CN113480316A - 一种非化学计量比氧氮化物纳米粉及其制备方法 - Google Patents

一种非化学计量比氧氮化物纳米粉及其制备方法 Download PDF

Info

Publication number
CN113480316A
CN113480316A CN202110742071.9A CN202110742071A CN113480316A CN 113480316 A CN113480316 A CN 113480316A CN 202110742071 A CN202110742071 A CN 202110742071A CN 113480316 A CN113480316 A CN 113480316A
Authority
CN
China
Prior art keywords
powder
equal
oxynitride
stoichiometric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110742071.9A
Other languages
English (en)
Other versions
CN113480316B (zh
Inventor
李端
李俊生
曾良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110742071.9A priority Critical patent/CN113480316B/zh
Publication of CN113480316A publication Critical patent/CN113480316A/zh
Application granted granted Critical
Publication of CN113480316B publication Critical patent/CN113480316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种非化学计量比氧氮化物纳米粉及其制备方法,制备方法包括先将三氧化二铕粉末、五氧化二钽粉末与尿素溶于无水乙醇并球磨,得到混合浆料,将混合浆料干燥,得到混合前驱体粉末,将混合前驱体粉末在保护气氛中煅烧,得到EuTa(O,N)3氧氮化物纳米粉,将EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,得到非化学计量比的氧氮化物纳米粉EuTaOaNb,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。本发明的方法具有成本低廉、工艺简单、产物纯度高等优点,制备的产品介电性能和磁性好。

Description

一种非化学计量比氧氮化物纳米粉及其制备方法
技术领域
本发明涉及高性能介电陶瓷材料制备技术领域,尤其涉及一种非化学计量比氧氮化物纳米粉及其低成本制备方法。
背景技术
稀土钙钛矿氧氮化物是近年来国际上受到重点关注的一类新型功能材料。这类氧氮化物是在相对应二元稀土钙钛矿氧化物ABOx中引入N原子和稀土金属阳离子而得到,常见类型有AB(O,N)3,A2BO3N或A(B,B’)1(O,N)3等,其中A为稀土元素(如La、Nd、Pr、Eu等),B/B’为过渡族金属元素(如Ta、Ti、Nb、Mo、Zr、W等)。其晶体结构中,B原子通常与O/N原子构成B(O,N)6八面体且B原子位于八面体中心。由于O/N原子的排列方式不同(顺式和反式)以及B(O,N)6八面体的倾斜程度不同,氧氮化物有着不同的晶体结构。
由于氮原子电负性与极化性比氧原子高,且根据能带理论,N-2p轨道能级比O-2p高,故氧氮化物中N原子的引入使得其导带和价带之间的带隙(band gap)减小。例如,常见的钙钛矿氧化物的带隙一般高于3.0eV,而其相应的氧氮化物带隙则在1.5eV~2.5eV之间。这种带隙的减小使得材料微观电子结构产生变化,改变了材料的光学特性。同时,由于稀土元素的引入以及O/N分布的多样性,材料也获得了许多新的功能特性。例如,La1-xSrxTiO2+ xN1-x室温下有着很高的介电常数;RTiO2N(R=Ce,Pr,Nd)、NdVO2N和GdNbON2具有顺磁性;LaTiO2N和RTaON2(R=La,Ce,Pr)可作为可见光催化剂裂解水制氢。
根据材料结构-工艺-性能的关系,制备工艺是稀土钙钛矿氧氮化物材料获得理想微结构及优异综合性能的关键。目前,合成该类氧氮化物粉体的主流方法是先采用固相煅烧、溶胶-凝胶、多元醇共沉淀、水热法等工艺合成包括多种金属阳离子的复合氧化物前驱体,再在流动的氨气气氛中和高温下进行氨化处理。然而,第二步氨化过程中气-固反应扩散缓慢,反应往往只能限制在气-固接触表面,欲提高产率在反应中间需停下来研磨粉体,大大延长了制备时间,因此要进一步探究更加高效的制备及优化工艺。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种成本低廉、工艺简单、纯度高、介电常数高的非化学计量比氧氮化物纳米粉及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
(1)将三氧化二铕粉末、五氧化二钽粉末和尿素溶于无水乙醇中,并进行球磨,得到混合浆料;
(2)将步骤(1)所得的混合浆料干燥,得到混合前驱体粉末;
(3)将步骤(2)所得的混合前驱体粉末在保护气氛中煅烧,得到EuTa(O,N)3氧氮化物纳米粉;
(4)将步骤(3)所得的EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以1℃/min~50℃/min的升温速率升温至800℃~1500℃,保温1h~24h,再随炉冷却至室温,得到非化学计量比的氧氮化物纳米粉EuTaOaNb,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(1)中,所述三氧化二铕粉末、五氧化二钽粉末、尿素和无水乙醇的比例为1g~5g∶2g~8g∶1g~15g∶5mL~100mL,所述球磨的时间为1h~24h。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(1)中,所述三氧化二铕、五氧化二钽、尿素和无水乙醇的比例为2g~4g∶3g~6g∶2g~10g∶5mL~50mL,所述球磨的时间为2h~12h。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(4)中,所述升温速率为10℃/min~30℃/min,升温至900℃~1400℃,保温1h~12h。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(3)中,所述保护气氛为氮气、氦气和氩气中的一种或多种,所述煅烧的工艺为:以50℃/min~500℃/min的升温速率升温至800℃~1400℃,保温0min~30min,再随炉冷却至室温。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,升温至900℃~1300℃,保温1min~10min。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,步骤(2)中,所述干燥的温度为30℃~120℃,所述干燥的时间为1h~72h。
上述的非化学计量比氧氮化物纳米粉的制备方法,优选的,所述干燥的温度为50℃~80℃,所述干燥的时间为6h~48h。
作为一个总的技术构思,本发明还提供一种非化学计量比氧氮化物纳米粉,所述非化学计量比氧氮化物纳米粉为EuTaOaNb,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
与现有技术相比,本发明的优点在于:
1、本发明提供了一种非化学计量比氧氮化物纳米粉的制备方法,通过将EuTa(O,N)3氧氮化物在氨气气氛中进行氨化退火处理,得到非化学计量比的氧氮化物纳米粉,这是因为,NH3具有一定的还原性,而直接制备的EuTa(O,N)3中的Eu处于+2和+3之间的中间价态,在氨气退火处理过程中,NH3通过对中间价态Eu元素进行还原进而改变样品中的O/N含量,并最终趋于稳定状态。在此过程,样品出现了相变过程,且该过程随着氨化过程的温度与时间逐渐演变,即可通过控制氨化退火工艺的温度与时间进而控制该相变进程。本发明以廉价的尿素为氮源,在较低温度下一步煅烧制备EuTa(O,N)3氧氮化物,与主流的两步法或一步高温合成法相比成本低、耗时短、操作简便,产物纯度高、介电性能好,且能得到非化学计量比氧氮化物纳米粉体。
本发明煅烧时采用特定的尿素含量,混合前驱体粉末中尿素的含量为化学方程式计算的尿素量的2倍~15倍,因此,反应体系中既有反应混合物中尿素提供的固态氮源,同时又有受热分解的尿素提供气态氮源,可大大提高氮化效率。此外,氨气还能有效去除反应混合物中尿素因分解不完全而产生的残碳,大大提高产物氧氮化物的纯度。
本发明煅烧混合前驱体粉末时采用了较快的升温速率(50~500℃/min),而传统方法升温速率一般为1℃/min~10℃/min。由于尿素在较低温度下即可发生分解反应,造成氮源提前损失,使反应体系达到生成氧氮化物的较高温度时氮化程度低,产物纯度不高。而快速升温能从化学动力学上抑制尿素的分解,在保留大量氮源的前提下,使反应体系温度迅速达到氧氮化物生成所需的温度,从而发生充分的氮化反应,大大缩短反应时间并提高产物纯度。
2、本发明提供了一种非化学计量比氧氮化物纳米粉,该氧氮化物纳米粉为EuTaOaNb,其中,1.5≤a≤2.5,0.5≤b≤1.5,并非传统的化学计量比,此特定的O和N的计量比,使得本发明的氧氮化物纳米粉介电性能好。
附图说明
图1为本发明实施例1制得的非化学计量比氧氮化物纳米粉的光学照片及XRD谱图。
图2为本发明实施例1制得的非化学计量比氧氮化物纳米粉的磁化率曲线图。
图3为本发明实施例1制得的非化学计量比氧氮化物纳米粉的介电特性曲线。
图4为本发明实施例1在氨化退火处理过程中样品微观形貌变化的SEM照片。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
(1)将3g三氧化二铕、3.75g五氧化二钽和5.45g尿素加入到50mL无水乙醇中,并球磨240min,得到混合浆料;
(2)将步骤(1)所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到EuTa(O,N)3氧氮化物纳米粉;
(4)将步骤(3)所得的EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以10℃/min的升温速率升温至为1100℃(退火温度),保温时间为6h,再随炉冷却至室温,经检测,得到的氧氮化物为EuTaO1.96N1.04
本实施例的非化学计量比氧氮化物纳米粉的物相组成及微观形貌分别如图1至图4所示:由图1可知,其物相几乎为纯相EuTa(O,N)3(含量99.8%),颜色为黑色,且产物形态大小均匀,晶粒尺寸约50nm~100nm。如图2、图3所示,本实施例制备的EuTa(O,N)3氧氮化物有较高的介电常数15845,样品的磁化率在10K~300K温度范围内遵循Curie-Weiss定律,对应方程为:χ=7.75/T-3.32,有效磁矩为7.82μB。由图4可看出,在氨化退火处理过程中,样品的微观形貌先由原始样品的规则且均匀的立方体颗粒转变为边界较为圆润的立方体颗粒,然后由立方体逐渐转变为不规则圆球状颗粒,且在该过程中出现明显的晶粒融合现象,最后又重新分散出现不规则多面体状颗粒。整个变化过程中样品的颗粒度及其分布未出现明显变化,根据其形貌变化过程,可以推断在氨化退火过程中,样品出现了相变过程,且该过程随着氨化过程的温度与时间逐渐演变,即可通过控制氨化退火工艺的温度与时间进而控制该相变进程。
实施例2:
一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
(1)将3g三氧化二铕粉末、3.75g五氧化二钽粉末和5.45g尿素加入到50mL无水乙醇中,并球磨240min,得到混合浆料;
(2)将步骤(1)球磨后所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到EuTa(O,N)3氧氮化物纳米粉;
(4)将步骤(3)所得的EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以20℃/min的升温速率升温至1000℃,保温时间为6h,经检测,得到的氧氮化物为EuTaO1.75N1.25
实施例3:
一种本发明的非化学计量比氧氮化物纳米粉的制备方法,包括以下步骤:
(1)将3g三氧化二铕粉末、3.75g五氧化二钽粉末和5.45g尿素加入到50mL无水乙醇中,并球磨240min,得到混合浆料;
(2)将步骤(1)球磨后所得混合浆料进行干燥处理,干燥工艺过程为:在60℃下保温24h,得到混合前驱体粉末;
(3)将步骤(2)所得的混合前驱体粉末放置在坩埚中,然后在氮气气氛中煅烧,升温速率为100℃/min,温度1100℃,保温时间1min;最后随炉冷至室温,即得到EuTa(O,N)3氧氮化物纳米粉;
(4)将步骤(3)所得的EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以30℃/min的升温速率升温至1200℃,保温时间为15h,经检测,得到的氧氮化物为EuTaO2.04N0.96
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (9)

1.一种非化学计量比氧氮化物纳米粉的制备方法,其特征在于,包括以下步骤:
(1)将三氧化二铕粉末、五氧化二钽粉末和尿素溶于无水乙醇中,并进行球磨,得到混合浆料;
(2)将步骤(1)所得的混合浆料干燥,得到混合前驱体粉末;
(3)将步骤(2)所得的混合前驱体粉末在保护气氛中煅烧,得到EuTa(O,N)3氧氮化物纳米粉;
(4)将步骤(3)所得的EuTa(O,N)3氧氮化物纳米粉在氨气气氛中进行氨化退火处理,即以1℃/min~50℃/min的升温速率升温至800℃~1500℃,保温1h~24h,再随炉冷却至室温,得到非化学计量比的氧氮化物纳米粉EuTaOaNb,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
2.根据权利要求1所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(1)中,所述三氧化二铕粉末、五氧化二钽粉末、尿素和无水乙醇的比例为1g~5g∶2g~8g∶1g~15g∶5mL~100mL,所述球磨的时间为1h~24h。
3.根据权利要求2所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(1)中,所述三氧化二铕、五氧化二钽、尿素和无水乙醇的比例为2g~4g∶3g~6g∶2g~10g∶5mL~50mL,所述球磨的时间为2h~12h。
4.根据权利要求1所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(4)中,所述升温速率为10℃/min~30℃/min,升温至900℃~1400℃,保温1h~12h。
5.根据权利要求1~4中任一项所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(3)中,所述保护气氛为氮气、氦气和氩气中的一种或多种,所述煅烧的工艺为:以50℃/min~500℃/min的升温速率升温至800℃~1400℃,保温0min~30min,再随炉冷却至室温。
6.根据权利要求5所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(3)中,升温至900℃~1300℃,保温1min~10min。
7.根据权利要求1~4中任一项所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(2)中,所述干燥的温度为30℃~120℃,所述干燥的时间为1h~72h。
8.根据权利要求7所述的非化学计量比氧氮化物纳米粉的制备方法,其特征在于,步骤(2)中,所述干燥的温度为50℃~80℃,所述干燥的时间为6h~48h。
9.一种非化学计量比氧氮化物纳米粉,其特征在于,所述非化学计量比氧氮化物纳米粉为EuTaOaNb,其中,1.5≤a≤2.5,0.5≤b≤1.5,a∶b≠2∶1。
CN202110742071.9A 2021-06-30 2021-06-30 一种非化学计量比氧氮化物纳米粉及其制备方法 Active CN113480316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110742071.9A CN113480316B (zh) 2021-06-30 2021-06-30 一种非化学计量比氧氮化物纳米粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110742071.9A CN113480316B (zh) 2021-06-30 2021-06-30 一种非化学计量比氧氮化物纳米粉及其制备方法

Publications (2)

Publication Number Publication Date
CN113480316A true CN113480316A (zh) 2021-10-08
CN113480316B CN113480316B (zh) 2022-05-17

Family

ID=77937831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110742071.9A Active CN113480316B (zh) 2021-06-30 2021-06-30 一种非化学计量比氧氮化物纳米粉及其制备方法

Country Status (1)

Country Link
CN (1) CN113480316B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387399A2 (en) * 2002-07-31 2004-02-04 Texas Instruments Incorporated Gate dielectric and method
WO2014165773A1 (en) * 2013-04-05 2014-10-09 Brookhaven Science Associates, Llc Cubic ionic conductor ceramics for alkali ion batteries
CN109331853A (zh) * 2018-09-04 2019-02-15 同济大学 一种氮氧化物纳米颗粒光触媒及其应用
CN109928761A (zh) * 2018-09-06 2019-06-25 中国人民解放军国防科技大学 SrTaO2N氧氮化物纳米粉及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387399A2 (en) * 2002-07-31 2004-02-04 Texas Instruments Incorporated Gate dielectric and method
WO2014165773A1 (en) * 2013-04-05 2014-10-09 Brookhaven Science Associates, Llc Cubic ionic conductor ceramics for alkali ion batteries
CN109331853A (zh) * 2018-09-04 2019-02-15 同济大学 一种氮氧化物纳米颗粒光触媒及其应用
CN109928761A (zh) * 2018-09-06 2019-06-25 中国人民解放军国防科技大学 SrTaO2N氧氮化物纳米粉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶施亚: ""稀土钙钛矿氧氮化物的研究进展",叶施亚,《人工晶体学报》,第50卷,第1期,第187-198页", 《人工晶体学报》 *

Also Published As

Publication number Publication date
CN113480316B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Verma et al. Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles
CN104671245B (zh) 一种碳化铪纳米粉体的制备方法
Zhang et al. Enhanced Al/Ni co-doping and power factor in textured ZnO thermoelectric ceramics prepared by hydrothermal synthesis and spark plasma sintering
CN109928761B (zh) SrTaO2N氧氮化物纳米粉及其制备方法
CN110629288B (zh) 一种水热技术制备晶须状铝酸钆粉体材料的方法
CN115093233A (zh) 一种适合于工业化宏量生产的高纯超细过渡金属碳氮化物高熵陶瓷粉体的制备方法
CN112938976A (zh) A位含硒元素的max相层状材料、其制备方法及应用
CN110092657B (zh) 纳米钛酸钡微晶及其制备方法和钛酸钡粉体及其制备方法
Du et al. Synthesis of MgAl 2 O 4 spinel nanoparticles via polymer-gel and isolation-medium-assisted calcination
CN114799191A (zh) 一种稀土氧化物掺杂钼铼合金粉体的制备方法
CN113480316B (zh) 一种非化学计量比氧氮化物纳米粉及其制备方法
CN109502643B (zh) 一种硼镁共掺杂vo2粉体及其制备方法和应用
Liu et al. Low‐Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine
Tyagi Combustion synthesis: a soft-chemical route for functional nano-ceramics
Li et al. Influences of Yb2O3 characters and sulfurization conditions on preparation of Yb2S3
Zhang et al. Rod-like incipient ferroelectric SrTiO3 polycrystal with crystal-axis orientation
CN113603135A (zh) 一种钇掺杂小尺寸钛酸钡纳米粉体的制备方法
Li et al. Preparation and infrared transmittance of NaLaS2 ceramics
Qin et al. Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process
Ahmadi et al. Phase Formation, Microstructure and‎ Magnetic Properties of BiFeO3 Synthesized‎ by Sol-Gel Auto Combustion Method Using‎ Different Solvents
Lin et al. Rapid Preparation of V2O3 and VN Nanocrystals by Ammonolysis of the Precursor VOC2O4• H2O
CN115650292B (zh) 一种金红石相二氧化钒纳米粉体的制备方法
CN109942018A (zh) 一种纳米级钛酸锶粉末的制备方法
CN113414399B (zh) 一种高铜含量钨铜粉体及其制备方法
CN114162856B (zh) 一种高温高压合成铁掺杂氧化钛的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant