所述的方法,其中尺寸是固化的构建层的厚度。
27.根据前述条项中任一项所述的方法,尺寸是零件的高度。

Claims (10)

1.一种增材制造设备(10),其特征在于,包括:
树脂支撑件(190),所述树脂支撑件限定构建表面,所述构建表面被构造为支撑未固化的树脂层(110);
台(14),所述台被构造为保持一个或多个固化的树脂层的堆叠布置,所述一个或多个固化的树脂层形成零件(74),所述零件(74)限定与所述台(14)相对定位的表面;
辐射能量设备,所述辐射能量设备与所述台(14)相对定位,从而能够操作以预定图案产生并投射辐射能量;
致动器(32),所述致动器被构造为改变所述台(14)和所述树脂支撑件(190)的相对位置;
测量***(76),所述测量***被构造为用于测量一个或多个结构相对于所述树脂支撑件(190)的位置,并且通过在第一循环后测量第一组一个或多个位置并在第二循环后测量第二组一个或多个位置来确定所述一个或多个结构的平面,所述第二组一个或多个位置不同于所述第一组一个或多个位置;并且
其中,所述结构为以下之一:所述台(14)、所述未固化的树脂层(110)的表面、所述零件(74)的表面(75)、以及它们的组合。
2.根据权利要求1所述的增材制造设备(10),其特征在于,其中所述测量***(76)包括激光测距仪,并且待测量的所述结构是所述零件(74)的所述表面(75)和所述未固化的树脂的所述表面,并且所述测量***(76)被构造为生成指示所述零件(74)的所述表面(75)相对于所述未固化的树脂的所述表面的位置的信号,并且基于所述信号确定所述台(14)的移动。
3.根据权利要求1所述的增材制造设备(10),其特征在于,其中所述未固化的树脂层(110)被构造为通过第一范围的光频率固化,并且所述测量***(76)包括产生第二范围的光频率的光学传感器,并且第二范围与第一范围不同。
4.根据权利要求1所述的增材制造设备(10),其特征在于,包括位于所述台(14)上的参考位置。
5.一种使用增材制造设备(10)形成零件 (74)的方法,其特征在于,所述增材制造设备(10)包括被构造为在构建区内支撑未固化的树脂层 (110)的树脂支撑件(190)、被构造为保持形成所述零件(74)的至少一部分的一个或多个固化的树脂层的堆叠布置的台(14)、测量***(76)和被构造为改变所述台 (14)和所述树脂支撑件(190)的相对位置的致动器(32),所述方法包括以下步骤:
根据构建配置文件操作所述增材制造设备(10),以产生零件(74)的固化的构建层(79);
使用所述测量***(76)测量所述零件(74)的尺寸,其中所述测量***(76)被构造为通过在第一循环后测量第一组一个或多个位置并在第二循环后测量第二组一个或多个位置来确定所述零件(74)的平面,所述第二组一个或多个位置不同于所述第一组一个或多个位置;
确定所述尺寸是否包含误差;
通过修改所述构建配置文件以包括补偿层来响应误差的确定,其中选择所述补偿层的厚度来补偿所述误差。
6.根据权利要求5所述的方法,其特征在于,进一步包括以下步骤:
将所述误差加到累积误差值上;
通过利用所述累积误差值来确定所述补偿层的所述厚度;并且
其中所述累积误差值在多个循环内形成。
7.根据权利要求6所述的方法,其特征在于,进一步包括以下步骤:
将所述累积误差值与阈值误差值进行比较;和
当所述累积误差值超过所述阈值误差值时,进行产生所述补偿层的步骤。
8.根据权利要求5所述的方法,其特征在于,进一步包括以下步骤: 选择以下之一用作补偿层:先前计划的层和新层。
9.根据权利要求5的方法,其特征在于,其中所述尺寸是固化的构建层(79)的厚度。
10.根据权利要求5所述的方法,其特征在于,所述尺寸是所述零件(74)的高度。
CN202080016011.2A 2019-02-20 2020-02-20 用于增材制造中的构建厚度控制的方法和设备 Active CN113508026B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/280,390 US11498283B2 (en) 2019-02-20 2019-02-20 Method and apparatus for build thickness control in additive manufacturing
US16/280,390 2019-02-20
PCT/US2020/018956 WO2020172358A1 (en) 2019-02-20 2020-02-20 Method and apparatus for build thickness control in additive manufacturing

Publications (2)

Publication Number Publication Date
CN113508026A CN113508026A (zh) 2021-10-15
CN113508026B true CN113508026B (zh) 2023-10-31

Family

ID=69845591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080016011.2A Active CN113508026B (zh) 2019-02-20 2020-02-20 用于增材制造中的构建厚度控制的方法和设备

Country Status (4)

Country Link
US (1) US11498283B2 (zh)
EP (1) EP3927523A1 (zh)
CN (1) CN113508026B (zh)
WO (1) WO2020172358A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195267A1 (en) 2020-03-25 2021-09-30 Opt Industries, Inc. Systems, methods and file format for 3d printing of microstructures
WO2023003512A2 (en) * 2021-07-21 2023-01-26 Phasio Pte. Ltd. Additive manufacturing method and apparatus
CN114701166A (zh) * 2022-03-31 2022-07-05 苏州研拓自动化科技有限公司 大尺寸高分子材料3d打印材料变形的控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011577A1 (de) * 1990-12-21 1992-07-09 Eos Gmbh Electro Optical Systems Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
US5258146A (en) * 1988-09-26 1993-11-02 3D Systems, Inc. Method of and apparatus for measuring and controlling fluid level in stereolithography
US5858297A (en) * 1993-11-02 1999-01-12 Hitachi, Ltd. Method and apparatus of correcting superfluous curing thickness of optical modeling product
US6051179A (en) * 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
CN107053663A (zh) * 2017-06-27 2017-08-18 上海联泰三维科技有限公司 光学***、照射控制方法及所适用的3d打印设备
CN206484892U (zh) * 2017-01-18 2017-09-12 深圳摩方新材科技有限公司 一种光固化3d打印机层厚精度调节装置
CN108031844A (zh) * 2017-12-05 2018-05-15 华中科技大学 一种在线逐层检测的增减材复合制造方法
WO2018167036A1 (en) * 2017-03-13 2018-09-20 Lego A/S Additive manufacturing apparatus and method
WO2018176145A1 (en) * 2017-03-28 2018-10-04 The University Of Western Ontario Method and system for 3d printing of electrically conductive polymer structures

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236637A (en) 1984-08-08 1993-08-17 3D Systems, Inc. Method of and apparatus for production of three dimensional objects by stereolithography
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4752498A (en) 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
IL109511A (en) 1987-12-23 1996-10-16 Cubital Ltd Three-dimensional modelling apparatus
US5126259A (en) 1987-12-24 1992-06-30 Takeda Chemical Industries, Ltd. Human b. lymphoblastoid cell, hybridoma, antibody and production of antibody
US5182055A (en) 1988-04-18 1993-01-26 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
US5104592A (en) 1988-04-18 1992-04-14 3D Systems, Inc. Method of and apparatus for production of three-dimensional objects by stereolithography with reduced curl
US5059359A (en) 1988-04-18 1991-10-22 3 D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US5174931A (en) 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
US5026146A (en) 1989-04-03 1991-06-25 Hug William F System for rapidly producing plastic parts
JPH03244528A (ja) 1989-09-28 1991-10-31 Three D Syst Inc 実質的に平担な立体平版加工面の形成装置および方法
US5133987A (en) 1989-10-27 1992-07-28 3D Systems, Inc. Stereolithographic apparatus and method
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5626919A (en) 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US5096530A (en) 1990-06-28 1992-03-17 3D Systems, Inc. Resin film recoating method and apparatus
US5192559A (en) 1990-09-27 1993-03-09 3D Systems, Inc. Apparatus for building three-dimensional objects with sheets
US5126529A (en) 1990-12-03 1992-06-30 Weiss Lee E Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition
US5207371A (en) 1991-07-29 1993-05-04 Prinz Fritz B Method and apparatus for fabrication of three-dimensional metal articles by weld deposition
IT1252949B (it) 1991-09-30 1995-07-06 Gisulfo Baccini Procedimento per la lavorazione di circuiti tipo green-tape e dispositivo adottante tale procedimento
US5203944A (en) 1991-10-10 1993-04-20 Prinz Fritz B Method for fabrication of three-dimensional articles by thermal spray deposition using masks as support structures
WO1993024303A1 (en) 1992-05-28 1993-12-09 Cmet, Inc. Photohardening molding apparatus with improved recoating process and photohardening molding method
US5454069A (en) 1992-08-25 1995-09-26 University Of Kentucky Research Foundation Process for converting serial image to the sterolithography apparatus (SLA) slice file with automatic base and support generation
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
JP2706611B2 (ja) 1993-10-14 1998-01-28 帝人製機株式会社 光造形方法および光造形装置
US5496682A (en) 1993-10-15 1996-03-05 W. R. Grace & Co.-Conn. Three dimensional sintered inorganic structures using photopolymerization
US5879489A (en) 1993-11-24 1999-03-09 Burns; Marshall Method and apparatus for automatic fabrication of three-dimensional objects
US6206672B1 (en) 1994-03-31 2001-03-27 Edward P. Grenda Apparatus of fabricating 3 dimensional objects by means of electrophotography, ionography or a similar process
JPH0853264A (ja) 1994-08-10 1996-02-27 Seiko Epson Corp 剥離紙付き粘着テープの剥離紙分離構造
DE19515165C2 (de) 1995-04-25 1997-03-06 Eos Electro Optical Syst Vorrichtung zum Herstellen eines Objektes mittels Stereolithographie
US6270335B2 (en) 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
EP0776713B1 (en) 1995-11-09 1999-09-01 Toyota Jidosha Kabushiki Kaisha A method for laminate forming a sand mould and a method for producing a casting using the same
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
US5697043A (en) 1996-05-23 1997-12-09 Battelle Memorial Institute Method of freeform fabrication by selective gelation of powder suspensions
US6596224B1 (en) 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
WO1998006560A1 (en) 1996-08-08 1998-02-19 Sri International Apparatus for automated fabrication of three-dimensional objects, and associated methods of use
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US5940674A (en) 1997-04-09 1999-08-17 Massachusetts Institute Of Technology Three-dimensional product manufacture using masks
JPH115254A (ja) 1997-04-25 1999-01-12 Toyota Motor Corp 積層造形方法
NL1006059C2 (nl) 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
US6363606B1 (en) 1998-10-16 2002-04-02 Agere Systems Guardian Corp. Process for forming integrated structures using three dimensional printing techniques
US6401002B1 (en) 1999-04-29 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing apparatus and process
US6200646B1 (en) 1999-08-25 2001-03-13 Spectra Group Limited, Inc. Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology
US6436520B1 (en) 1999-09-01 2002-08-20 Toda Kogyo Corporation Magnetic display device
DE19948591A1 (de) 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US6850334B1 (en) 2000-01-18 2005-02-01 Objet Geometries Ltd System and method for three dimensional model printing
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
DE10085198D2 (de) 2000-09-25 2003-08-21 Generis Gmbh Verfahren zum Herstellen eines Bauteils in Ablagerungstechnik
NL1016431C2 (nl) 2000-10-18 2002-04-22 Univ Nijmegen Werkwijze voor het scheiden van een film en een substraat.
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6376148B1 (en) 2001-01-17 2002-04-23 Nanotek Instruments, Inc. Layer manufacturing using electrostatic imaging and lamination
US6896839B2 (en) 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
GB0103754D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
US6852272B2 (en) 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
US6780368B2 (en) 2001-04-10 2004-08-24 Nanotek Instruments, Inc. Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination
DE20106887U1 (de) 2001-04-20 2001-09-06 Envision Technologies Gmbh Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE10119817A1 (de) 2001-04-23 2002-10-24 Envision Technologies Gmbh Vorrichtung und Verfahren für die zerstörungsfreie Trennung ausgehärteter Materialschichten von einer planen Bauebene
US6665574B2 (en) * 2001-05-02 2003-12-16 Northrop Grumman Corporation Method of forming finished parts utilizing stereolithography technology
GB0112675D0 (en) 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
US6868890B2 (en) 2002-04-03 2005-03-22 3M Innovative Properties Company Method and apparatus for peeling a thin film from a liner
US7270528B2 (en) 2002-05-07 2007-09-18 3D Systems, Inc. Flash curing in selective deposition modeling
US6905645B2 (en) 2002-07-03 2005-06-14 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
US7087109B2 (en) 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20060054039A1 (en) 2002-12-03 2006-03-16 Eliahu Kritchman Process of and apparratus for three-dimensional printing
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
AU2003900180A0 (en) 2003-01-16 2003-01-30 Silverbrook Research Pty Ltd Method and apparatus (dam001)
JP2004257929A (ja) 2003-02-27 2004-09-16 Dainippon Printing Co Ltd 転写箔欠点検査装置
US6966960B2 (en) 2003-05-07 2005-11-22 Hewlett-Packard Development Company, L.P. Fusible water-soluble films for fabricating three-dimensional objects
EP1475220A3 (en) 2003-05-09 2009-07-08 FUJIFILM Corporation Process for producing three-dimensional model, and three-dimensional model
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US6930144B2 (en) 2003-06-24 2005-08-16 Hewlett-Packard Development Company, L.P. Cement system including a binder for use in freeform fabrication
US7572403B2 (en) 2003-09-04 2009-08-11 Peihua Gu Multisource and multimaterial freeform fabrication
DE102004008168B4 (de) 2004-02-19 2015-12-10 Voxeljet Ag Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
DE102004022606A1 (de) 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
DE102004022961B4 (de) 2004-05-10 2008-11-20 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
CA2564605A1 (en) 2004-05-12 2005-12-01 Massachusetts Institute Of Technology Manufacturing process, such as three-dimensional printing, including solvent vapor filming and the like
US20060078638A1 (en) 2004-10-08 2006-04-13 3D Systems, Inc. Stereolithographic apparatus
JP4002983B2 (ja) 2005-01-20 2007-11-07 国立大学法人 奈良先端科学技術大学院大学 投影装置、投影装置の制御方法、複合投影システム、投影装置の制御プログラム、投影装置の制御プログラムが記録された記録媒体
US7867302B2 (en) 2005-02-22 2011-01-11 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7351304B2 (en) 2005-05-24 2008-04-01 General Electric Company Method and apparatus for reducing surface defects
US7430913B2 (en) 2005-08-26 2008-10-07 The Boeing Company Rapid prototype integrated matrix ultrasonic transducer array inspection apparatus, systems, and methods
US7520740B2 (en) 2005-09-30 2009-04-21 3D Systems, Inc. Rapid prototyping and manufacturing system and method
MX2009005477A (es) 2005-11-24 2009-10-26 Kronoplus Technical Ag Metodo de impresion directa en tablas de material basado en madera.
DE102006019963B4 (de) 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
DE102006019964C5 (de) 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
EP2024168B1 (en) 2006-05-26 2012-08-22 3D Systems, Inc. Apparatus, method and multiport valve for handling powder in a 3-d printer
US7636610B2 (en) 2006-07-19 2009-12-22 Envisiontec Gmbh Method and device for producing a three-dimensional object, and computer and data carrier useful therefor
DE102006038858A1 (de) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
US9415544B2 (en) 2006-08-29 2016-08-16 3D Systems, Inc. Wall smoothness, feature accuracy and resolution in projected images via exposure levels in solid imaging
US7892474B2 (en) 2006-11-15 2011-02-22 Envisiontec Gmbh Continuous generative process for producing a three-dimensional object
CN101568422B (zh) 2006-12-08 2013-02-13 3D***公司 使用过氧化物固化的三维印刷材料体系和方法
US20080170112A1 (en) 2007-01-17 2008-07-17 Hull Charles W Build pad, solid image build, and method for building build supports
US8105066B2 (en) 2007-01-17 2012-01-31 3D Systems, Inc. Cartridge for solid imaging apparatus and method
US7614866B2 (en) 2007-01-17 2009-11-10 3D Systems, Inc. Solid imaging apparatus and method
US7706910B2 (en) 2007-01-17 2010-04-27 3D Systems, Inc. Imager assembly and method for solid imaging
WO2008103450A2 (en) 2007-02-22 2008-08-28 Z Corporation Three dimensional printing material system and method using plasticizer-assisted sintering
US8568649B1 (en) 2007-03-20 2013-10-29 Bowling Green State University Three-dimensional printer, ceramic article and method of manufacture
US8475946B1 (en) 2007-03-20 2013-07-02 Bowling Green State University Ceramic article and method of manufacture
US7811401B2 (en) 2007-05-21 2010-10-12 The Boeing Company Cassette apparatus and process
DK2011631T3 (da) 2007-07-04 2012-06-25 Envisiontec Gmbh Fremgangsmåde og indretning til fremstilling af et tre-dimensionelt objekt
WO2009012102A1 (en) 2007-07-13 2009-01-22 Advanced Ceramics Manufacturing, Llc Aggregate-based mandrels for composite part production and composite part production methods
EP2188114B1 (en) 2007-07-25 2018-09-12 Stratasys Ltd. Solid freeform fabrication using a plurality of modeling materials
US8029642B2 (en) 2007-07-27 2011-10-04 The Boeing Company Tape removal apparatus and process
US8048261B2 (en) 2007-08-10 2011-11-01 The Boeing Company Tape removal apparatus and process for use with an automated composite tape laying machine
DE102007050679A1 (de) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
US8225507B2 (en) 2008-02-28 2012-07-24 The Aerospace Corporation Stereolithographic rocket motor manufacturing method
US8876513B2 (en) 2008-04-25 2014-11-04 3D Systems, Inc. Selective deposition modeling using CW UV LED curing
US9561622B2 (en) 2008-05-05 2017-02-07 Georgia Tech Research Corporation Systems and methods for fabricating three-dimensional objects
US8636496B2 (en) 2008-05-05 2014-01-28 Georgia Tech Research Corporation Systems and methods for fabricating three-dimensional objects
US8282866B2 (en) 2008-06-30 2012-10-09 Seiko Epson Corporation Method and device for forming three-dimensional model, sheet material processing method, and sheet material processing device
US8741203B2 (en) 2008-10-20 2014-06-03 Ivoclar Vivadent Ag Device and method for processing light-polymerizable material for building up an object in layers
US8048359B2 (en) 2008-10-20 2011-11-01 3D Systems, Inc. Compensation of actinic radiation intensity profiles for three-dimensional modelers
ES2408233T3 (es) 2008-10-20 2013-06-19 Ivoclar Vivadent Ag Dispositivo y procedimiento para el procesamiento de material polimerizable por luz para la formación por capas de cuerpos moldeados.
US8666142B2 (en) * 2008-11-18 2014-03-04 Global Filtration Systems System and method for manufacturing
DE102008058378A1 (de) 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Verfahren zum schichtweisen Aufbau von Kunststoffmodellen
US9821546B2 (en) 2009-01-13 2017-11-21 Illinois Tool Works Inc. Digital cliche pad printing system and method
EP2226683A1 (en) 2009-03-06 2010-09-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Illumination system for use in a stereolithography apparatus
US8326024B2 (en) 2009-04-14 2012-12-04 Global Filtration Systems Method of reducing the force required to separate a solidified object from a substrate
US9889012B2 (en) 2009-07-23 2018-02-13 Didier NIMAL Biomedical device, method for manufacturing the same and use thereof
US8372330B2 (en) 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
EP2319641B1 (en) 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
US8991211B1 (en) 2009-11-01 2015-03-31 The Exone Company Three-dimensional printing glass articles
WO2011065920A1 (en) 2009-11-26 2011-06-03 Yu En Tan Process for building three-dimensional objects
IT1397457B1 (it) 2010-01-12 2013-01-10 Dws Srl Piastra di modellazione per una macchina stereolitografica, macchina stereolitografica impiegante tale piastra di modellazione e utensile per la pulizia di tale piastra di modellazione.
US8211226B2 (en) 2010-01-15 2012-07-03 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three-dimensional printer
JP2011156783A (ja) 2010-02-02 2011-08-18 Sony Corp 3次元造形装置、3次元造形物の製造方法及び3次元造形物
IT1400015B1 (it) 2010-05-17 2013-05-09 Dws Srl Macchina stereolitografica perfezionata
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
IT1403482B1 (it) 2011-01-18 2013-10-17 Dws Srl Metodo per la produzione di un oggetto tridimensionale e macchina stereolitografica impiegante tale metodo
WO2012106256A1 (en) 2011-01-31 2012-08-09 Global Filtration Systems Method and apparatus for making three-dimensional objects from multiple solidifiable materials
DE202011003443U1 (de) 2011-03-02 2011-12-23 Bego Medical Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile
EP2689635A1 (en) 2011-03-24 2014-01-29 Ramot at Tel Aviv University, Ltd. Method and devices for solid structure formation by localized microwaves
JP5769572B2 (ja) 2011-03-30 2015-08-26 株式会社Screenホールディングス 基板検査装置および基板検査方法
EP2699406B1 (en) * 2011-04-17 2020-02-19 Stratasys Ltd. System and method for additive manufacturing of an object
ITVI20110099A1 (it) 2011-04-20 2012-10-21 Dws Srl Metodo per la produzione di un oggetto tridimensionale e macchina stereolitografica impiegante tale metodo
BR112013031799A2 (pt) 2011-06-15 2016-12-20 Dsm Ip Assets Bv aparelho e processo de fabricação aditiva á base de substrato
US9079355B2 (en) 2011-06-28 2015-07-14 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
US9075409B2 (en) 2011-06-28 2015-07-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
US9429104B2 (en) 2011-08-01 2016-08-30 The Aerospace Corporation Systems and methods for casting hybrid rocket motor fuel grains
US9150032B2 (en) 2011-08-31 2015-10-06 Xerox Corporation Methods, apparatus, and systems for controlling an initial line width of radiation curable gel ink
RU2014131412A (ru) 2011-12-30 2016-02-20 Даймонд Инновейшнз, Инк. Пластина с профилем, близким к заданному, для режущего инструмента
US8915728B2 (en) 2012-01-27 2014-12-23 United Technologies Corporation Multi-dimensional component build system and process
US9944021B2 (en) 2012-03-02 2018-04-17 Dynamic Material Systems, LLC Additive manufacturing 3D printing of advanced ceramics
US9636873B2 (en) 2012-05-03 2017-05-02 B9Creations, LLC Solid image apparatus with improved part separation from the image plate
EP2671706A1 (de) 2012-06-04 2013-12-11 Ivoclar Vivadent AG Verfahren zum Aufbau eines Formkörpers
US9449379B2 (en) 2012-06-20 2016-09-20 Panasonic Intellectual Property Management Co., Ltd. Method for inspecting solution discharge apparatus and method for producing device
US20140039662A1 (en) 2012-07-31 2014-02-06 Makerbot Industries, Llc Augmented three-dimensional printing
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US20140120196A1 (en) 2012-10-29 2014-05-01 Makerbot Industries, Llc Quick-release extruder
FR3000698B1 (fr) 2013-01-09 2015-02-06 Phidias Technologies Fabrication d'un objet en volume par lithographie, a resolution spatiale amelioree
US9079212B2 (en) 2013-01-11 2015-07-14 Floor Iptech Ab Dry ink for digital printing
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
EP3203318A1 (en) 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
CN105008073A (zh) 2013-03-05 2015-10-28 联合工艺公司 建立用于增材制造的平台
WO2014152531A1 (en) 2013-03-15 2014-09-25 3D Systems, Inc. Three dimensional printing material system
CN105163930B (zh) 2013-03-15 2017-12-12 3D***公司 用于激光烧结***的滑道
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
JP2015007866A (ja) 2013-06-25 2015-01-15 ローランドディー.ジー.株式会社 投影画像補正システム、投影画像補正方法、プログラムおよびコンピューター読み取り可能な記録媒体
JP6257185B2 (ja) 2013-06-28 2018-01-10 シーメット株式会社 三次元造形装置及び三次元造形物の造形方法
JP2015016610A (ja) 2013-07-10 2015-01-29 ローランドディー.ジー.株式会社 画像投影システムおよび画像投影方法
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
US20150102531A1 (en) 2013-10-11 2015-04-16 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using a curved build platform
US9645092B2 (en) 2013-10-14 2017-05-09 Valco Cincinnati, Inc. Device and method for verifying the construction of adhesively-attached substrates
US9457374B2 (en) 2013-11-08 2016-10-04 Upm Raflatac Oy Method and apparatus for curtain coating
TWI548533B (zh) 2013-11-20 2016-09-11 三緯國際立體列印科技股份有限公司 立體列印裝置
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
TW201522017A (zh) 2013-12-13 2015-06-16 三緯國際立體列印科技股份有限公司 立體列印裝置
WO2015094719A1 (en) 2013-12-20 2015-06-25 United Technologies Corporation Method and device for manufacturing three dimensional objects utilizing a stationary direct energy source
NL2012087C2 (en) 2014-01-15 2015-07-16 Admatec Europ B V Additive manufacturing system for manufacturing a three dimensional object.
JP2015139977A (ja) 2014-01-30 2015-08-03 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形物
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
WO2015118552A1 (en) 2014-02-10 2015-08-13 Stratasys Ltd. Composition and method for additive manufacturing of an object
US20150223899A1 (en) 2014-02-11 2015-08-13 Brian Kieser Method of manufacturing a structurally encoded implantable device
US11104117B2 (en) 2014-02-20 2021-08-31 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10011076B2 (en) 2014-02-20 2018-07-03 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10144205B2 (en) 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US9487443B2 (en) 2014-03-14 2016-11-08 Ricoh Company, Ltd. Layer stack formation powder material, powder layer stack formation hardening liquid, layer stack formation material set, and layer stack object formation method
US9933632B2 (en) * 2014-03-26 2018-04-03 Indizen Optical Technologies, S.L. Eyewear lens production by multi-layer additive techniques
US10086535B2 (en) 2014-04-02 2018-10-02 B9Creations, LLC Additive manufacturing device with sliding plate and peeling film
JP6377392B2 (ja) 2014-04-08 2018-08-22 ローランドディー.ジー.株式会社 画像投影システムおよび画像投影方法
TWI518583B (zh) 2014-04-18 2016-01-21 三緯國際立體列印科技股份有限公司 立體列印裝置及其列印異常偵測方法
TWI561401B (en) 2014-04-29 2016-12-11 Xyzprinting Inc Three dimensional printing apparatus
CN106804106A (zh) 2014-05-04 2017-06-06 亦欧普莱克斯公司 多材料三维打印机
TWI594873B (zh) 2014-05-12 2017-08-11 三緯國際立體列印科技股份有限公司 偵測成型材特性的方法與立體列印裝置
US9248600B2 (en) 2014-05-28 2016-02-02 Makerbot Industries, Llc Build platform leveling and homing
MX2016016630A (es) 2014-06-23 2017-06-06 Carbon Inc Metodos para producir objetos tridimensionales de poliuretano a partir de materiales que tienen multiples mecanismos de endurecimiento.
US9581530B2 (en) 2014-07-09 2017-02-28 Brigham Young University Multichannel impact response for material characterization
US9895843B2 (en) 2014-07-17 2018-02-20 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
JP6606861B2 (ja) 2014-08-11 2019-11-20 株式会社リコー 積層造形用粉末及び積層造形物の製造方法
US11390062B2 (en) 2014-08-12 2022-07-19 Carbon, Inc. Three-dimensional printing with supported build plates
US10201963B2 (en) 2014-08-18 2019-02-12 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US10213966B2 (en) 2014-08-20 2019-02-26 Formlabs, Inc. Techniques for applying a peel operation during additive fabrication and related systems and methods
TWI601628B (zh) 2014-08-29 2017-10-11 三緯國際立體列印科技股份有限公司 立體列印裝置以及立體列印方法
GB201417162D0 (en) 2014-09-29 2014-11-12 Renishaw Plc Inspection appartus
GB201417164D0 (en) 2014-09-29 2014-11-12 Renishaw Plc Measurement Probe
TWI568601B (zh) 2014-10-02 2017-02-01 三緯國際立體列印科技股份有限公司 立體列印裝置及其列印方法
TWI630124B (zh) 2014-11-10 2018-07-21 三緯國際立體列印科技股份有限公司 立體列印裝置
US20160193785A1 (en) 2015-01-02 2016-07-07 Voxel8, Inc. 3d printer for printing a plurality of material types
JP6498302B2 (ja) 2015-01-20 2019-04-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. メモリを備える取り外し可能な3d造形モジュール
US9914292B2 (en) * 2015-04-02 2018-03-13 Massivit 3D Printing Technologies Ltd Additive manufacturing device
US9649815B2 (en) 2015-04-22 2017-05-16 Xerox Corporation Coating for precision rails and a system for cleaning precision rails in three-dimensional object printing systems
EP3291968A1 (en) 2015-05-07 2018-03-14 Addifab ApS Additive manufacturing yield improvement
GB201510220D0 (en) * 2015-06-11 2015-07-29 Renishaw Plc Additive manufacturing apparatus and method
DE102015110264A1 (de) * 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
CN108349160B (zh) 2015-07-15 2022-07-22 艾德玛泰克欧洲公司 用于制造三维对象的增材制造装置
WO2017041113A1 (en) 2015-09-04 2017-03-09 Feetz, Inc. Systems and methods for wave function based additive manufacturing
WO2017040890A1 (en) 2015-09-04 2017-03-09 Carbon3D, Inc. Methods of making three dimensional objects from dual cure resins with supported second cure
US10792868B2 (en) 2015-09-09 2020-10-06 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US10596661B2 (en) 2015-09-28 2020-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting
GB2559914B (en) 2015-10-07 2021-07-14 Holo Inc Sub-pixel grayscale three-dimensional printing
CN106584843B (zh) 2015-10-13 2020-03-27 三纬国际立体列印科技股份有限公司 立体打印装置
CN106584855B (zh) 2015-10-13 2018-09-11 三纬国际立体列印科技股份有限公司 立体物件成形装置的光源校正方法
US10532552B2 (en) 2015-10-23 2020-01-14 Makerbot Industries, Llc Build patterns for surfaces of a three-dimensionally printed object
CA3002392A1 (en) 2015-10-30 2017-05-04 Seurat Technologies, Inc. Additive manufacturing system and method
IL259305B2 (en) 2015-11-13 2023-09-01 Paxis Llc Facility, system and method for further production
US11141919B2 (en) 2015-12-09 2021-10-12 Holo, Inc. Multi-material stereolithographic three dimensional printing
US10245822B2 (en) 2015-12-11 2019-04-02 Global Filtration Systems Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials
US10906291B2 (en) 2016-01-06 2021-02-02 Autodesk, Inc. Controllable release build plate for 3D printer
WO2017125128A1 (en) * 2016-01-19 2017-07-27 Hewlett-Packard Development Company L.P. Determining layer thickness
US10011469B2 (en) 2016-04-12 2018-07-03 General Electric Company Rotatable engagement of additive manufacturing build plate
CN109195776A (zh) 2016-04-14 2019-01-11 德仕托金属有限公司 具有支撑结构的增材制造
CN109416248B (zh) * 2016-06-27 2021-07-06 福姆实验室公司 用于添加制造的位置检测技术以及相关的***和方法
US20180036964A1 (en) * 2016-08-08 2018-02-08 General Electric Company Method and system for inspection of additive manufactured parts
US20180079153A1 (en) * 2016-09-20 2018-03-22 Applied Materials, Inc. Control of dispensing operations for additive manufacturing of a polishing pad
EP3538335B1 (en) 2016-11-14 2022-10-19 Desktop Metal, Inc. Particle stereolithography
WO2018169587A2 (en) 2016-12-16 2018-09-20 Massachusetts Institute Of Technology Adaptive material deposition for additive manufacturing
US20180236710A1 (en) * 2017-02-20 2018-08-23 3D Systems, Inc. Three dimensional printer resin replenishment method
WO2018170545A1 (en) 2017-03-21 2018-09-27 Zydex Pty Ltd Apparatus and method for making a stereolithographic object
CN107322930B (zh) 2017-08-03 2019-08-23 陕西恒通智能机器有限公司 一种具有检测现有工件功能的3d打印机
US20190126536A1 (en) * 2017-11-02 2019-05-02 General Electric Company Cartridge vat-based additive manufacturing apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258146A (en) * 1988-09-26 1993-11-02 3D Systems, Inc. Method of and apparatus for measuring and controlling fluid level in stereolithography
WO1992011577A1 (de) * 1990-12-21 1992-07-09 Eos Gmbh Electro Optical Systems Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
US5858297A (en) * 1993-11-02 1999-01-12 Hitachi, Ltd. Method and apparatus of correcting superfluous curing thickness of optical modeling product
US6051179A (en) * 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
CN206484892U (zh) * 2017-01-18 2017-09-12 深圳摩方新材科技有限公司 一种光固化3d打印机层厚精度调节装置
WO2018167036A1 (en) * 2017-03-13 2018-09-20 Lego A/S Additive manufacturing apparatus and method
WO2018176145A1 (en) * 2017-03-28 2018-10-04 The University Of Western Ontario Method and system for 3d printing of electrically conductive polymer structures
CN107053663A (zh) * 2017-06-27 2017-08-18 上海联泰三维科技有限公司 光学***、照射控制方法及所适用的3d打印设备
CN108031844A (zh) * 2017-12-05 2018-05-15 华中科技大学 一种在线逐层检测的增减材复合制造方法

Also Published As

Publication number Publication date
CN113508026A (zh) 2021-10-15
WO2020172358A1 (en) 2020-08-27
US20200262151A1 (en) 2020-08-20
US11498283B2 (en) 2022-11-15
EP3927523A1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
CN113508026B (zh) 用于增材制造中的构建厚度控制的方法和设备
US11446860B2 (en) Method and apparatus for separation of cured resin layer from resin support in additive manufacturing
US20240009932A1 (en) Method and apparatus for layer thickness control in additive manufacturing
US11707888B2 (en) Method and apparatus for additive manufacturing with shared components
CN113382846B (zh) 用于增材制造中的处理监测的方法和设备
US8153183B2 (en) Adjustable platform assembly for digital manufacturing system
CN111347671A (zh) 多种材料的增材制造装置和方法
US20190126533A1 (en) Plate-based additive manufacturing apparatus and method
CN111347672B (zh) 用于功能梯度材料的增材制造方法
CN111278626A (zh) 基于盒板的增材制造设备和方法
US11198249B2 (en) Method of joining additively manufactured components
US20230050127A1 (en) Material deposition assembly for additive manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant