CN113451504B - 具有复合种子层结构的磁性随机存储器存储单元 - Google Patents

具有复合种子层结构的磁性随机存储器存储单元 Download PDF

Info

Publication number
CN113451504B
CN113451504B CN202010214288.8A CN202010214288A CN113451504B CN 113451504 B CN113451504 B CN 113451504B CN 202010214288 A CN202010214288 A CN 202010214288A CN 113451504 B CN113451504 B CN 113451504B
Authority
CN
China
Prior art keywords
layer
random access
copper
access memory
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010214288.8A
Other languages
English (en)
Other versions
CN113451504A (zh
Inventor
郭一民
肖荣福
陈峻
麻榆阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Information Technologies Co ltd
Original Assignee
Shanghai Information Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Information Technologies Co ltd filed Critical Shanghai Information Technologies Co ltd
Priority to CN202010214288.8A priority Critical patent/CN113451504B/zh
Publication of CN113451504A publication Critical patent/CN113451504A/zh
Application granted granted Critical
Publication of CN113451504B publication Critical patent/CN113451504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本申请提供公开了一种复合种子层结构及其磁性随机存储器存储单元。磁性随机存储器存储单元的复合种子层位于底电极与反平行铁磁超晶格层之间。为保证磁性随机存储器正常工作,要求其位于反平行铁磁超晶格层之下的复合种子层有超高的平整度的同时,其晶格常数要与反平行铁磁超晶格层高度匹配。在现有技术中,复合种子层通常采用经过PVD生长的Pt,其厚度大于5nm。本发明采用一种含金属铜或氮化铜的多层结构的复合种子层,增加反平行铁磁超晶格层的垂直磁性各向异性,同时在保证磁性随机存储器正常工作的前提下,降低了生产成本,避免了较厚的Pt难以刻蚀的问题。

Description

具有复合种子层结构的磁性随机存储器存储单元
技术领域
本发明涉及存储器技术领域,特别是关于一种含铜或氮化铜作为复合种子层的磁性随机存储器存储单元。
背景技术
近年来,采用磁性隧道结(Magnetic Tunnel Junction,MTJ)的垂直型自旋电子扭矩磁性存储器(pSTT-MRAM)具有非易失性,高速读写,大容量以及低能耗的特点,被人们认为是未来最有发展前途的存储器之一。磁性隧道结(Magnetic Tunnel Junction,MTJ)的基本结构包括底电极、种子层、反平行铁磁超晶格层、晶格隔断层、参考层、势垒层、自由层、覆盖层及顶电极。以上所有结构均使用物理气相沉积(Physical Vapor Deposition,PVD)的方法依序沉积而成。
隧穿磁阻效应(TMR)是指在铁磁-绝缘体薄膜(约1纳米)-铁磁材料中,其隧穿电阻大小随两边铁磁材料相对方向变化而变化的效应。磁性存储器TMR大小决定了磁性存储器的读取速度。低TMR会降低磁性存储器的读取速度,从而极大影响磁性存储器的性能。经过理论计算,以FeCoB/MgO/FeCoB为基本结构的磁性隧道结(MTJ)在RA=10ohm.um2时,TMR超过2000%。但使用物理气相沉积(Physical Vapor Deposition,PVD)的方法,且以FeCoB/MgO/FeCoB为基本结构的垂直型磁性隧道结在RA=10ohm.um2时,TMR一般不超过300%。2008年,日本东北大学的S.Ikeda,H.Ohno团队报道了平面型磁性隧道结CoFeB/MgO/CoFeB的电阻率变化在室温下达到604%。造成TMR理论值与实际值相差较大的原因有很多种,其中磁性隧道结的底电极,种子层和反平行铁磁超晶格层的平整度及晶格是否匹配对TMR有很大影响。
为保证磁性隧道结(Magnetic Tunnel Junction,MTJ)可以正常工作,所有层均需保证较高的平整度,而且层与层之间的晶体结构与晶格常数要匹配。为保证较高的平整度及晶体结构匹配,磁性隧道结最下面的底电极,种子层和反平行铁磁超晶格层的工艺尤为重要。底电极沉积在经过化学机械研磨工艺(CMP)的CMOS之上。采用化学机械研磨工艺的CMOS有较高的平整度。种子层沉积于底电极之上,反铁磁层之下,其晶体结构与晶格常数要基本匹配上下二层,才能得到器件存储元所需要的较高的垂直磁性各向异性(PMA)。反平行铁磁超晶格层对底电极和种子层的平整度及晶格匹配要求较高。
现有技术中,采用较厚的Pt,一般大于5nm,作为种子层。Pt与上层反平行铁磁超晶格层晶格常数匹配,但与下层底电极的晶格常数不匹配。故需要沉积一层较厚的Pt起晶格转换的作用。此方法一方面成本较贵,另一方面也给之后的刻蚀工艺带来难题。
TMR决定了磁性存储器的读取速度。低TMR会降低磁性存储器的读取速度,从而极大影响磁性存储器的性能。提高TMR已经成为目前的亟待解决的技术问题之一。优化种子层的材料及工艺条件是提高TMR的重要途经之一。
发明内容
为了解决上述技术问题,本申请的目的在于,提供一种含铜或氮化铜作为复合种子层的磁性随机存储器存储单元。
本申请的目的及解决其技术问题是采用以下技术方案来实现的。
依据本申请提出的一种含铜或氮化铜作为复合种子层的磁性随机存储器存储单元,包括底电极、复合种子层、反平行铁磁超晶格层、参考层、势垒层、自由层、覆盖层及顶电极顺序依次沉积。
进一步地,所述底电极由TiN、Ti,Ta、TaN、W、WN或其组合材料制成;优选TiN/Ta。使用物理气相沉积(Physical Vapor Deposition,PVD)沉积的Ta具有体心立方(BCC)晶体结构,晶格常数为3.30埃。
进一步地,所述复合种子层包括:含铜层,设置于底电极上,为铜或氮化铜构成;晶格稳定层,设置于所述含铜层上;铂(Pt)或钯(Pd)金属层,设置于所述晶格稳定层层上。
进一步地,所述含铜层的厚度为1-20nm;所述铂或钯金属层的厚度为1-5nm。
进一步地,所述复合种子层由Cu/X/Pt、CuN/X/Pt、(Cu/X/Pt)n、(Cu/X)n/Pt或(CuN/X/Pt)n制成,n为2-6的整数。X(所述晶格稳定层)的材料为W、Mo、Nb、Hf、Ta、Ru、Rh或Ir,厚度为0-1.0nm。Cu或CuN(含铜层)具有面心立方(FCC)晶体结构,晶格常数为3.61-3.88埃。随着氮含量增加,CuN的晶格常数更趋近于3.88埃。Pt具有面心立方(FCC)晶体结构,晶格常数为3.9埃。反平行铁磁超晶格层中的Co同样具有面心立方(FCC)晶体结构,晶格常数为3.54埃。Cu或CuN设置于Ta底电极上,极容易生长为面心立方(FCC)晶体结构,其晶格常数与Pt,Co晶格常数较其接近,晶格较为匹配。较薄的X位于CuN与Pt之间也可以起晶格稳定及阻挡铜扩散的作用。
进一步地,所述含铜层和所述铂或钯(Pt或Pd)层均为物理气相沉积工艺腔体中进行沉积。
进一步地,所述所述铂或钯(Pt或Pd)层沉积后,进一步保持在真空中采用等离子体刻蚀表面处理,以提高表面平整度。
进一步地,所述晶格稳定层为物理气相沉积工艺腔体中进行沉积。
进一步地,所述复合种子层进一步包括多次重复的结构:(含铜层/晶格稳定层/铂或钯层)x或(含铜层/晶格稳定层)x/铂或钯层,x为不大于6的正整数。
进一步地,所述反平行铁磁超晶格层包括下铁磁超晶格层、反平行铁磁耦合层和上铁磁层,所述反平行铁磁超晶格层具有[Co/Pt]nCo/(Ru,Ir或Rh)、[Co/Pt]nCo/(Ru,Ir或Rh)/Co[Pt/Co]m、[Co/Pd]nCo/(Ru,Ir或Rh)、[Co/Pd]nCo/(Ru,Ir或Rh)/Co[Pd/Co]m、[Co/Ni]nCo/(Ru,Ir或Rh)或[Co/Ni]nCo/(Ru,Ir或Rh)/Co[Ni/Co]m超晶格结构,其中,n≥1,m≥0。优选的,结构为下述自下而上结构之一:(Co/(Pt或Pd))n/Co/(Ru或Ir)/Co/((Pt或Pd)/Co)m,或(Co/(Pt或Pd))nCo/Ru/(W,Mo或Cr),n为1-6的整数,m为0-3的整数。
进一步地,所述参考层、反平行铁磁超晶格层之间,进一步包含一层晶格隔断层,所述晶格隔断层材料选为W、Mo、Nb、Hf、Ta。优选的,所述晶格隔断层由Ta,W,Mo,Hf,Fe,Co(Ta,W,Mo或Hf),Fe(Ta,W,Mo或Hf),FeCo(Ta,W,Mo或Hf)或FeCoB(Ta,W,Mo或Hf)制成,其厚度为0.15nm-0.4nm。主要起隔断反平行铁磁超晶格层和参考层的作用,由于反平行铁磁超晶格层具有面心立方(FCC)晶体结构,而参考层的晶体结构为体心立方(BCC),若二层直接接触,晶格会不匹配,会造成TMR的大幅下降。
进一步地,参考层的总厚度为0.8nm~1.5nm,其组成材料为铁磁性材料,一般为FeCoB,CoB,FeB,Fe等材料。在FeB或CoB中B的原子百分比为15%-40%;,在CoFeB合金中,Co:Fe的原子比例为1:3至3:1;的原子百分比为15%-40%;
进一步地,所述势垒层由非磁性金属氧化物或金属制成,优选MgO或MgO/Mg/MgO三层结构,势垒层总厚度为0.8-1.5nm。
进一步地,自由层的总厚度为1.5nm~2.5nm,其组成材料为铁磁性材料,一般为Co/(Pt,Pd,Ni或Ir)/(CoFeB,CoB或FeB),(CoFeB,CoB或FeB)/(Pt,Pd,Ni或Ir)/Co,(CoFeB,CoB或FeB)/Co/(Pt,Pd,Ni或Ir)/Co,(CoFeB,CoB或FeB)/(Pt,Pd,Ni或Ir)/(CoFeB,CoB或FeB),Co/(Pt,Pd,Ni或Ir)/Co/(CoFeB,CoB或FeB),(CoFeB,CoB或FeB)/Co/(Pt,Pd,Ni或Ir)/Co/(CoFeB,CoB或FeB),(CoFeB,CoB或FeB)/X/Co/(Pt,Pd,Ni或Ir)/Co/X/(CoFeB,CoB或FeB),(CoFeB,CoB或FeB)/X/Co/(Pt,Pd,Ni或Ir),Co/(Pt,Pd,Ni或Ir)/Co/X/(CoFeB,CoB或FeB),
其中,X为W,Mo,V,Nb,Cr,Hf,Ti,Zr,Ta,Sc,Y,Zn,Ru或Os等,厚度为0.2-0.5nm。
在FeB或CoB中B的原子百分比为15%-40%;,在CoFeB合金中,Co:Fe的原子比例为1:3至3:1;B的原子百分比为15%-40%;
进一步地,覆盖层为MgO,Pt,CoFeB,CoFeC,W,Mo,Mg,Nb,Ru,Hf,V,Cr等多种材料依次沉积而成,较优地可以选择MgO/(W,Mo,Hf)/Ru或MgO/Pt/(W,Mo,Hf)/Ru等结构。
进一步地,所述顶电极由Ta、TaN、Ti、TiN、W、WN或其组合材料制成。
进一步地,在所述底电极、复合种子层、反平行铁磁超晶格层、晶格隔断层、参考层、势垒层、自由层、覆盖层及顶电极沉积之后,在400℃的温度下进行60-90分钟的退火操作。退火过程会使物理气相沉积(Physical Vapor Deposition,PVD)的某些材料由非晶状态转变为晶体状态,从而使磁性隧道结(Magnetic Tunnel Junction,MTJ)的具有隧道磁电阻效应。
本申请提供了一种具有晶格促进层的磁性隧道结结构,为保证磁性随机存储器正常工作,要求其位于反平行铁磁超晶格层之下的复合种子层有超高的平整度的同时,其晶格常数要与反平行铁磁超晶格层高度匹配。更进一步,在反平行铁磁超晶格层(SyAF)之前的复合种子层沉积过程中,采用上述FCC(111)晶格促进层(CPL)及其的生长工艺,结合含金属铜或氮化铜的多层结构的复合种子层,能够使反平行铁磁超晶格层(SyAF)具有强烈的面心立方结构FCC(111)和PMA,同时在保证磁性随机存储器正常工作的前提下,降低了生产成本,避免了较厚的Pt难以刻蚀的问题。非常有利整个MTJ单元磁学,电学和良率的提升以及器件的缩微化。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请磁性随机存储器存储单元的结构示意图;
其中,附图标记包括:110-底电极,210-复合种子层,220-反平行铁磁超晶格层,221-下铁磁层,222-反平行铁磁耦合层,223-上铁磁层,230-晶格隔断层,240-参考层,250-势垒层,260-自由层,261-自由层(I),262-耦合层,263-自由层(II),280-覆盖层,310-硬掩模层。
图2-a为本申请磁性随机存储器复合种子层实施方案一示意图。
图2-b为本申请磁性随机存储器复合种子层实施方案二示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本发明不限于此。
在附图中,为了清晰、理解和便于描述,扩大设备、***、组件、电路的配置范围。将理解的是,当组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施例,对依据本发明提出的一种含铜或氮化铜作为复合种子层的磁性随机存储器存储单元,其具体结构、特征及其功效,详细说明如后。
图1为本申请磁性随机存储器存储单元的结构示意图。在本申请的一个实施例中,提供了一种含铜或氮化铜作为复合种子层的磁性随机存储器存储单元。在MRAM磁性隧道结多层膜的物理气相沉积(Physical Vapor Deposition,PVD)的过程中,在不隔断真空的条件下,底电极上面沉积一层铜或氮化铜,改善了现有技术中Pt与底电极材料晶格常数不匹配的问题,有效提高了TMR。如图1所示,磁性随机存储器存储单元包括层叠设置的110-底电极,210-复合种子层,220-反平行铁磁超晶格层,221-下铁磁层,222-反平行铁磁耦合层,223-上铁磁层,230-晶格隔断层,240-参考层,250-势垒层,260-自由层,261-自由层(I),262-耦合层,263-自由层(II),280-覆盖层,310-硬掩模层。
底电极110组成材料为TiN,Ti,Ta,TaN,W,WN或者它们的组合,优选TiN。一般采用物理气相沉积(Physical Vapor Deposition,PVD)的方式实现,通常在沉积之后,对其平坦化处理,以达到制作磁性隧道结的表面平整度。厚度一般为10-30nm。
复合种子层210一般由Cu/Ta/Pt构成,更进一步地,也可以是CuN/Ta/Pt,CuN/Ru/Pt或Cu/Ru/Pt等多层结构。
图2-a为磁性随机存储器复合种子层210实施方案一,铜或氮化铜211采用物理气相沉积(Physical Vapor Deposition,PVD)的方式实现,气体采用Ar和N2,N2含量为10%-40%,厚度为1-20nm。铂(Pt)或钯(Pd)金属层212采用物理气相沉积(Physical VaporDeposition,PVD)的方式实现,厚度一般为1-5nm。
图2-b为磁性随机存储器复合种子层210实施方案二,在铜或氮化铜(CuN)211与铂(Pt)或钯(Pd)金属层212之间***213晶格稳定层,用以阻挡铜原子的扩散,所述晶格稳定层213的材料为W、Mo、Nb、Hf、Ta、Ru、Rh或Ir,厚度为0.15nm-0.4nm。所述晶格稳定层的厚度为0-1.5nm。
所述复合种子层210由Cu/X/Pt、CuN/X/Pt、(Cu/X/Pt)n、(Cu/X)n/Pt或(CuN/X/Pt)n制成,n为2-6的整数。X(所述晶格稳定层213)的材料为W、Mo、Nb、Hf、Ta、Ru、Rh或Ir,厚度为0-1.0nm。Cu或CuN(含铜层211)具有面心立方(FCC)晶体结构,晶格常数为3.61-3.88埃。随着氮含量增加,CuN的晶格常数更趋近于3.88埃。Pt具有面心立方(FCC)晶体结构,晶格常数为3.9埃。反平行铁磁超晶格层中的Co同样具有面心立方(FCC)晶体结构,晶格常数为3.54埃。Cu或CuN设置于Ta底电极上,极容易生长为面心立方(FCC)晶体结构,其晶格常数与Pt,Co晶格常数较其接近,晶格较为匹配。较薄的X位于CuN与Pt之间也可以起晶格稳定及阻挡铜扩散的作用。
铂(Pt)或钯(Pd)金属层212可以采用适当功率,适当压力的等离子刻蚀工艺处理,用来优化平整度,满足反平行铁磁超晶格层对平整度的要求。
进一步地,所述晶格稳定层213为物理气相沉积工艺腔体中进行沉积。
进一步地,所述复合种子层210进一步包括多次重复的结构:(含铜层/晶格稳定层/铂或钯层)x,或(含铜层/晶格稳定层)x/铂或钯层,x为不大于6的正整数。
反平行铁磁超晶格层(Anti-Parallel Magnetic Supper-lattice)220一般由下铁磁层221,反平行铁磁耦合层222,上铁磁层223。其主要结构为[Co/Pt]nCo/(Ru,Ir或Rh)、[Co/Pt]nCo/(Ru,Ir或Rh)/Co[Pt/Co]m、[Co/Pd]nCo/(Ru,Ir或Rh)、[Co/Pd]nCo/(Ru,Ir或Rh)/Co[Pd/Co]m、[Co/Ni]nCo/(Ru,Ir或Rh)或[Co/Ni]nCo/(Ru,Ir或Rh)/Co[Ni/Co]m超晶格结构,其中,n≥1,m≥0。优选的,结构为下述自下而上结构之一:(Co/(Pt或Pd))n/Co/(Ru或Ir)/Co/((Pt或Pd)/Co)m,或(Co/(Pt或Pd))nCo/Ru/(W,Mo或Cr),n为1-6的整数,m为0-3的整数,反平行铁磁超晶格层220具有很强的垂直磁性各向异性(PMA)。
所述参考层、反平行铁磁超晶格层之间,进一步包含一层晶格隔断层,所述晶格隔断层材料选为W、Mo、Nb、Hf、Ta。优选的,晶格隔断层230由Ta,W,Mo,Hf,Fe,Co(Ta,W,Mo或Hf),Fe(Ta,W,Mo或Hf),FeCo(Ta,W,Mo或Hf)或FeCoB(Ta,W,Mo或Hf)制成,其厚度为0.15nm-0.4nm。
参考层240其组成材料为铁磁性材料,一般为FeCoB,CoB,FeB,Fe等材料。在FeB或CoB中B的原子百分比为15%-40%;在CoFeB合金中,Co:Fe的原子比例为1:3至3:1;其厚度为0.8nm~1.5nm。
势垒层250由非磁性金属氧化物或金属制成,一般为MgO或MgO/Mg/MgO结构,厚度为0.8-1.5nm。
自由层260由自由层(I)261,耦合层262,自由层(II)263组成。总厚度为1.8nm~3nm。
自由层(I)261厚度为1.3-1.9nm,材料为CoFeB,CoB或FeB。耦合层262材料为W,Mo,V,Nb,Cr,Hf,Ti,Zr,Ta,Sc,Y,Zn,Ru或Os等,厚度为0.2-0.5nm。自由层(II)263厚度为0.3-0.8nm,材料为CoFeB,CoB或FeB。在FeB或CoB中B的原子百分比为15%-40%;,在CoFeB合金中,Co:Fe的原子比例为1:3至3:1;的原子百分比为15%-40%;
覆盖层270为MgO,Pt,CoFeB,CoFeC,W,Mo,Mg,Nb,Ru,Hf,V,Cr等多种材料依次沉积而成,较优地可以选择MgO/(W,Mo,Hf)/Ru或MgO/Pt/(W,Mo,Hf)/Ru等结构。
硬掩模层310由Ta、TaN、Ti、TiN、W、WN或其组合材料制成。
以上所有材料在具体工艺过程中,通过调整PVD沉积条件改变材料组成成分,并可添加等离子刻蚀工艺,红外加热工艺,冷却工艺来对材料进行改性以获得最优的性能。
在所有膜层沉积之后,优选400℃的温度下,60-90分钟的退火,以使得参考层,势垒层和自由层从非晶相变为体心立方(BCC)的晶体结构。
本申请的另一目的的一种磁性随机存储器架构,包括多个存储单元,每一储存单元设置于位线与字线相交的部位,每一存储单元包括:如先前所述的任一种磁性隧道结;底电极,位于所述磁性隧道结下方;以及,顶电极,位于所述磁性隧道结上方。
本申请提供了一种具有晶格促进层的磁性隧道结结构,为保证磁性随机存储器正常工作,要求其位于反平行铁磁超晶格层之下的复合种子层有超高的平整度的同时,其晶格常数要与反平行铁磁超晶格层高度匹配。更进一步,在反平行铁磁超晶格层(SyAF)之前的复合种子层沉积过程中,采用上述FCC(111)晶格促进层(CPL)及其的生长工艺,结合含金属铜或氮化铜的多层结构的复合种子层,能够使反平行铁磁超晶格层(SyAF)具有强烈的面心立方结构FCC(111)和PMA,同时在保证磁性随机存储器正常工作的前提下,降低了生产成本,避免了较厚的Pt难以刻蚀的问题。非常有利整个MTJ单元磁学,电学和良率的提升以及器件的缩微化。
“在本申请的一实施例中”及“在各种实施例中”等用语被重复地使用。此用语通常不是指相同的实施例;但它也可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的具体实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以具体实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (10)

1.一种磁性随机存储器存储单元,所述磁性随机存储器存储单元由上至下结构包括顶电极、磁性隧道结与底电极,所述磁性隧道结由上至下结构包括覆盖层、自由层、势垒层、参考层、反平行铁磁超晶格层与复合种子层,其特征在于,所述复合种子层包括:
含铜层,设置于底电极上,为铜或氮化铜构成;
晶格稳定层,设置于所述含铜层上;
铂或钯(Pt或Pd)金属层,设置于所述晶格稳定层上;
其中,所述含铜层与所述铂或钯金属层皆为面心立方(FCC)晶体结构,所述含铜层的晶格常数为3.61-3.88埃,所述复合种子层用于引导所述反平行铁磁超晶格层的生成,以使所述反平行铁磁超晶格层生成时形成面心立方FCC(111)晶向结构并具有垂直磁性各向异性。
2.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述含铜层的厚度为1-20nm;所述铂或钯金属层的厚度为1-5nm。
3.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述含铜层和所述铂或钯(Pt或Pd)金属层均为物理气相沉积工艺腔体中进行沉积。
4.如权利要求3所述磁性随机存储器存储单元,其特征在于,所述铂或钯(Pt或Pd)金属层沉积后,进一步保持在真空中采用等离子体刻蚀表面处理,以提高表面平整度。
5.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述晶格稳定层材料选为Ta、Hf、W、Mo、Nb、Ru、Rh或Ir,其厚度为0nm-1.5nm。
6.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述晶格稳定层为物理气相沉积工艺腔体中进行沉积。
7.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述复合种子层进一步包括多次重复的结构:(含铜层/晶格稳定层/铂或钯层)x或(含铜层/晶格稳定层)x/铂或钯层,x为不大于6的正整数。
8.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述反平行铁磁超晶格层为下述自下而上结构之一:(Co/(Pt或Pd))n/Co/(Ru,Rh或Ir)/Co/((Pt或Pd)/Co)m,或(Co/(Pt或Pd))nCo/Ru/(W,Mo或Cr),n为1-6的整数,m为0-3的整数。
9.如权利要求1所述磁性随机存储器存储单元,其特征在于,所述参考层、反平行铁磁超晶格层之间,进一步包含一层晶格隔断层,所述晶格隔断层材料选为W、Mo、Nb、Hf或Ta,厚度为0.15nm-0.4nm。
10.一种磁性随机存储器,其特征在于,包括如权利要求1-9任一项所述的磁性随机存储器存储单元。
CN202010214288.8A 2020-03-24 2020-03-24 具有复合种子层结构的磁性随机存储器存储单元 Active CN113451504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010214288.8A CN113451504B (zh) 2020-03-24 2020-03-24 具有复合种子层结构的磁性随机存储器存储单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010214288.8A CN113451504B (zh) 2020-03-24 2020-03-24 具有复合种子层结构的磁性随机存储器存储单元

Publications (2)

Publication Number Publication Date
CN113451504A CN113451504A (zh) 2021-09-28
CN113451504B true CN113451504B (zh) 2023-03-24

Family

ID=77806519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010214288.8A Active CN113451504B (zh) 2020-03-24 2020-03-24 具有复合种子层结构的磁性随机存储器存储单元

Country Status (1)

Country Link
CN (1) CN113451504B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329882A (ja) * 1998-05-13 1999-11-30 Sharp Corp 交換結合膜の製造方法および磁気抵抗効果素子
CN105229811A (zh) * 2013-04-16 2016-01-06 海德威科技公司 全补偿合成反铁磁的铁电性应用
WO2016148391A1 (ko) * 2015-03-18 2016-09-22 한양대학교 산학협력단 메모리 소자
CN110660903A (zh) * 2018-06-29 2020-01-07 英特尔公司 磁存储器设备和制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019703B2 (ja) * 2001-12-07 2007-12-12 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体およびその製造方法
JP2003217107A (ja) * 2002-01-17 2003-07-31 Fuji Electric Co Ltd 磁気記録媒体
US8300356B2 (en) * 2010-05-11 2012-10-30 Headway Technologies, Inc. CoFe/Ni Multilayer film with perpendicular anistropy for microwave assisted magnetic recording
US8488373B2 (en) * 2011-10-03 2013-07-16 Tdk Corporation Spin injection layer robustness for microwave assisted magnetic recording
US9490054B2 (en) * 2012-10-11 2016-11-08 Headway Technologies, Inc. Seed layer for multilayer magnetic materials
KR102124361B1 (ko) * 2013-11-18 2020-06-19 삼성전자주식회사 수직 자기터널접합을 포함하는 자기 기억 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329882A (ja) * 1998-05-13 1999-11-30 Sharp Corp 交換結合膜の製造方法および磁気抵抗効果素子
CN105229811A (zh) * 2013-04-16 2016-01-06 海德威科技公司 全补偿合成反铁磁的铁电性应用
WO2016148391A1 (ko) * 2015-03-18 2016-09-22 한양대학교 산학협력단 메모리 소자
CN110660903A (zh) * 2018-06-29 2020-01-07 英特尔公司 磁存储器设备和制造方法

Also Published As

Publication number Publication date
CN113451504A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
KR100512180B1 (ko) 자기 랜덤 엑세스 메모리 소자의 자기 터널 접합 및 그의형성방법
US9178135B2 (en) Magnetic device
US8934290B2 (en) Magnetoresistance effect device and method of production of the same
US20230060687A1 (en) Dual Magnetic Tunnel Junction Devices For Magnetic Random Access Memory (Mram)
CN115915906A (zh) 存储器件
US9209386B2 (en) Magneto-resistive element having a ferromagnetic layer containing boron
CN111613720B (zh) 一种磁性随机存储器存储单元及磁性随机存储器
JP6440769B2 (ja) 垂直磁気異方性を有する合金薄膜
US20220238799A1 (en) Magnetoresistive element having a composite recording structure
US11302372B2 (en) MTJ stack containing a top magnetic pinned layer having strong perpendicular magnetic anisotropy
CN113451504B (zh) 具有复合种子层结构的磁性随机存储器存储单元
US20230225220A1 (en) Magnetic tunneling junction device and memory device including the same
CN112864308B (zh) 磁性隧道结结构及磁性随机存储器
US20220246836A1 (en) Composite recording structure for an improved write profermance
CN112802960A (zh) 磁性隧道结结构及其磁性随机存储器
CN112490352A (zh) 磁性随机存储器的磁性隧道结结构
CN112928203B (zh) 多层覆盖层的磁性隧道结结构及磁性随机存储器
CN113346006B (zh) 磁性隧道结结构及其磁性随机存储器
CN112928201B (zh) 具有晶格传输作用的合成反铁层的磁性隧道结结构
CN112928205B (zh) 提升磁垂直各向异性的磁性隧道结及磁性随机存储器
CN112864313B (zh) 磁性随机存储器的磁性隧道结结构
CN112750946B (zh) 一种磁性随机存储器势垒层和自由层结构单元及其制备方法
US20230012255A1 (en) Perpendicular mtj element having a cube-textured reference layer and methods of making the same
CN117178362A (zh) 磁性器件及其制作方法、磁性存储器、电子设备
CN112928202A (zh) 磁性隧道结结构及其应用的磁性随机存储器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant