CN113404561B - 一种火电机组双机联合供热控制方法及*** - Google Patents

一种火电机组双机联合供热控制方法及*** Download PDF

Info

Publication number
CN113404561B
CN113404561B CN202110730441.7A CN202110730441A CN113404561B CN 113404561 B CN113404561 B CN 113404561B CN 202110730441 A CN202110730441 A CN 202110730441A CN 113404561 B CN113404561 B CN 113404561B
Authority
CN
China
Prior art keywords
heat supply
mode
steam
supply mode
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110730441.7A
Other languages
English (en)
Other versions
CN113404561A (zh
Inventor
宋建成
刘铸
马素霞
刘嘉乐
吕世轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110730441.7A priority Critical patent/CN113404561B/zh
Publication of CN113404561A publication Critical patent/CN113404561A/zh
Application granted granted Critical
Publication of CN113404561B publication Critical patent/CN113404561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种火电机组双机联合供热控制方法及***,应用于火力发电技术领域,采用双机联合供热***,包括汽轮机组A和汽轮机组B,具体包括以下步骤:蒸汽流量分布获取步骤、最大供热能力预测步骤、最优供热模式选择步骤、当前供热模式确认步骤、最优供热模式判断步骤、供热模式优化步骤、定时循环执行上述步骤。本发明实现了火电机组双机联合供热***灵活性供热控制,在保障供热的基础上,提升了火电机组双机运行的灵活性,显著提高了全厂的经济收益。

Description

一种火电机组双机联合供热控制方法及***
技术领域
本发明涉及火力发电技术领域,尤其涉及一种火电机组双机联合供热控制方法及***。
背景技术
保障供热一直以来就是重大的民生工程。随着人们生活水平的不断提升,冬天对供热的需求量持续增加,这对热电联产机组冬季供热又提出更高的要求。但三北地区目前火电机组装机容量大,机组受“以热定电”约束,灵活性严重不足,在供热期调峰能力大幅降低,进一步加剧了***调峰的困难程度,进而导致弃风弃光问题越发突出。因此,在保障冬季民生供热的基础上,如何提升燃煤热电厂灵活性,实现火电机组进一步热电解耦,提高机组深度调峰能力,使热电厂能够经济高效运行,是当前火电机组急需解决的技术问题。
现有的热电解耦方式包括安装储热罐、配置电锅炉、汽轮机光轴改造等,但这些方法存在改造投资成本高的问题。除上述技术外,公开号为CN212671876U公开的“一种低压缸空载改造***”,该***主要针对低压缸空载中存在的减温水雾化效果不佳、低压缸叶片易受水蚀等问题进行了优化升级。低压缸空载供热改造投资少且经济性较好,但存在热电解耦不完全,供热能力提升有限等问题。此外,公开号为CN110030608公开的“基于高低旁路联合供热模式的热电解耦***及其方法”,该方法利用高低旁路***将蒸汽引入热网加热器,使热网汽源不再受机组电负荷影响,实现相对彻底的热电解耦,很大程度上提升了供热的能力,但存在高能低用,经济性较差的问题。上述方法都存在着一些不足,灵活性较差,无法满足整个供热期各阶段供热负荷需求。
因此,提供一种火电机组双机联合供热控制方法及***,来解决现有技术中的困难,是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种火电机组双机联合供热控制方法及***,实现火电机组双机联合供热***灵活性供热控制,使全厂能够自适应供热负荷需求不断的变化,实现全厂经济收益最大化。
为了实现上述目的,本发明采用如下技术方案:
一种火电机组双机联合供热控制方法,采用双机联合供热***,包括汽轮机组A和汽轮机组B,具体包括以下步骤:
蒸汽流量分布获取步骤:获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测步骤:根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择步骤:分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认步骤:根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断步骤:判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则进入供热模式优化步骤;
供热模式优化步骤:比较实时热网供水温度与热负荷要求供水温度之间的差值绝对值是否超出预设启动优化阈值,若超过阈值,则按照当前供热模式对供热参数进行优化,若上述绝对值小于预设停止优化阈值,则停止运行参数的优化;
定时循环执行上述步骤。
优选的,在蒸汽流量分布获取步骤中,现场实时测点为各汽缸进出口管道,回热加热器进出口管道。
优选的,回热抽汽量的计算公式如下:
Figure BDA0003139144760000031
式中,h(·,·)表示对应温度和压力下物质的焓值,P0和P2表示对应位置压力,T0~T3表示对应位置温度;D表示供热循环水流量,η表示加热器效率。
优选的,在最大供热能力预测步骤中,供热模式的最大供热能力的计算方法如下:
Qmaxi=ai·M1+bi·M2+ci (2)
式中,Qmaxi表示模式i的实时最大供热能力;M1表示汽轮机组A主蒸汽量;M2表示汽轮机组B主蒸汽量;ai、bi和ci表示不同锅炉负荷下热力***变工况离线拟合的计算系数。
优选的,最大供热能力预测步骤中,供热模式包括6,具体如下:
供热模式一:汽轮机组A高背压供热、汽轮机组B高背压供热模式;
供热模式二:汽轮机组A抽汽高背压供热、汽轮机组B抽汽高背压供热模式;
供热模式三:汽轮机组A低压缸空载供热、汽轮机组B抽汽高背压供热模式;
供热模式四:汽轮机组A抽汽高背压供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式五:汽轮机组A低压缸空载供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式六:汽轮机组A低压缸空载供热、汽轮机组B高低旁路+电锅炉供热模式。
优选的,供热模式优化步骤中,各供热模式参数优化的方法如下:
模式一和模式二优化汽轮机背压:
Δpc是汽轮机背压的优化量,Δpc>0时,增加对应背压量,Δpc<0时,减小对应应背压量,Δpc计算公式如下式:
Figure BDA0003139144760000041
式中,h(·)表示对应压力下物质的焓值,h(·,·)表示对应温度和压力下物质的焓值,pc表示汽轮机低压缸排汽压力,Dr表示热网回水流量,pcur表示热网供水实时压力,Tset表示热网供水调度温度,Tcur表示热网供水实时温度,DLin表示低压缸进汽流量;
模式二、模式三、模式四、模式五和模式六通过调节五段采暖抽汽蝶阀开度优化抽汽流量:
ΔDext是抽汽流量优化量,计算公式如下式:
Figure BDA0003139144760000042
式中,pmain表示供热母管蒸汽压力,Tmain表示供热母管蒸汽温度,ph表示热网疏水泵出口母管压力,Th表示热网疏水泵出口母管温度。
一种火电机组双机联合供热控制***,包括:
蒸汽流量分布获取模块、最大供热能力预测模块、最优供热模式选择模块、当前供热模式确认模块、最优供热模式判断模块、供热模式优化模块、供热模式切换模块、定时模块;
蒸汽流量分布获取模块,与最大供热能力预测模块的输入端连接,用于获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测模块,与最优供热模式选择模块的输入端连接,用于根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择模块,与当前供热模式确认模块的输入端连接,用于分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认模块,与最优供热模式判断模块的输入端连接,用于根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断模块的第一输出端与供热模式优化模块的输入端连接,最优供热模式判断模块的第二输出端与供热模式切换模块的输入端连接,用于判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则供热模式切换模块将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则供热模式优化模块对当前供热模式进行优化;
定时模块的输入端与供热模式优化模块的输出端连接,定时模块的输出端、供热模式切换模块的输出端、蒸汽流量分布获取模块的输入端共端点,用于定时循环执行供热控制。
经由上述的技术方案可知,与现有技术相比,本发明提供了一种火电机组双机联合供热控制方法及***:结合多种热电解耦方式,根据全供热期不同的供热负荷需求,基于火电机组双机联合供热***,设计了多种供热模式,通过切换供热模式和优化供热参数的方式,实现了火电机组双机联合供热***灵活性供热控制,在保障供热的基础上,提升了火电机组双机运行的灵活性,显著提高了全厂的经济收益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明一种火电机组双机联合供热控制方法流程图;
图2为本发明单台火电机组供热示意图;
图3为本发明火电机组双机联合供热***示意图;
图4为本发明一种火电机组双机联合供热控制***结构示意图;
其中,1-高压缸;2-中压缸;3-低压缸;4-发电机;5-锅炉;6-凝汽器;7-凝结水泵;8-低压回热***;9-除氧器;10-给水泵;11-高压回热***;12-主蒸汽调节阀;13-高旁减压阀;14-低旁减压阀;15-五段采暖抽汽蝶阀;16-热网凝汽器进汽阀;17-再热蒸汽调节阀;18-供热***;21-汽轮机组A;22-汽轮机组;23-热网凝汽器Aw;24-热网凝汽器Bw;25-电锅炉;26-热网循环泵;27-尖峰加热器;28-凝结水***;29-换热站;30-高低压旁路***。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1所示,本实发明实施例公开了一种火电机组双机联合供热控制方法,采用双机联合供热***,包括汽轮机组A和汽轮机组B,具体包括以下步骤:
蒸汽流量分布获取步骤:获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测步骤:根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择步骤:分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认步骤:根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断步骤:判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则进入供热模式优化步骤;
供热模式优化步骤:比较实时热网供水温度与热负荷要求供水温度之间的差值绝对值是否超出预设启动优化阈值,若超过阈值,则按照当前供热模式对供热参数进行优化,若上述绝对值小于预设停止优化阈值,则停止运行参数的优化;
定时循环执行上述步骤。
在一个具体实施例中,按照500ms的循环周期执行本方法的具体步骤。
在一个具体实施例中,在蒸汽流量分布获取步骤中的测点数据为蒸汽温度和压力数据。
在一个具体实施例中,在蒸汽流量分布获取步骤中,现场实时测点为各汽缸进出口管道,回热加热器进出口管道。
在一个具体实施例中,回热抽汽量的计算公式如下:
Figure BDA0003139144760000071
式中,h(·,·)表示对应温度和压力下物质的焓值,P0和P2表示对应位置压力,T0~T3表示对应位置温度;D表示供热循环水流量,η表示加热器效率。
根据质量平衡原理,从锅炉出口逐步向后计算,得到供热***内的蒸汽流量分布。
在一个具体实施例中,在最大供热能力预测步骤中,供热模式的最大供热能力的计算方法如下:
Qmaxi=ai·M1+bi·M2+ci (2)
式中,Qmaxi表示模式i的实时最大供热能力;M1表示汽轮机组A主蒸汽量;M2表示汽轮机组B主蒸汽量;ai、bi和ci表示不同锅炉负荷下热力***变工况离线拟合的计算系数。
M1和M2由现场DCS***实时测量得到。
在一个具体实施例中,最大供热能力预测步骤中,供热模式包括6,具体如下:
供热模式一:汽轮机组A高背压供热、汽轮机组B高背压供热模式;
供热模式二:汽轮机组A抽汽高背压供热、汽轮机组B抽汽高背压供热模式;
供热模式三:汽轮机组A低压缸空载供热、汽轮机组B抽汽高背压供热模式;
供热模式四:汽轮机组A抽汽高背压供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式五:汽轮机组A低压缸空载供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式六:汽轮机组A低压缸空载供热、汽轮机组B高低旁路+电锅炉供热模式。
在一个具体实施例中,6中供热模式阀门开关状态的具体内容为:
供热模式一,汽轮机组A高背压供热、汽轮机组B高背压供热模式:
汽轮机组A主蒸汽调节阀、再热蒸汽调节阀和热网凝汽器进汽阀开启,高旁减压阀、五段采暖抽汽蝶阀和低旁减压阀关闭,汽轮机组A利用低压缸排汽向供热***供热,汽轮机组B对应阀门状态和供热方式与汽轮机组A相同;
供热模式二,汽轮机组A抽汽高背压供热、汽轮机组B抽汽高背压供热模式:
在供热模式一的基础上,分别调整汽轮机组A和汽轮机组B五段采暖抽汽蝶阀阀门开度,阀门开度可以从0到L之间调节,其中L是抽汽高背压供热模式下低压缸最小进汽量对应阀门开度,其他阀门状态不变,汽轮机组A和汽轮机组B均利用抽汽和低压缸排汽向供热***供热;
供热模式三,汽轮机组A低压缸空载供热、汽轮机组B抽汽高背压供热模式:
在供热模式二的基础上,调整汽轮机组A五段采暖抽汽蝶阀的开度,使该阀门开度等于L,保障低压缸的安全运行,关闭汽轮机组A热网凝汽器进汽阀,其他阀门状态不变,汽轮机组A低压缸空载供热,汽轮机组B利用抽汽和低压缸排汽向供热***供热;
供热模式四,汽轮机组A抽汽高背压供热、汽轮机组B低压缸空载+电锅炉供热模式:
在供热模式二的基础上,调整汽轮机组B五段采暖抽汽蝶阀的开度,使该阀门开度等于L1,其中L1是空载供热模式下低压缸最小进汽量对应阀门开度,保障低压缸的安全运行,关闭汽轮机组B热网凝汽器进汽阀,其他阀门状态不变,同时开启电锅炉,加热部分循环水,汽轮机组A利用抽汽和低压缸排汽供热,汽轮机组B低压缸空载和电锅炉联合供热;
供热模式五,汽轮机组A低压缸空载供热、汽轮机组A低压缸空载+电锅炉供热模式:
在供热模式四的基础上,调整汽轮机组A五段采暖抽汽蝶阀的开度,使该阀门开度等于L1,关闭汽轮机组A热网凝汽器进汽阀,其他阀门状态不变,汽轮机组A低压缸空载供热,汽轮机组B低压缸空载和电锅炉联合供热;
供热模式六,汽轮机组A低压缸空载供热、汽轮机组B高低旁路+电锅炉供热模式:
在供热模式五的基础上,开启汽轮机组B高旁减压阀和低旁减压阀,其他阀门状态不变,汽轮机组A低压缸空载供热,汽轮机组B高低旁路和电锅炉联合供热。
在一个具体实施例中,根据汽轮机组A和汽轮机组B主蒸汽调节阀、高旁减压阀、低旁减压阀、五段采暖抽汽蝶阀、热网凝汽器进汽阀等阀门开关状态确定当前所处供热模式。
在一个具体实施例中,6种供热模式采用顺序控制的方法实现模式之间的切换控制,顺控步骤包括任意供热模式向其他任意供热模式切换的全部步骤,即任意两个模式间可实现来回切换。
在一个具体实施例中,供热模式优化步骤中,各供热模式参数优化的方法如下:
模式一和模式二优化汽轮机背压:
Δpc是汽轮机背压的优化量,Δpc>0时,增加对应背压量,Δpc<0时,减小对应应背压量,Δpc计算公式如下式:
Figure BDA0003139144760000101
式中,h(·)表示对应压力下物质的焓值,h(·,·)表示对应温度和压力下物质的焓值,pc表示汽轮机低压缸排汽压力,Dr表示热网回水流量,pcur表示热网供水实时压力,Tset表示热网供水调度温度,Tcur表示热网供水实时温度,DLin表示低压缸进汽流量;
模式二、模式三、模式四、模式五和模式六通过调节五段采暖抽汽蝶阀开度优化抽汽流量:
ΔDext是抽汽流量优化量,计算公式如下式:
Figure BDA0003139144760000111
式中,pmain表示供热母管蒸汽压力,Tmain表示供热母管蒸汽温度,ph表示热网疏水泵出口母管压力,Th表示热网疏水泵出口母管温度。
在一个具体实施例中,参照图2所示,本发明所针对的火电机组双机联合供热***具有两台相同且联合供热的汽轮轮机组,其中单台机组配置包括:高压缸1、中压缸2、低压缸3、发电机4、锅炉5、凝汽器6、凝结水泵7、低压回热***8、除氧器9、给水泵10、高压回热***11、主蒸汽调节阀12、高旁减压阀13、低旁减压阀14、五段采暖抽汽蝶阀15、热网凝汽器进汽阀16、再热蒸汽调节阀17和供热***18。锅炉5过热蒸汽出口通过主蒸汽调节阀12与高压缸1蒸汽入口相连,高压缸1蒸汽出口与锅炉5再热器入口连接,锅炉5过热蒸汽出口通过高旁减压阀13与锅炉5再热器入口相连,锅炉5再热器出口通过再热蒸汽调节阀17与中压缸2蒸汽入口连接,同时通过低旁减压阀14与供热***18连接;中压缸2蒸汽出口与低压缸3蒸汽入口相连,并通过五段采暖抽汽蝶阀15与供热***18相连;低压缸3蒸汽出口通过热网凝汽器16进汽阀与供热***18相连,并与凝汽器6连接;凝汽器6出口与凝结水泵7入口连接,凝结水泵7出口与低压回热***8入口连接,低压回热***8入口与除氧器9入口连接,除氧器9出口与给水泵10入口连接,给水泵10出口与高压回热***11入口连接,高压回热***11出口与锅炉5入口相连。
在一个具体实施例中,参照图3所示,火电机组双机联合供热***包括:汽轮机组A21、汽轮机组B 22、热网凝汽器Aw 23、热网凝汽器Bw 24、电锅炉25、热网循环泵26、尖峰加热器27、凝结水***28、换热站29和高低压旁路***30。汽轮机组B 22的高低压旁路***30出口与汽轮机组B 22的五段供热抽汽出口连接;汽轮机组A 21和汽轮机组B 22的五段供热抽汽出口相连后,再连接尖峰加热器27蒸汽入口,尖峰加热器27蒸汽出口与凝结水***28连接;汽轮机组A 21的低压缸排汽出口连接热网凝汽器Aw 23蒸汽入口,热网凝汽器Aw 23蒸汽出口与凝结水***28连接;汽轮机组B 22低压缸排汽出口连接热网凝汽器Bw 24蒸汽入口,热网凝汽器Bw 24蒸汽出口与凝结水***28连接;换热站29出口与热网凝汽器Aw 23循环水入口连接,热网凝汽器Aw 23循环水出口与热网凝汽器Bw 24循环水入口相连;热网凝汽器Bw 24循环水出口连接热网循环泵26入口,同时与电锅炉25入口相连;电锅炉25出口与热网循环泵26入口连接,热网循环泵26出口与尖峰加热器27疏水入口相连;尖峰加热器27疏水出口连接到换热站29入口处。
参照图4所示,本发明公开了一种火电机组双机联合供热控制***,包括:
蒸汽流量分布获取模块、最大供热能力预测模块、最优供热模式选择模块、当前供热模式确认模块、最优供热模式判断模块、供热模式优化模块、供热模式切换模块、定时模块;
蒸汽流量分布获取模块,与最大供热能力预测模块的输入端连接,用于获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测模块,与最优供热模式选择模块的输入端连接,用于根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择模块,与当前供热模式确认模块的输入端连接,用于分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认模块,与最优供热模式判断模块的输入端连接,用于根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断模块的第一输出端与供热模式优化模块的输入端连接,最优供热模式判断模块的第二输出端与供热模式切换模块的输入端连接,用于判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则供热模式切换模块将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则供热模式优化模块对当前供热模式进行优化;
定时模块的输入端与供热模式优化模块的输出端连接,定时模块的输出端、供热模式切换模块的输出端、蒸汽流量分布获取模块的输入端共端点,用于定时循环执行供热控制。
对所公开的实施例的上述说明,按照递进的方式进行,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种火电机组双机联合供热控制方法,其特征在于,采用双机联合供热***,包括汽轮机组A和汽轮机组B,具体包括以下步骤:
蒸汽流量分布获取步骤:获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测步骤:根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择步骤:分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认步骤:根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断步骤:判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则进入供热模式优化步骤;
供热模式优化步骤:比较实时热网供水温度与热负荷要求供水温度之间的差值绝对值是否超出预设启动优化阈值,若超过阈值,则按照当前供热模式对供热参数进行优化,若上述绝对值小于预设停止优化阈值,则停止运行参数的优化;
定时循环执行上述步骤。
2.根据权利要求1所述的一种火电机组双机联合供热控制方法,其特征在于,
在蒸汽流量分布获取步骤中,现场实时测点为各汽缸进出口管道,回热加热器进出口管道。
3.根据权利要求1所述的一种火电机组双机联合供热控制方法,其特征在于,
回热抽汽量的计算公式如下:
Figure FDA0003139144750000021
式中,h(·,·)表示对应温度和压力下物质的焓值,P0和P2表示对应位置压力,T0~T3表示对应位置温度;D表示供热循环水流量,η表示加热器效率。
4.根据权利要求1所述的一种火电机组双机联合供热控制方法,其特征在于,
在最大供热能力预测步骤中,供热模式的最大供热能力的计算方法如下:
Qmaxi=ai·M1+bi·M2+ci (2)
式中,Qmaxi表示模式i的实时最大供热能力;M1表示汽轮机组A主蒸汽量;M2表示汽轮机组B主蒸汽量;ai、bi和ci表示不同锅炉负荷下热力***变工况离线拟合的计算系数。
5.根据权利要求1所述的一种火电机组双机联合供热控制方法,其特征在于,
最大供热能力预测步骤中,包括6种供热模式,具体如下:
供热模式一:汽轮机组A高背压供热、汽轮机组B高背压供热模式;
供热模式二:汽轮机组A抽汽高背压供热、汽轮机组B抽汽高背压供热模式;
供热模式三:汽轮机组A低压缸空载供热、汽轮机组B抽汽高背压供热模式;
供热模式四:汽轮机组A抽汽高背压供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式五:汽轮机组A低压缸空载供热、汽轮机组B低压缸空载+电锅炉供热模式;
供热模式六:汽轮机组A低压缸空载供热、汽轮机组B高低旁路+电锅炉供热模式。
6.根据权利要求5所述的一种火电机组双机联合供热控制方法,其特征在于,
供热模式优化步骤中,各供热模式参数优化的方法如下:
模式一和模式二优化汽轮机背压:
Δpc是汽轮机背压的优化量,Δpc>0时,增加对应背压量,Δpc<0时,减小对应背压量,Δpc计算公式如下式:
Figure FDA0003139144750000031
式中,h(·)表示对应压力下物质的焓值,h(·,·)表示对应温度和压力下物质的焓值,pc表示汽轮机低压缸排汽压力,Dr表示热网回水流量,pcur表示热网供水实时压力,Tset表示热网供水调度温度,Tcur表示热网供水实时温度,DLin表示低压缸进汽流量;
模式二、模式三、模式四、模式五和模式六通过调节五段采暖抽汽蝶阀开度优化抽汽流量:
ΔDext是抽汽流量优化量,计算公式如下式:
Figure FDA0003139144750000032
式中,pmain表示供热母管蒸汽压力,Tmain表示供热母管蒸汽温度,ph表示热网疏水泵出口母管压力,Th表示热网疏水泵出口母管温度。
7.一种火电机组双机联合供热控制***,其特征在于,采用火电机组双机联合供热控制方法权利要求1至6任一项所述的火电机组双机联合供热控制方法,包括:
蒸汽流量分布获取模块、最大供热能力预测模块、最优供热模式选择模块、当前供热模式确认模块、最优供热模式判断模块、供热模式优化模块、供热模式切换模块、定时模块;
蒸汽流量分布获取模块,与最大供热能力预测模块的输入端连接,用于获取现场实时测点数据,根据加热器热的平衡在线计算各级回热抽汽量,得到供热***蒸汽流量分布;
最大供热能力预测模块,与最优供热模式选择模块的输入端连接,用于根据双机组主蒸汽流量实时预测各个供热模式的最大供热能力;
最优供热模式选择模块,与当前供热模式确认模块的输入端连接,用于分别比较各供热模式的最大供热能力和热负荷需求之间的关系,在满足供热负荷需求的供热模式中选择最大供热能力最小的模式为最优供热模式;
当前供热模式确认模块,与最优供热模式判断模块的输入端连接,用于根据管路中阀门开关状态确定当前供热模式;
最优供热模式判断模块的第一输出端与供热模式优化模块的输入端连接,最优供热模式判断模块的第二输出端与供热模式切换模块的输入端连接,用于判断当前供热模式是否为最优供热模式,若当前模式不是最优供热模式,则供热模式切换模块将当前供热模式切换至最优供热模式;若当前模式为最优供热模式,则供热模式优化模块对当前供热模式进行优化;
定时模块的输入端与供热模式优化模块的输出端连接,定时模块的输出端、供热模式切换模块的输出端、蒸汽流量分布获取模块的输入端共端点,用于定时循环执行供热控制。
CN202110730441.7A 2021-06-29 2021-06-29 一种火电机组双机联合供热控制方法及*** Active CN113404561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110730441.7A CN113404561B (zh) 2021-06-29 2021-06-29 一种火电机组双机联合供热控制方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110730441.7A CN113404561B (zh) 2021-06-29 2021-06-29 一种火电机组双机联合供热控制方法及***

Publications (2)

Publication Number Publication Date
CN113404561A CN113404561A (zh) 2021-09-17
CN113404561B true CN113404561B (zh) 2022-09-06

Family

ID=77680151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110730441.7A Active CN113404561B (zh) 2021-06-29 2021-06-29 一种火电机组双机联合供热控制方法及***

Country Status (1)

Country Link
CN (1) CN113404561B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883588A (zh) * 2021-09-24 2022-01-04 华能汕头海门发电有限责任公司 一种供热***智能监盘及应急处理***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438630A (en) * 1982-09-07 1984-03-27 Combustion Engineering, Inc. Method and system for maintaining operating temperatures in a molten salt co-generating unit
JP2009079525A (ja) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd 複合発電プラント
CN104343474A (zh) * 2013-07-26 2015-02-11 华能北京热电有限责任公司 汽轮机、燃气-蒸汽联合循环机组及该循环机组的运行方法
CN108301883A (zh) * 2017-12-09 2018-07-20 联合瑞升(北京)科技有限公司 一种热电厂热电解耦***
CN110566295A (zh) * 2019-07-27 2019-12-13 华电电力科学研究院有限公司 基于全厂电、热负荷协同调度的双机组耦合调峰方法及装置
CN210768958U (zh) * 2019-07-27 2020-06-16 华电电力科学研究院有限公司 基于全厂电、热负荷协同调度的双机组耦合调峰装置
CN111425272A (zh) * 2020-04-09 2020-07-17 太原理工大学 一种燃气-蒸汽联合循环机组供热控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438630A (en) * 1982-09-07 1984-03-27 Combustion Engineering, Inc. Method and system for maintaining operating temperatures in a molten salt co-generating unit
JP2009079525A (ja) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd 複合発電プラント
CN104343474A (zh) * 2013-07-26 2015-02-11 华能北京热电有限责任公司 汽轮机、燃气-蒸汽联合循环机组及该循环机组的运行方法
CN108301883A (zh) * 2017-12-09 2018-07-20 联合瑞升(北京)科技有限公司 一种热电厂热电解耦***
CN110566295A (zh) * 2019-07-27 2019-12-13 华电电力科学研究院有限公司 基于全厂电、热负荷协同调度的双机组耦合调峰方法及装置
CN210768958U (zh) * 2019-07-27 2020-06-16 华电电力科学研究院有限公司 基于全厂电、热负荷协同调度的双机组耦合调峰装置
CN111425272A (zh) * 2020-04-09 2020-07-17 太原理工大学 一种燃气-蒸汽联合循环机组供热控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张家口发电厂7号机组协调控制***优化研究;张宇鹏;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20200115;全文 *
燃气-蒸汽联合循环机组灵活性供热控制策略;吕世轩等;《热力发电》;20210131;第50卷(第3期);114-120 *

Also Published As

Publication number Publication date
CN113404561A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN108625911B (zh) 一种提升供热机组电出力调节能力的热力***
CN111287811B (zh) 一种高背压梯级供热机组最佳运行真空在线寻优方法
CN110566295B (zh) 基于全厂电、热负荷协同调度的双机组耦合调峰方法及装置
CN110011330A (zh) 基于燃煤机组热力***蓄*修正的一次调频优化控制方法
CN113339089B (zh) 一种高效调峰汽轮机***及其工作方法
CN111720183B (zh) 抽凝机组与高背压供热机组并联供热运行优化调度方法
CN112611010B (zh) 一种多热源热电联产机组发电负荷灵活调节***的调节方法
CN110991877A (zh) 供热机组采用低压缸切缸灵活性改造后供热及调峰能力改善评估方法
CN113404561B (zh) 一种火电机组双机联合供热控制方法及***
CN111206970B (zh) 一种火电厂利用射汽抽汽器的调峰***及控制方法
CN115031222A (zh) 一种改进的储热装置提升火电机组调峰能力的***及方法
CN114046186A (zh) 一种高灵活、大热电比的复合热质旁通采暖供热***
CN209877073U (zh) 一种螺杆膨胀机与热泵综合应用的供暖装置
CN210178429U (zh) 一种用于燃气蒸汽联合循环机组抽汽集成的采暖***
CN210179723U (zh) 一种基于供热与电力调峰耦合的联合循环装置
CN111706898B (zh) 一种高背压供热改造后机组提升供热能力的方法
CN115341964A (zh) 一种配置除盐水罐的火电机组储热调峰发电***及方法
CN212406830U (zh) 一种背压机组改造为抽凝机组的热力***
CN109236394A (zh) 用于火电机组灵活性调峰的蒸汽提质***及控制方法
CN108692354A (zh) 基于固体储热的热电解耦应用、***及方法
CN114233421A (zh) 一种集成蒸汽喷射器的热电协同***及运行方法
CN105783076B (zh) 电厂双源双背压多网余废热能供热***
CN115854412B (zh) 一种城市电厂供热机组电锅炉***
CN219222601U (zh) 一种联合供热装置
CN213746955U (zh) 光轴机组与蓄热罐联合供热***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant