CN113429966A - 一种金属早期腐蚀探针及制备方法 - Google Patents

一种金属早期腐蚀探针及制备方法 Download PDF

Info

Publication number
CN113429966A
CN113429966A CN202110666866.6A CN202110666866A CN113429966A CN 113429966 A CN113429966 A CN 113429966A CN 202110666866 A CN202110666866 A CN 202110666866A CN 113429966 A CN113429966 A CN 113429966A
Authority
CN
China
Prior art keywords
core material
metal
suspension
zno
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110666866.6A
Other languages
English (en)
Other versions
CN113429966B (zh
Inventor
朱琦
贾洪帅
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202110666866.6A priority Critical patent/CN113429966B/zh
Publication of CN113429966A publication Critical patent/CN113429966A/zh
Application granted granted Critical
Publication of CN113429966B publication Critical patent/CN113429966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7785Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于材料科学领域,提出了一种金属早期腐蚀探针及制备方法。通过将ZnO或TiO2包覆在受紫外光激发能产生发光或余辉的无机发光材料表面的方法,制备出具有优异性能的荧光探针。该荧光探针为无机物,不易老化、寿命长;且其发射出的近红外光对有机物的穿透能力强;该荧光探针还拥有余辉发射性能,摆脱了腐蚀探测需要实时激发的限制,解决了激发光噪声的问题。本方法制备的荧光探针包覆程度高,致密度好,包覆厚度易于调控。且操作简单,成本较低,绿色环保,为新型荧光探针的合成展示了良好的理论基础,其具有极高的指导意义和应用前景。

Description

一种金属早期腐蚀探针及制备方法
技术领域
本发明属于材料科学领域,特别涉及一种金属早期腐蚀探针及制备方法。
背景技术
腐蚀存在于人们生产生活中的各个领域,每年由于腐蚀破坏造成的严重事故不计其数,带来的经济损失数额巨大。因此,金属的腐蚀防护和腐蚀探测是人们不得不重视的问题。金属腐蚀探测可以监测设备在各种工作环境下的腐蚀状态等相关信息,从而得到设备性能和结构的变化,避免重大事故的发生及经济损失的产生。相对于涡流、光纤、超声波等腐蚀探测技术,荧光腐蚀探测技术因其简单、可视、无损的探测优势,在金属腐蚀探测领域有着重要且不可替代的地位。该探测技术是一种将荧光材料作为探针,依靠荧光探针与金属腐蚀时产生的金属离子结合或因腐蚀引起的环境pH值变化产生荧光强度变化的性质,来监测金属腐蚀状况的腐蚀探测技术。(金属腐蚀发生时,一般会产生碱性或者酸性环境。如:金属镁及合金发生反应时有:Mg+2H2O=Mg(OH)2+H2,金属铝及合金发生反应时有:Al+3H2O=Al(OH)3+3H+。)目前荧光探针的种类已较为丰富,但普遍存在以下三点不足:荧光腐蚀探针均为有机物,易老化、寿命短;荧光均为可见光,对有机涂层的穿透能力有限;进行探测时均需实时激发,存在激发光噪声且具有一定局限性。
无机材料中存在多种多样且性能优异的发光材料,例如:ZnGa2O4:0.05Cr3+在受紫外光或可见光激发时会产生近红外光发射,并拥有余辉发射性能;Y2O3:Eu3+在受紫外光激发时会产生红光发射。这些发光材料化学稳定性良好,若在其表面包覆一层对pH值敏感且可以阻隔紫外光的ZnO或TiO2,将包覆后的复合材料ZnGa2O4:0.05Cr3+@ZnO,ZnGa2O4:0.05Cr3 +@TiO2,Y2O3:Eu3+@ZnO和Y2O3:Eu3+@TiO2用作荧光探针,便可以弥补上述荧光探针存在的不足。该荧光探针均为无机物,不易老化、寿命长;该荧光探针发射近红外光,该波长范围的光对有机物的穿透能力强(一般情况下荧光探针分散在有机涂层中使用);该荧光探针还拥有余辉发射性能,摆脱了腐蚀探测需要实时激发的限制,解决了激发光噪声的问题。
发明内容
针对现有荧光探针存在的不足,本文发明了一种新型荧光腐蚀探针并提供了探针的制备方法。
1、本发明的物质组成:
该探针为包覆结构,其中核心材料为受紫外光激发能产生发光或余辉的无机发光材料,壳层材料为ZnO或TiO2
核心材料包括但不仅限于ZnGa2O4:0.05Cr3+和Y2O3:Eu3+
作用机理(核心材料以ZnGa2O4:0.05Cr3+为例):ZnO和TiO2同为两性氧化物,既可以溶于酸也可以溶于碱;这两种物质还可以阻隔紫外线。未发生腐蚀时,用紫外光激发荧光探针,由于壳层材料ZnO/TiO2对紫外光的阻隔作用,仅有小部分紫外光能穿过壳层对核心材料ZnGa2O4:0.05Cr3+进行激发,所以近红外光强度弱甚至监测不到近红外光;当腐蚀发生时,金属周围环境的pH值发生变化,壳层材料ZnO/TiO2发生溶解,核心材料ZnGa2O4:0.05Cr3+逐渐裸露出来,所以在紫外光激发下会发射较强的近红外光,并且在激发源关闭后仍可观察到近红外光。因此通过监测荧光探针的荧光强度的变化便可探测金属得腐蚀状况。
2、本发明的制备方法:
(1)上述的金属早期腐蚀探针的制备方法,其中壳层材料为ZnO,包括步骤如下:
步骤1:称取核心材料颗粒,研磨至均匀细致;然后将其分散到醋酸锌乙醇溶液中,搅拌并超声,使核心材料颗粒在溶液中分散均匀无沉积;核心材料颗粒与醋酸锌的摩尔量之比为10%~100%;
步骤2:将步骤1中含有核心材料的悬浊液放入水浴锅中加热搅拌,然后将氢氧化钠乙醇溶液缓慢加入其中,NaOH与醋酸锌的摩尔量之比不超过200%;滴加完成后将盛有悬浊液的容器封闭处理,继续加热搅拌0.5~4h;
步骤3:加热搅拌结束后,将悬浊液离心、清洗、烘干;然后将得到的粉体进行煅烧;制得金属早期腐蚀探针。
上述步骤2:水浴加热温度为室温~100℃。
上述步骤3:离心时间为3min,转速为4000r/min。
上述步骤3:清洗为2次无水乙醇的离心清洗。
上述步骤3:烘干温度为50~60℃,时间为24~48h。
上述步骤3:煅烧气氛为空气,温度为200~500℃,时间为0.5~24h。
(2)金属早期腐蚀探针的制备方法,其中壳层材料为TiO2,包括步骤如下:
步骤1:称取核心材料颗粒,研磨至均匀细致;然后将其分散至无水乙醇与去离子水的混合溶液中,搅拌并超声,获得分散均匀的悬浊液;用硝酸将悬浊液的pH值调节至pH<7;
步骤2:将钛酸四丁酯乙醇溶液缓慢加入到步骤1的悬浊液中,核心材料与钛酸四丁酯的摩尔量之比为10%~100%;步骤1中的去离子水与钛酸四丁酯的体积之比不小于100%;加入过程中持续对悬浊液进行搅拌,然后将盛有悬浊液的容器封闭处理,继续搅拌0.5~4h;
步骤3:搅拌结束后,将悬浊液离心、清洗、烘干;然后将得到的粉体进行煅烧,制得金属早期腐蚀探针。
上述步骤3:离心时间为3min,转速为4000r/min。
上述步骤3:清洗为2次无水乙醇的离心清洗。
上述步骤3:烘干温度为50~60℃,时间为24~48h。
上述步骤3:煅烧气氛为空气,温度为200~500℃,时间为0.5~24h。
与现有技术相比,本发明的特点和有益效果是:
该荧光探针为无机物,与有机荧光探针相比,具有不易老化、寿命长的优势;该荧光探针发射近红外光,该波长范围的光对有机物的穿透能力强(一般情况下荧光探针分散在有机涂层中使用);该荧光探针还拥有余辉发射性能,摆脱了腐蚀探测需要实时激发的限制,解决了激发光噪声的问题。本制备方法合成的荧光探针包覆程度高,致密度好,包覆厚度易于调控。且操作简单,成本较低,绿色环保。
附图说明
图1是本发明的原理示意图。
图2(a)是本发明实施例1中现有的ZnGa2O4:0.05Cr3+的SEM扫描照片。
(b)是本发明实施例1中制备的ZnGa2O4:0.05Cr3+@ZnO的SEM扫描照片。
(c)是本发明实施例2中制备的ZnGa2O4:0.05Cr3+@TiO2的SEM扫描照片。
图3是本发明实施例1中制备的ZnGa2O4:0.05Cr3+@ZnO的XRD图谱。
图4是本发明实施例1中制备的ZnGa2O4:0.05Cr3+@ZnO的发射图谱。
图5是本发明实施例1中制备的ZnGa2O4:0.05Cr3+@ZnO的余辉曲线图谱。
图6是本发明实施例2中制备的ZnGa2O4:0.05Cr3+@TiO2的XRD图谱。
图7是本发明实施例2中制备的ZnGa2O4:0.05Cr3+@TiO2发射图谱。
图8是本发明实施例2中制备的ZnGa2O4:0.05Cr3+@TiO2余辉曲线图谱。
图9(a)是本发明实施例3中现有的Y2O3:Eu3+的SEM扫描照片。
(b)是本发明实施例3中制备的Y2O3:Eu3+@ZnO的SEM扫描照片。
图10是本发明实施例3中制备的Y2O3:Eu3+@ZnO的XRD图谱。
图11是本发明实施例3中制备的Y2O3:Eu3+@ZnO发射图谱。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施例。
本发明实例中所采用的化学试剂均为分析纯级产品;采用型号为PW3040/60的X’Pert Pro X射线衍射仪进行XRD物相分析;采用JSM-7001F型JEOL场发射扫描电镜进行形貌观察和分析;采用FP8600型荧光分光光度计进行发射光谱的测试,采用Fluorolog模块化荧光分光光度计进行余辉性能测试。
实施例1
将0.68g二水合醋酸锌溶于100mL无水乙醇,配置醋酸锌乙醇溶液;将0.25g氢氧化钠加入到无水乙醇与去离子水的混合溶液(其中无水乙醇25mL,去离子水10mL)中,配置氢氧化钠溶液。称取现有的ZnGa2O4:0.05Cr3+颗粒0.11g,研磨至均匀细致;然后将其分散到上述醋酸锌乙醇溶液中,搅拌并超声,使ZnGa2O4:0.05Cr3+颗粒在溶液中分散均匀无沉积。将含有ZnGa2O4:0.05Cr3+的悬浊液放入水浴锅中加热搅拌(温度为60℃),然后将配置好的氢氧化钠溶液缓慢加入其中,滴加完成后将盛有悬浊液的容器封闭处理,继续加热搅拌4h。加热搅拌结束后,将悬浊液离心获得底部沉淀,用无水乙醇清洗2次后于50℃温度下烘干24h,然后将得到的粉体在空气气氛中200℃煅烧2h。最后得到荧光探针ZnGa2O4:0.05Cr3+@ZnO。
如图2(a)为核心材料ZnGa2O4:0.05Cr3+颗粒的扫描形貌图,颗粒尺寸在0.5~3.0μm,表面光滑。如图2(b)为荧光探针ZnGa2O4:0.05Cr3+@ZnO的扫描形貌图,由于ZnGa2O4:0.05Cr3+被ZnO包覆,所以表面状态粗糙。其XRD图谱如图3所示,证明其为ZnGa2O4:0.05Cr3+和ZnO双相。图4为ZnGa2O4:0.05Cr3+和ZnGa2O4:0.05Cr3+@ZnO在245nm紫外光照射下的发射图谱,由于ZnO阻隔紫外线的作用,ZnGa2O4:0.05Cr3+@ZnO近红外光的发射强度明显减弱。图5为ZnGa2O4:0.05Cr3+和ZnGa2O4:0.05Cr3+@ZnO经254nm紫外光照射5min后的余辉曲线图,同样因ZnO阻隔紫外线的作用,ZnGa2O4:0.05Cr3+@ZnO近红外余辉强度减弱。
实施例2
量取1mL钛酸四丁酯,将其溶于5mL无水乙醇中,配置钛酸四丁酯乙醇溶液。称取现有的ZnGa2O4:0.05Cr3+颗粒0.11g,研磨至均匀细致;然后将其分散至无水乙醇与去离子水的混合溶液(无水乙醇85mL,去离子水10mL)中,搅拌并超声,获得分散均匀的悬浊液;用硝酸将悬浊液的pH值调节为3.0。将配置好的钛酸四丁酯乙醇溶液缓慢加入到悬浊液中,加入过程中持续对悬浊液进行搅拌,然后将盛有悬浊液的容器封闭处理,继续搅拌2h。搅拌结束后,将悬浊液离心获得底部沉淀,用无水乙醇清洗2次后于50℃温度下烘干24h,然后将得到的粉体在空气气氛中500℃煅烧2h。最后得到荧光探针ZnGa2O4:0.05Cr3+@TiO2
如图2(c)为荧光探针ZnGa2O4:0.05Cr3+@TiO2的扫描形貌图,由于ZnGa2O4:0.05Cr3+被TiO2包覆,所以其表面状态粗糙。其XRD图谱如图6所示,证明其为ZnGa2O4:0.05Cr3+和TiO2双相。图7为ZnGa2O4:0.05Cr3+和ZnGa2O4:0.05Cr3+@TiO2在245nm紫外光照射下的发射图谱,由于TiO2阻隔紫外线的作用,ZnGa2O4:0.05Cr3+@TiO2近红外光的发射强度明显减弱。图8为ZnGa2O4:0.05Cr3+和ZnGa2O4:0.05Cr3+@TiO2经254nm紫外光照射5min后的余辉曲线图,同样因TiO2阻隔紫外线的作用,ZnGa2O4:0.05Cr3+@TiO2近红外余辉强度减弱。
实施例3
将0.68g二水合醋酸锌溶于100mL无水乙醇,配置醋酸锌乙醇溶液;将0.25g氢氧化钠加入到无水乙醇与去离子水的混合溶液(其中无水乙醇25mL,去离子水10mL)中,配置氢氧化钠溶液。称取现有的Y2O3:Eu3+颗粒0.11g,研磨至均匀细致;然后将其分散到上述醋酸锌乙醇溶液中,搅拌并超声,使Y2O3:Eu3+颗粒在溶液中分散均匀无沉积。将含有Y2O3:Eu3+的悬浊液放入水浴锅中加热搅拌(温度为60℃),然后将配置好的氢氧化钠溶液缓慢加入其中,滴加完成后将盛有悬浊液的容器封闭处理,继续加热搅拌4h。加热搅拌结束后,将悬浊液离心获得底部沉淀,用无水乙醇清洗2次后于50℃温度下烘干24h,然后将得到的粉体在空气气氛中200℃煅烧2h。最后得到荧光探针Y2O3:Eu3+@ZnO。
如图9(a)为核心材料Y2O3:Eu3+颗粒的扫描形貌图,球形颗粒尺寸约为400nm,表面光滑。如图9(b)为荧光探针Y2O3:Eu3+@ZnO的扫描形貌图,由于Y2O3:Eu3+被ZnO包覆,所以表面状态粗糙,且球形颗粒出现微弱增大。其XRD图谱如图10所示,证明其为Y2O3:Eu3+和ZnO双相。图11为Y2O3:Eu3+和Y2O3:Eu3+@ZnO在245nm紫外光照射下的发射图谱,由于ZnO阻隔紫外线的作用,Y2O3:Eu3+@ZnO的红光发射强度明显减弱。

Claims (10)

1.一种金属早期腐蚀探针,其特征在于,该探针为包覆结构,其中核心材料为受紫外光激发能产生发光或余辉的无机发光材料,壳层材料为ZnO或TiO2
2.根据权利要求1所述的金属早期腐蚀探针,其特征在于,所述核心材料为ZnGa2O4:0.05Cr3+或Y2O3:Eu3+
3.权利要求1或2所述的金属早期腐蚀探针的制备方法,其中壳层材料为ZnO,其特征在于,包括步骤如下:
步骤1:称取核心材料颗粒,研磨至均匀细致;然后将其分散到醋酸锌乙醇溶液中,搅拌并超声,使核心材料颗粒在溶液中分散均匀无沉积;核心材料颗粒与醋酸锌的摩尔量之比为10%~100%;
步骤2:将步骤1中含有核心材料的悬浊液放入水浴锅中加热搅拌,然后将氢氧化钠乙醇溶液缓慢加入其中,NaOH与醋酸锌的摩尔量之比不超过200%;滴加完成后将盛有悬浊液的容器封闭处理,继续加热搅拌0.5~4h;
步骤3:加热搅拌结束后,将悬浊液离心、清洗、烘干;然后将得到的粉体进行煅烧;制得金属早期腐蚀探针。
4.根据权利要求3所述的金属早期腐蚀探针的制备方法,其中壳层材料为ZnO,其特征在于,所述步骤2:水浴加热温度为室温~100℃。
5.根据权利要求3所述的金属早期腐蚀探针的制备方法,其中壳层材料为ZnO,其特征在于,所述步骤3:烘干温度为50~60℃,时间为24~48h。
6.根据权利要求3所述的金属早期腐蚀探针的制备方法,其中壳层材料为ZnO,其特征在于,所述步骤3:煅烧气氛为空气,温度为200~500℃,时间为0.5~24h。
7.权利要求1或2所述的金属早期腐蚀探针的制备方法,其中壳层材料为TiO2,其特征在于,包括步骤如下:
步骤1:称取核心材料颗粒,研磨至均匀细致;然后将其分散至无水乙醇与去离子水的混合溶液中,搅拌并超声,获得分散均匀的悬浊液;用硝酸将悬浊液的pH值调节至pH<7;
步骤2:将钛酸四丁酯乙醇溶液缓慢加入到步骤1的悬浊液中,核心材料与钛酸四丁酯的摩尔量之比为10%~100%;步骤1中的去离子水与钛酸四丁酯的体积之比不小于100%;加入过程中持续对悬浊液进行搅拌,然后将盛有悬浊液的容器封闭处理,继续搅拌0.5~4h;
步骤3:搅拌结束后,将悬浊液离心、清洗、烘干;然后将得到的粉体进行煅烧,制得金属早期腐蚀探针。
8.根据权利要求7所述的金属早期腐蚀探针的制备方法,其中壳层材料为TiO2,其特征在于,所述步骤3:离心时间为3min,转速为4000r/min。
9.根据权利要求7所述的金属早期腐蚀探针的制备方法,其中壳层材料为TiO2,其特征在于,所述步骤3:烘干温度为50~60℃,时间为24~48h。
10.根据权利要求7所述的金属早期腐蚀探针的制备方法,其中壳层材料为TiO2,其特征在于,所述步骤3:煅烧气氛为空气,温度为200~500℃,时间为0.5~24h。
CN202110666866.6A 2021-06-16 2021-06-16 一种金属早期腐蚀探针及制备方法 Active CN113429966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110666866.6A CN113429966B (zh) 2021-06-16 2021-06-16 一种金属早期腐蚀探针及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110666866.6A CN113429966B (zh) 2021-06-16 2021-06-16 一种金属早期腐蚀探针及制备方法

Publications (2)

Publication Number Publication Date
CN113429966A true CN113429966A (zh) 2021-09-24
CN113429966B CN113429966B (zh) 2022-04-26

Family

ID=77756127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110666866.6A Active CN113429966B (zh) 2021-06-16 2021-06-16 一种金属早期腐蚀探针及制备方法

Country Status (1)

Country Link
CN (1) CN113429966B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235504A (zh) * 2008-03-04 2008-08-06 广州市二轻工业科学技术研究所 一种金属防腐蚀用纳米Sb2O5/TiO2复合涂层的制备方法
CN101642702A (zh) * 2009-09-09 2010-02-10 吉林大学 由半导体材料和上转换材料组成的红光或红外光催化材料
US20180282622A1 (en) * 2014-11-04 2018-10-04 The Boardm of Regents of The University of Texas System Core@shell particles composed of sensitizing persistent phosphor core and upconversion shell and methods of making same
CN108949143A (zh) * 2017-05-19 2018-12-07 上海汉邦普净节能科技有限公司 光致发光材料
CN111253937A (zh) * 2020-03-10 2020-06-09 武汉工程大学 Cr3+、Bi3+双掺杂镓酸盐长余辉荧光粉材料及其制备方法、应用
CN111849327A (zh) * 2020-07-07 2020-10-30 淮阴工学院 pH刺激响应性智能自预警自修复防腐水性涂层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235504A (zh) * 2008-03-04 2008-08-06 广州市二轻工业科学技术研究所 一种金属防腐蚀用纳米Sb2O5/TiO2复合涂层的制备方法
CN101642702A (zh) * 2009-09-09 2010-02-10 吉林大学 由半导体材料和上转换材料组成的红光或红外光催化材料
US20180282622A1 (en) * 2014-11-04 2018-10-04 The Boardm of Regents of The University of Texas System Core@shell particles composed of sensitizing persistent phosphor core and upconversion shell and methods of making same
CN108949143A (zh) * 2017-05-19 2018-12-07 上海汉邦普净节能科技有限公司 光致发光材料
CN111253937A (zh) * 2020-03-10 2020-06-09 武汉工程大学 Cr3+、Bi3+双掺杂镓酸盐长余辉荧光粉材料及其制备方法、应用
CN111849327A (zh) * 2020-07-07 2020-10-30 淮阴工学院 pH刺激响应性智能自预警自修复防腐水性涂层的制备方法

Also Published As

Publication number Publication date
CN113429966B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Dong et al. Multifunctional NaYF4: Yb 3+, Er 3+@ Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy
Park et al. The effective fingerprint detection application using Gd2Ti2O7: Eu3+ nanophosphors
Jain et al. Rare-earth-doped Y3Al5O12 (YAG) nanophosphors: synthesis, surface functionalization, and applications in thermoluminescence dosimetry and nanomedicine
CN113817469B (zh) 一种生物窗口内激发/发射的超亮单色上转换纳米探针及其制备方法和应用
WO2022116672A1 (zh) 一种肿瘤微环境响应型off-on上转换荧光探针及其制备方法和应用
Cho et al. Photoluminescence imaging of SiO 2@ Y 2 O 3: Eu (III) and SiO 2@ Y 2 O 3: Tb (III) core-shell nanostructures
Yu et al. Doping concentration of Eu3+ as a fluorescence probe for phase transformation of zirconia
CN113429966B (zh) 一种金属早期腐蚀探针及制备方法
Zairov et al. Dual red-NIR luminescent EuYb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing
CN105602566B (zh) 一种稀土掺杂NaGdF4上转换纳米晶及其制备方法
Gong et al. Preparation and photoluminescence properties of ZrO2 nanotube array-supported Eu3+ doped ZrO2 composite films
Wenyuan et al. Sonochemical synthesis and photoluminescence properties of rare-earth phosphate core/shell nanorods
CN105419778B (zh) 一种含有石蜡的量子点复合材料及其制备方法
Shao et al. Photofunctional hybrids of rare earth complexes covalently bonded to ZnO core–shell nanoparticle substrate through polymer linkage
Takeshita et al. Low-temperature wet chemical precipitation of YVO4: Bi3+, Eu3+ nanophosphors via citrate precursors
Takeshita et al. Optical properties of transparent wavelength-conversion film prepared from YVO4: Bi3+, Eu3+ nanophosphors
CN105542773B (zh) 具有双组分壳层的量子点复合微球及其制备方法
CN109142308B (zh) 一种利用荧光试纸检测Co(Ⅱ)的方法
Tseng et al. Synthesis and luminescent characteristics of europium dopants in SiO 2/Gd 2 O 3 core/shell scintillating nanoparticles
CN105419779B (zh) 一种具有双组分基底的量子点复合材料及其制备方法
Hong et al. Eu3+-doped gadolinium oxide nanoparticles synthesized by chemical coprecipitation predicted by thermodynamic modeling
CN110055070B (zh) 一种比率型绿光发射荧光材料
CN110041909B (zh) 一种绿光发射新型荧光材料及其作为pH探针的应用
Chen et al. Study on a novel binary Zn n Eu layered double hydroxide with excellent fluorescence
CN110184063B (zh) 一种稀土发光材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant