CN113390762B - 超声速气流下激波对燃料液滴蒸发过程影响的研究装置 - Google Patents

超声速气流下激波对燃料液滴蒸发过程影响的研究装置 Download PDF

Info

Publication number
CN113390762B
CN113390762B CN202110735836.6A CN202110735836A CN113390762B CN 113390762 B CN113390762 B CN 113390762B CN 202110735836 A CN202110735836 A CN 202110735836A CN 113390762 B CN113390762 B CN 113390762B
Authority
CN
China
Prior art keywords
section
pressure
low
shock wave
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110735836.6A
Other languages
English (en)
Other versions
CN113390762A (zh
Inventor
闫常春
苏凌宇
王殿恺
王辉
林伟
仝毅恒
朱杨柱
王海清
聂万胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Original Assignee
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peoples Liberation Army Strategic Support Force Aerospace Engineering University filed Critical Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Priority to CN202110735836.6A priority Critical patent/CN113390762B/zh
Publication of CN113390762A publication Critical patent/CN113390762A/zh
Application granted granted Critical
Publication of CN113390762B publication Critical patent/CN113390762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0026Investigating dispersion of liquids in gas, e.g. fog

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于超燃冲压发动机和爆震发动机技术领域,具体涉及超声速气流下激波对燃料液滴蒸发过程影响的研究装置,包括激波管***、超声波雾化***、压力检测***以及多波长消光法粒径测量***,激波管***包括激波管和压力控制***,激波管包括沿入射激波运动方向依次设置的高压段、低压段以及实验段;实验段两相对侧面分别设置有第一可拆卸观察窗和第二可拆卸观察窗;超声波雾化***用于向实验段内喷入微米级的燃料液滴;压力检测***设置于激波管上;多波长消光法粒径测量***设置在第一观察窗和第二观察窗的两侧,用于对实验段内微米级的燃料液滴的粒径进行实时测量。本发明能够在实验中产生激波的同时,实现小液滴的产生和小液滴粒径的测量。

Description

超声速气流下激波对燃料液滴蒸发过程影响的研究装置
技术领域
本发明属于超燃冲压发动机和爆震发动机技术领域,具体涉及超声速气流下激波对燃料液滴蒸发过程影响的研究装置。
背景技术
超燃冲压发动机是吸气式超声速飞行器的动力装置,其一般包括进气道、隔离段、燃烧室和尾喷管四个部分。超燃冲压发动机工作时,来流经进气道减速增压后以超声速通过隔离段进入燃烧室,并在燃烧室中与飞行器携带的推进剂进行混合燃烧,从而将推进剂的化学能转化为热能,燃烧后的高温高压气体再通过尾喷管膨胀做功将热能转化为动能。由于超燃冲压发动机不需要携带氧化剂而具有较高的比冲,在航空航天和国防领域深受青睐。
由于超燃冲压发动机燃烧室入口气流速度为超声速,可燃混合物在燃烧室的驻留时间极短,另外燃烧室入口的超声速气流在燃烧室内壁的作用下会产生激波,使得燃烧室内的环境变得更加恶劣,这给燃料与来流空气的混合、燃烧带来极大的困难。如何使燃料在有限的空间和极短的时间内完成喷注、雾化、蒸发、混合、燃烧也就成了超燃冲压发动机研究领域的难题。其中,蒸发过程在整个过程中占有较长的时间,并影响到混合和燃烧过程,最终影响到燃料化学能的释放。因此,对超声速气流下激波对燃料液滴蒸发过程的影响进行研究具有重要意义。
由于激波的存在,当燃料液滴粒径较大时,液滴将被激波击碎,无法通过测量粒径变化来研究液滴蒸发规律。相关理论表明,当液滴粒径满足韦伯数处于临界韦伯数以下时,液滴将不发生破碎,在研究液滴蒸发问题时可以不再考虑液滴的破碎问题。但是,此时的液滴直径减小到微米量级,再加上存在激波的干扰,传统的测量方法将难以胜任此时的粒径测量任务。另外,平时所用的液滴生成方式产生液滴粒径较大,难以达到实验的要求。因此,在研究超声速气流下激波对燃料液滴蒸发过程的影响时,现有的实验装置难以同时满足产生激波、产生小液滴以及在激波干扰下测量小液滴粒径的需求。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种超声速气流下激波对燃料液滴蒸发过程影响的研究装置,该超声速气流下激波对燃料液滴蒸发过程影响的研究装置能够在实验中产生激波的同时,实现小液滴的产生和小液滴粒径的测量。
本发明解决其技术问题所采用的技术方案是:一种超声速气流下激波对燃料液滴蒸发过程影响的研究装置,包括激波管***、超声波雾化***、压力检测***以及多波长消光法粒径测量***,其中:
所述激波管***包括激波管和压力控制***,所述激波管包括沿入射激波运动方向依次设置的高压段、低压段以及实验段;在所述高压段与低压段的交接处密封设置有膜片;所述实验段的两个相对侧面分别设置有第一可拆卸观察窗和第二可拆卸观察窗;
所述压力控制***用于控制通入所述激波管内的气体压力;
所述超声波雾化***用于向所述实验段内喷入微米级的燃料液滴;
所述压力检测***包括若干低压段压电传感器,若干所述低压段压电传感器沿入射激波运动方向依次设置于所述低压段上;
所述多波长消光法粒径测量***设置在第一观察窗和第二观察窗的两侧,用于对所述实验段内微米级的燃料液滴的粒径进行实时测量。
作为本发明的进一步优选,还包括夹膜段,所述夹膜段用于夹紧所述膜片并设置于所述高压段与所述低压段之间;所述高压段、所述夹膜段、所述低压段和所述实验段的内截面以及所述膜片的形状均呈矩形。
作为本发明的进一步优选,所述低压段包括沿入射激波运动方向依次设置的低压I段和低压II段,若干所述低压段压电传感器沿入射激波运动方向依次设置于所述低压II段上。
作为本发明的进一步优选,所述超声波雾化***包括超声波雾化器、导流管道以及雾化器转接段,其中:
所述超声波雾化器用于存储和雾化液体燃料;
所述导流管道一端与所述超声波雾化器连接,另一端与所述雾化器转接段连接,所述雾化器转接段与所述实验段连接。
作为本发明的进一步优选,所述雾化器转接段包括带孔的第二盲孔板、转接段腔体、带孔的密封杆支撑板、若干密封杆以及带孔的密封杆联动板;
所述第二盲孔板、所述转接段腔体以及所述密封杆支撑板组装形成与所述实验段连通的腔体;所述第二盲孔板上开设若干通孔,若干所述通孔远离所述转接段腔体的一端为锥形,若干所述密封杆一端设置锥面结构另一端设置螺纹,其设置锥面结构的一端与所述第二盲孔板上若干所述通孔呈锥形的一端配合,若干所述密封杆设置螺纹的一端与所述密封杆联动板连接;
当所述密封杆设置的锥面结构与所述第二盲孔板上的所述通孔的锥形部分配合时,所述密封杆设置锥面结构的一端端面与所述第二盲孔板远离所述转接段腔体一侧的端面形成激波反射面;
当所述密封杆设置的锥面结构与所述第二盲孔板上的所述通孔的锥形部分脱离时,所述实验段与所述转接段腔体连通。
作为本发明的进一步优选,还包括凸轮手柄,所述凸轮手柄与所述密封杆联动板连接。
作为本发明的进一步优选,若干所述低压段压电传感器包括沿入射激波运动方向依次设置的低压段I号压电传感器、低压段II号压电传感器以及低压段III号压电传感器。
作为本发明的进一步优选,所述多波长消光法粒径测量***包括激光光源阵列、光纤、光纤耦合器、衍射光栅、光电探测器、信号调理器、数据采集卡以及光电探测器信号传输线,所述第一可拆卸观察窗朝向外部环境的一侧依次设置有所述光纤耦合器、所述光纤、所述激光光源阵列;所述衍射光栅设置于所述第二可拆卸观察窗朝向外部环境的一侧;所述光电探测器设置于所述衍射光栅的反射路径中,所述信号调理器与所述光电探测器和所述数据采集卡分别连接。
作为本发明的进一步优选,还包括用于抽气引导所述低压段内气流的抽气泵。
作为本发明的进一步优选,所述压力检测***还包括用于检测所述高压段内压力的高压段压电传感器。
通过以上技术方案,相对于现有技术,本发明具有以下有益效果:
1.本发明在实验时,通过超声波雾化***产生微米级的燃料液滴并将微米级的燃料液滴喷入实验段内,然后通过向高压段增压使得膜片破裂,从而在低压段和实验段内产生激波;同时依据多波长消光法粒径测量***对实验段内微米级的燃料液滴的粒径进行实时测量。
2.本发明可以根据实验需要选择不同强度的膜片以产生不同强度的激波,且因为激波管内截面均为矩形,所产生的激波无需经历以往设计方案中的圆转方段,因此产生的激波品质更好。
3.本发明通过安装的若干低压段压电传感器检测出每个低压段压电传感器与其他低压段压电传感器间检测到压力变化的时间差,依据该些时间差与每个低压段压电传感器与其他低压段压电传感器间的安装距离计算出多个激波速度,再求激波速度的平均值从而减小误差。
4.本发明的第一可拆卸观察窗和第二可拆卸观察窗能够为多种测量方式提供测量通道,可以满足不同实验的条件下的测量需求。
5.本发明的雾化器转接段,不仅可以将超声波雾化器和激波管连接起来,还可以通过凸轮手柄带动密封杆等其他结构快速移动实现快速密封;凸轮手柄不需要额外的控制装置且通过凸轮手柄自身重力即可实现锁紧,因此发生故障率较低,具有较高的可靠性。
6.本发明中的多波长消光法粒径测量***中的激光光源阵列的选择具有灵活性,可以根据实验段中物质的消光特性选择不同波长的光源进行组合;数据采集卡可以根据采样频率的需要而选择。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的整体结构立体图。
图2是本发明的整体结构主视图。
图3是本发明的整体结构俯视图。
图4是本发明的夹膜段、膜片、高压段和低压I段的装配图。
图5是本发明的夹膜段和膜片的拆分图。
图6是本发明的第二可拆卸观察窗的装配图。
图7是本发明的第二可拆卸观察窗的***图。
图8是本发明的雾化器转接段的主视图。
图9是本发明的雾化器转接段的俯视图。
图10是本发明的雾化器转接段处于密封状态的立体图。
图11是本发明的雾化器转接段处于开通状态的立体图。
图12是本发明的第二盲孔板的立体图。
图13是本发明的转接段腔体的立体图。
图14是本发明的密封杆支撑板的立体图。
图15是本发明的密封杆联动板的立体图。
图16是本发明的密封杆的立体图。
图17是本发明的凸轮手柄的立体图。
图18是本发明的密封圈压紧螺母的立体图。
图中:1.高压气瓶;2.压力控制柜;3.第一盲孔板;4.高压段;5.高压段压电传感器;6.夹膜段;7.低压I段;8.低压段I号压电传感器;9.低压II段;10.低压段II号压电传感器;11.低压段III号压电传感器;12.激光光源阵列;13.光纤;14.实验段;15.第二盲孔板;16.转接段腔体;17.密封杆支撑板;18.信号调理器;19.光电探测器;20.衍射光栅;21.数据采集卡;22.导流管道;23.超声波雾化器;24.计算机主机;25.显示器;26.抽气泵;27.抽气管道;28.三通管接头;29.高压管道;30.进气管道;31.排气管道;32.密封杆联动板;33.密封杆;34.凸轮手柄;35.压电传感器信号传输线;36.光纤耦合器;37.第一观察窗外框;38.第一观察窗内框;39.第二观察窗外框;40.第二观察窗内框;41.光电探测器信号传输线;42.膜片;43.调整螺钉;44.第一观察窗玻璃;45.连接螺钉;46.开口销;47.内六角螺钉;48.螺母;49.第一O型圈;50.第二O型圈;51.密封圈压紧螺母;52.V型圈。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
本实施例提供一种优选实施方案,如图1至图18所示,一种超声速气流下激波对燃料液滴蒸发过程影响的研究装置,包括控制装置、激波管***、超声波雾化***、压力检测***以及多波长消光法粒径测量***,该些***具体结构如下:
如图1所示,上述控制装置包括计算机主机24和显示器25,显示器25与计算机主机24连接,计算机主机24通过数据线分别与压力检测***和多波长消光法粒径测量***连接。上述激波管***包括激波管和压力控制***,其中:
如图1所示,上述激波管包括沿入射激波运动方向依次设置的高压段4、低压段以及实验段14,优选地,激波管可采用矩形截面激波管;在高压段4远离低压段的一端密封安装有第一盲孔板3,在高压段4与低压段的交接处密封设置有膜片42;上述低压段包括沿入射激波运动方向依次设置的低压I段7和低压II段9;实验段14的两个相对侧面分别设置有第一可拆卸观察窗和第二可拆卸观察窗,为便于两可拆卸观察窗的安装,在实验段14相应位置开窗。优选地,实验段14内截面设计为矩形,以在开窗的同时保证内表面的平整,避免因内表面不平整对激波阵面造成影响而引入复杂波系;两可拆卸观察窗与两可拆卸观察窗之间的实验段14形成便于多波长消光法粒径测量***进行测量的测量通道。
本实施方案还包括夹膜段6,夹膜段6用于夹紧膜片42并设置于高压段4与低压段之间,此设计是为了在膜片42破裂前将高压段4和低压段隔离开以便形成不同的初始压力。优选地,高压段4、夹膜段6和低压段的内截面以及膜片42的形状均呈矩形,以避免现有技术中激波需要经历圆转方段而由激波阵面几何形状变化对激波品质带来的影响。
如图3、图6和图7所示,第一可拆卸观察窗包括第一观察窗内框38、第一观察窗外框37以及第一观察窗玻璃,第二可拆卸观察窗包括第二观察窗内框40、第二观察窗外框39以及第二观察窗玻璃44。第一观察窗玻璃处于第一观察窗内框38与第一观察窗外框37之间,优选地,通过12颗调整螺钉43的调整作用第一观察窗玻璃内表面与第一观察窗内框38内表面重合,值得注意的是,调整过程中,调整螺钉43要对角调整。第二可拆卸观察窗与第一可拆卸观察窗结构一致,第二观察窗玻璃44处于第二观察窗内框40与第二观察窗外框39之间,优选地,通过12颗调整螺钉43的调整作用下第二观察窗玻璃44内表面与第二观察窗内框40内表面重合,值得注意的是,调整过程中,调整螺钉43要对角调整。在装配好第一可拆卸观察窗或第二可拆卸观察窗后,第一可拆卸观察窗或第二可拆卸观察窗将作为一个可拆卸的整体通过14颗连接螺钉45与实验段14固接,安装后的第一可拆卸观察窗和第二可拆卸观察窗内表面均与实验段14内表面平齐。即安装完后,第一观察窗玻璃内表面、第一观察窗内框38内表面和实验段14内表面处于同一平面内,第二观察窗玻璃44内表面、第二观察窗内框40内表面实验段14内表面处于同一平面内,且因为零件加工精度高而使配合处无明显缝隙,尽量避免了因内表面不平整而引入复杂波系。
如图1和图2所示,上述压力控制***用于控制通入激波管内的气体压力,压力控制***包括高压气瓶1、高压管道29、压力控制柜2、进气管道30、排气管道31以及三通管接头28。高压气瓶1通过高压管道29与压力控制柜2连接,压力控制柜2连接有进气管道30和排气管道31,高压段4上开设一孔,优选地,该孔开设在高压段4下侧,该孔、进气管道30以及排气管道31通过三通管接头28连接,压力控制***通过三通管接头28控制高压段4内的进气和排气,从而控制高压段4内的压力。优选地,高压气瓶1为高压段4提供压力源,压力控制柜2上安装有压力表、减压阀和截止阀,用于调节控制高压段4内的压力。
如图1和图2所示,上述超声波雾化***用于向实验段14内喷入微米级的燃料液滴,上述超声波雾化***包括超声波雾化器23、导流管道22以及雾化器转接段,其中:超声波雾化器23存储有液体燃料,超声波雾化器23具有产生液雾粒径小(产生液雾粒径在微米量级)且产生的液雾粒径分布均匀的优点,解决了喷嘴式雾化器产生粒径大的问题,并使产生的液雾粒径小而在实验中不必考虑液滴破碎的问题。导流管道22一端与超声波雾化器23连接,另一端与雾化器转接段连接,雾化器转接段与实验段14连接。
如图8至图11所示,上述雾化器转接段包括带孔的第二盲孔板15、转接段腔体16、带孔的密封杆支撑板17、带孔的密封杆联动板32以及若干密封杆33。带孔的第二盲孔板15、转接段腔体16、密封杆支撑板17组装形成与激波管连通的腔体,该腔体用于向激波管内转移由超声波雾化器23产生的液雾。
如图1、图8、图9和图12所示,上述第二盲孔板15与激波管上的实验段14连接,带孔的第二盲孔板15与实验段14接触的一侧中部设置有凸台,该凸台上开设若干通孔,优选地,将若干通孔远离转接段腔体16的一端孔口锪成锥形,通孔的数量为6个,以使燃料液滴进入激波管后分布均匀。优选地,上述带孔的第二盲孔板15材质为不锈钢,在带孔的第二盲孔板15与实验段14连接的面上铣有密封圈槽,用于安装第一O型圈49保证激波管的气密性。
如图8、图9和图13所示,上述转接段腔体16由不锈钢加工而成,其位于带孔的第二盲孔板15和密封杆支撑板17之间。优选地,转接段腔体16通过内六角螺钉47和螺母48配合与第二盲孔板15固接,在转接段腔体16两个端面分别铣有密封圈槽,分别用以安装第二O型圈50保证雾化器转接段的气密性。
如图8、图9和图14所示,上述密封杆支撑板17通过内六角螺钉47和螺母48配合与转接段腔体16固接,密封杆支撑板17上开设若干与凸台上开设的若干通孔同轴的孔,相应的数量为6个。优选地,上述密封杆支撑板17由不锈钢加工而成,其作用是为密封杆33提供支撑以满足密封杆33轴向移动的需求。在密封杆支撑板17上加工有用于安装V型圈52的光孔部分,并加工有安装密封圈压紧螺母51的螺纹。密封圈压紧螺母51的作用有两部分,一是压紧V型圈52满足密封的要求;二是与密封杆支撑板17一起支撑密封杆33以消除密封杆33绕垂直其轴线方向自转,起到限位作用。
如图8、图9和图15所示,上述密封杆联动板32设置于密封杆支撑板17远离转接段腔体16的一侧,密封杆联动板32上开设若干与凸台上开设的若干通孔同轴的孔,相应的数量为6个,且在密封杆联动板32相对的两侧分别设置回转轴。
如图9、图10和图16所示,上述密封杆33一端设置锥面结构,另一端设置螺纹,密封杆33的数量相应的为6根。六根密封杆33设置螺纹的一端均与密封杆联动板32连接;密封杆33上的锥面结构可与凸台上开设的若干通孔呈锥形的一端配合形成密封,且在形成密封时凸台朝向实验段14的一面与密封杆33底面重合组成激波的反射面,使激波管密封。因为是锥面配合且激波朝着密封杆33底面冲来,所以在激波冲击过程中,锥面配合会越压越紧,保证了激波管气密性的要求。由于本实施方案中密封杆33属于细长杆,在加工时选择硬度较高的模具钢以防加工过程中容易发生的变形,并在研磨后镀铬以防生锈。
如图8至图11、图17所示,本实施方案还包括两个对称安装在密封杆联动板32上的凸轮手柄34,凸轮手柄34起到控制实验段14和转接段腔体16之间通与断的作用。凸轮手柄34包括凸轮和手柄,凸轮中部开孔,手柄与凸轮固接,凸轮手柄34上凸轮中部的孔套在回转轴上并固定,仅需推动手柄即可实现凸轮手柄34的转动。凸轮手柄34的转动带动密封杆联动板32沿密封杆支撑板17上孔的轴线方向移动,进而同时带动六根密封杆33沿上述通孔的轴线方向移动,以实现密封杆33与带孔的第二盲孔板15的接触与脱离,进一步控制液雾进入激波管的开始与停止。优选地,在上述凸轮手柄34的回转轴上且位于凸轮手柄34远离密封杆联动板32安装开口销46,由开口销46限制凸轮手柄34沿回转轴轴向移动。上述密封杆联动板32可以借助凸轮手柄34进行快速移动,且可以借助凸轮手柄34的重力锁紧,避免了使用单独的控制机构去控制密封杆联动板32的移动和锁紧从而引入其他不可靠因素。
如图11所示,当密封杆33与带孔的第二盲孔板15脱离接触时,转接段腔体16与实验段14连通状态,液雾可以从雾化转接段的转接段腔体16内进入实验段14;如图9和图10所示,当密封杆33与带孔的第二盲孔板15接触时形成配合,此时转接段腔体16与实验段14为封闭状态。
如图1和图3所示,上述压力检测***包括若干低压段压电传感器和高压段压电传感器5,若干低压段压电传感器沿入射激波运动方向依次设置于低压II段9上。若干低压段压电传感器包括沿入射激波运动方向依次设置的低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11。优选地,在低压II段9上方依次间隔开设三个仪器孔,在三个仪器孔内沿入射激波运动方向依次分别安装低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11。在高压段4上方开设一个仪器孔,该仪器孔安装高压段压电传感器5。
高压段压电传感器5、低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11分别通过数据线与压电传感器信号传输线35一端连接,压电传感器信号传输线35另一端与计算机主机24连接。优选地,压电传感器信号传输线35将高压段压电传感器5、低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11的信号经过处理传给计算机主机24,并显示在显示器25上。其中,高压段压电传感器5用于更准确地测量高压段4压力,以记录实验的实际工况;低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11用于检测低压II段9上对应安装低压段压电传感器处的压力,同时计算机主机24记录下三处低压段压电传感器的压力变化的时刻。依据测量任意两个低压段压电传感器间的安装距离ΔL和任意两个低压段压电传感器间检测到压力变化时的时间差Δt可计算出激波的速度Δv,Δv=ΔL/Δt,然后对多组Δv的值求平均值以减小误差。
如图1和图3所示,多波长消光法粒径测量***包括激光光源阵列12、光纤13、光纤耦合器36、衍射光栅20、光电探测器19、信号调理器18、数据采集卡21以及光电探测器信号传输线41。第一可拆卸观察窗朝向外部环境的一侧依次设置有光纤耦合器36、光纤13、激光光源阵列12;衍射光栅20设置于第二可拆卸观察窗朝向外部环境的一侧;光电探测器19设置于衍射光栅20的反射路径中,光电探测器19与信号调理器18连接,信号调理器18和数据采集卡21连接。优选地,上述激光光源阵列12根据测量物质的消光特性选择特定波长的光源进行组合,具有一定的灵活性。
上述光纤13分别将激光光源阵列12中每一波长的光传输至光纤耦合器36中,经过光纤耦合器36耦合成一路光并射出,随后合成的一路光垂直的经过第一观察窗玻璃射入实验段14内的样品池,经过样品池后垂直经过第二观察窗玻璃并射出,然后在衍射光栅20的作用下分光,分光后的光路数与耦合前的光路数即波数一致。
上述光电探测器19可以探测到分光后的每一波长光路的光强,并将光强信号转化为电信号,在经过信号调理器18后被数据采集卡21采集到,经过光电探测器信号传输线41传输至计算机主机24。在计算机主机24的控制下,可以连续的测量光强信号的变化,通过反演算法反演出实验段14内液雾粒径和浓度的变化,进而研究超声速下激波对燃料液滴蒸发过程的影响。消光法具有测量下限小且不需要标定等优点,故可以满足在存在激波冲击的条件下测量微米级液滴粒径变化的需求。
如图2所示,本实施方案还包括抽气泵26,低压I段7上开设一孔,该孔通过抽气管道27与抽气泵26连接,抽气泵26用于雾化时抽气引导低压段内的气流。
本实施方案还提供了一种超声速气流下激波对燃料液滴蒸发过程影响的研究方法,包括如下步骤:
步骤1、计算高压段4内临界气体的压力值:高压段4内的临界气体压力值为p4低压段内的气体压力值为p1,p4与p1的比值为p41;确定所需激波马赫数Mas,测得p1,通过p41与Mas的关系式,进而得到高压段4内临界气体的压力值p4
其中,p1为大气压或者预先设定的具体压力值;
p41与Mas的关系式为
Figure BDA0003141577540000081
式中a14为声速比,可表示为:
Figure BDA0003141577540000082
其中,γ1为低压段气体的比热比,γ4为高压段气体的比热比,M1为低压段气体的分子量,M4为高压段气体的分子量,T1为低压段气体的初始温度,T4为高压段气体的初始温度。
步骤2、高压段4预增压:通过压力控制***对高压段4进行增压,使得当前高压段4内的气体压力值p′4接近但小于p4
步骤3、测量初始光强:采用多波长消光法粒径测量***对通过实验段14和两块观察窗玻璃后的光强进行测量,得到消光前的初始光强。
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出依次穿过第一可拆卸观察窗、实验段14、第二可拆卸管擦窗,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号转化成的电信号并通过信号调整电路传输至数据采集卡21,从而得到消光前的光强信号。
步骤4、雾化:启动抽气泵26,超声波雾化***与实验段14连通,超声波雾化***中的超声波雾化器23通过雾化转接段将雾化后的燃料液滴喷入实验段14内形成气溶胶,直至达到设定浓度;
其中,通过转动凸轮手柄34,推动密封杆联动板32向转接段腔体16方向移动,使密封杆33锥面结构端部与带孔的第二盲孔板15脱离,从而超声波雾化***中的转接段腔体16与实验段14连通;喷入实验段14内的燃料液滴达到设定浓度后,转动凸轮手柄34,使得密封杆联动板32向远离转接段腔体16方向移动,使密封杆33为锥面结构的一端面与凸台上开设的若干通孔呈锥形的一端配合,从而超声波雾化***的转接段腔体16与实验段14之间封闭。
步骤5、测量激波前燃料液滴粒径分布:在雾化的同时,采用多波长消光法测量粒径***对实验段14内的燃料液滴粒径分布进行实时测量,并得到波前燃料液滴粒径分布随时间的变化曲线;
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出穿过实验段14,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号并转化成的电信号通过信号调整电路传输至数据采集卡21,从而得到被气溶胶消光后的光强,再结合步骤3中测得的消光前的初始光强,反演出燃料液滴粒径和浓度的变化,得到波前燃料液滴粒径分布随时间的变化曲线。
步骤6、产生激波:通过压力控制***对高压段4进行增压,使得当前高压段4内的气体压力值达到p4;此时,膜片42破裂,高压段4内的气体迅速冲入低压段和实验段14,并在低压段和实验段14内产生激波;
步骤7、测量激波与燃料液滴相互作用过程中燃料液滴粒径分布:在激波运动时,多波长消光法测量粒径***对实验段14内的燃料液滴粒径分布进行实时测量,并得到激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线;同时通过若干低压段压电传感器之间的安装距离与激波运动时若干低压段压电传感器之间的响应时间差计算出多组激波速度,将多组激波速度的平均值作为实际激波速度Δv,从而得到实际激波马赫数Mas,Mas=Δv/a,a为声速;
实际激波速度Δv计算公式如下:
Figure BDA0003141577540000091
式中:
低压段I号压电传感器与低压段II号压电传感器之间的安装距离为ΔL1
低压段I号压电传感器与低压段II号压电传感器之间的响应时间差为Δt1
低压段I号压电传感器与低压段III号压电传感器之间的安装距离为ΔL2
低压段I号压电传感器与低压段III号压电传感器之间的响应时间差为Δt2
低压段II号压电传感器与低压段III号压电传感器之间的安装距离为ΔL3
低压段II号压电传感器与低压段III号压电传感器之间的响应时间差为Δt3
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出穿过实验段14,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号转化成的电信号通过信号调整电路传输至数据采集卡21,从而得到激波与燃料液滴相互作用过程中的光强,再结合步骤3中测得的消光前的初始光强,反演出燃料液滴粒径和浓度的变化,得到激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线。
步骤8、测量激波后燃料液滴粒径分布:激波过后,多波长消光法测量粒径***继续对实验段14内的燃料液滴粒径分布进行实时测量,直至燃料液滴完全蒸发,停止测量,从而得到激波后燃料液滴粒径分布随时间的变化曲线;
步骤9、卸压:通过压力控制***排除激波管中的废气;
步骤10、数据处理:计算机主机24根据多波长消光法测量粒径***测得的激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线和波后燃料液滴粒径分布随时间的变化曲线与实际激波马赫数Mas的关系,从而得到燃料液滴蒸发速率与激波马赫数Mas之间的关系。
为便于验证上述研究方法,本实施例提供一个具体实施方案,具体如下:
设定实验条件为在室温下通过氮气驱动空气得到1.4马赫的激波,初始条件有γ1=γ4=1.4;M1=29,M4=28;T1=T4=298K。
步骤1、计算p41
Figure BDA0003141577540000101
当低压段压力为大气压时,高压段4所需压力为p4=4.881atm≈0.495MPa。
依据上述实验条件下,步骤2:由于液雾中液滴粒径较小,即便在常温常压下液滴的蒸发寿命也较短,即在较短的时间内蒸发完毕,而高压段4加压需要较长的时间,因此将所需液雾充满激波管低压段再对高压段4加压将来不及。为了在液雾分布后好尽快通过激波,可以先对高压段预加压,使高压段4压力先达到略低于计算值p4=0.495MPa。
步骤3:在雾化结束后,向高压段4快速增压到所需压力使膜片42破裂,从而产生激波。由于之前高压段4压力已经接近所需压力p4,故从继续加压到膜片42破裂的时间很短。实际产生激波速度可以根据若干低压段压电传感器之间的距离和响应时间计算得出。
综上所述,本实施方案在实验时,通过超声波雾化***产生微米级的燃料液滴并将微米级的燃料液滴喷入实验段14内,然后向高压段4增压使得膜片42破裂,从而在低压段和实验段14内产生激波;同时依据多波长消光法粒径测量***对实验段14内微米级的燃料液滴的粒径进行实时测量。
本实施方案可以根据实验需要选择不同强度的膜片42以产生不同强度的激波,且因为激波管内截面均为矩形,所产生的激波无需经历以往设计方案中的圆转方段,因此产生的激波品质更好。
本实施方案通过安装的若干低压段压电传感器检测出每个低压段压电传感器与其他低压段压电传感器间检测到压力变化的时间差,依据该些时间差与每个低压段压电传感器与其他低压段压电传感器间的安装距离计算出多个激波速度,再求激波速度的平均值从而减小误差。
本实施方案的第一可拆卸观察窗和第二可拆卸观察窗能够为多种测量方式提供测量通道,可以满足不同实验条件下的测量需求。
本实施方案中的多波长消光法粒径测量***中的激光光源阵列12的选择具有灵活性,可以根据实验段14中物质的消光特性选择不同波长的光源进行组合;数据采集卡21可以根据采样频率的需要而选择。
本实施方案采用多波长消光法测量粒径,当借助光学来测量粒径时,由于激波与液雾的相互作用会对光的散射造成影响,并且激波后压力、温度的升高也会对光的散射造成一定的影响,因此接受散射光信号的测量仪器不能满足实验的需求。而在消光法测量过程中,由于测量时所采集的是穿过颗粒系的透射光,而非颗粒的散射光,因此光信号较强;另外,激波对光强的影响较小,所以消光法测量粒径能够使用于存在激波冲击的实验中。除此之外,消光法不仅要采集穿过颗粒系后的光强信号,还要采集穿过颗粒系前的光强信号,是一种绝对测量方法,不需要标定。
本实施方案中,采用的是连续激光光源,因此数据的采集频率取决于数据采集卡21的采集频率,可以根据实验的需要选择不同采集频率的数据数据采集卡21。比如激波穿过测量区域的时间为微秒量级,因此可以采用采集频率为1MHz的数据采集卡21,以保证在激波穿过的时间内采集到可靠的数据。为了在特定的时间内采集到更多可靠的数据,可以采用更高采集频率的数据采集卡21,因此采集频率的选择具有灵活性。
本实施方案中,多波长消光法中光波长选择具有灵活性。波长的选择对粒径的反演存在影响,因此可以事先借助已成熟的粒径测量装置在无激波冲击时测出粒径分布范围,根据测得的粒径范围选择适当的波长来组成所需的激光光源阵列12。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本申请中的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。
本申请中的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。
本发明的描述中,需要理解的是,术语“上侧”、“下侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于,包括激波管***、超声波雾化***、压力检测***以及多波长消光法粒径测量***,其中:
所述激波管***包括激波管和压力控制***,所述激波管包括沿入射激波运动方向依次设置的高压段(4)、低压段以及实验段(14);在所述高压段(4)与所述低压段的交接处密封设置有膜片(42);所述实验段(14)的两个相对侧面分别设置有第一可拆卸观察窗和第二可拆卸观察窗;
所述压力控制***用于控制通入所述激波管内的气体压力;
所述超声波雾化***用于向所述实验段(14)内喷入微米级的燃料液滴;
所述超声波雾化***包括超声波雾化器(23)、导流管道(22)以及雾化器转接段;
所述超声波雾化器(23)用于存储和雾化液体燃料;
所述导流管道(22)一端与所述超声波雾化器(23)连接,另一端与所述雾化器转接段连接,所述雾化器转接段与所述实验段(14)连接;
所述雾化器转接段包括带孔的第二盲孔板(15)、转接段腔体(16)、带孔的密封杆支撑板(17)、若干密封杆(33)以及带孔的密封杆联动板(32);
所述第二盲孔板(15)、所述转接段腔体(16)以及所述密封杆支撑板(17)组装形成与所述实验段(14)连通的腔体;所述第二盲孔板(15)上开设若干通孔,若干所述通孔远离所述转接段腔体(16)的一端为锥形,若干所述密封杆(33)一端设置锥面结构另一端设置螺纹,其设置锥面结构的一端与所述第二盲孔板(15)上若干所述通孔呈锥形的一端配合,若干所述密封杆(33)设置螺纹的一端与所述密封杆联动板(32)连接;
当所述密封杆(33)设置的锥面结构与所述第二盲孔板(15)上所述通孔的锥形部分配合时,所述密封杆(33)设置锥面结构的一端端面与所述第二盲孔板(15)远离所述转接段腔体(16)一侧的端面形成激波反射面;
当所述密封杆(33)设置的锥面结构与所述第二盲孔板(15)上的所述通孔的锥形部分脱离时,所述实验段(14)与所述转接段腔体(16)连通;
所述压力检测***包括若干低压段压电传感器,若干所述低压段压电传感器沿入射激波运动方向依次设置于所述低压段上;
所述多波长消光法粒径测量***设置在第一观察窗和第二观察窗的两侧,用于对所述实验段(14)内微米级的燃料液滴的粒径进行实时测量。
2.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:还包括夹膜段(6),所述夹膜段(6)用于夹紧所述膜片(42)并设置于所述高压段(4)与所述低压段之间;所述高压段(4)、所述夹膜段(6)、所述低压段和所述实验段(14)的内截面以及所述膜片(42)的形状均呈矩形。
3.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:所述低压段包括沿入射激波运动方向依次设置的低压I段(7)和低压II段(9),若干所述低压段压电传感器沿入射激波运动方向依次设置于所述低压II段(9)上。
4.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:还包括凸轮手柄(34),所述凸轮手柄(34)与所述密封杆联动板(32)连接。
5.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:若干所述低压段压电传感器包括沿入射激波运动方向依次设置的低压段I号压电传感器(8)、低压段II号压电传感器(10)以及低压段III号压电传感器(11)。
6.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:所述多波长消光法粒径测量***包括激光光源阵列(12)、光纤(13)、光纤耦合器(36)、衍射光栅(20)、光电探测器(19)、信号调理器(18)、数据采集卡(21)以及光电探测器信号传输线(41);
所述第一可拆卸观察窗朝向外部环境的一侧依次设置有所述光纤耦合器(36)、所述光纤(13)、所述激光光源阵列(12);
所述衍射光栅(20)设置于所述第二可拆卸观察窗朝向外部环境的一侧;
所述光电探测器(19)设置于所述衍射光栅(20)的反射路径中,所述信号调理器(18)与所述光电探测器(19)和所述数据采集卡(21)分别连接。
7.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:还包括用于抽气引导所述低压段内气流的抽气泵(26)。
8.根据权利要求1所述的超声速气流下激波对燃料液滴蒸发过程影响的研究装置,其特征在于:所述压力检测***还包括用于检测所述高压段(4)内压力的高压段压电传感器(5)。
CN202110735836.6A 2021-06-30 2021-06-30 超声速气流下激波对燃料液滴蒸发过程影响的研究装置 Active CN113390762B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110735836.6A CN113390762B (zh) 2021-06-30 2021-06-30 超声速气流下激波对燃料液滴蒸发过程影响的研究装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110735836.6A CN113390762B (zh) 2021-06-30 2021-06-30 超声速气流下激波对燃料液滴蒸发过程影响的研究装置

Publications (2)

Publication Number Publication Date
CN113390762A CN113390762A (zh) 2021-09-14
CN113390762B true CN113390762B (zh) 2022-09-20

Family

ID=77624607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110735836.6A Active CN113390762B (zh) 2021-06-30 2021-06-30 超声速气流下激波对燃料液滴蒸发过程影响的研究装置

Country Status (1)

Country Link
CN (1) CN113390762B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264447B (zh) * 2021-12-31 2023-05-05 西安交通大学 一种注射式激波管及方法
CN116337656A (zh) * 2023-05-26 2023-06-27 中国空气动力研究与发展中心超高速空气动力研究所 一种可控气态爆轰超压模拟装置及实验方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732720B2 (en) * 2002-05-30 2004-05-11 Monroe R. Kelemencky Ultrasonic liquid fuel introduction system
JP2009516855A (ja) * 2005-11-15 2009-04-23 ゾロ テクノロジーズ,インコーポレイティド 航空推進用途に対する内蔵型飛行センサのための全ファイバ・アーキテクチャ
CN102706533B (zh) * 2012-05-23 2014-09-03 浙江理工大学 用于研究激波与不同形态液体相互作用的装置
CN103728229A (zh) * 2013-12-09 2014-04-16 太原科技大学 测量大气颗粒物的平均粒径和浓度的测量装置及测量方法
CN105953226B (zh) * 2016-05-20 2019-01-29 中国人民解放军战略支援部队航天工程大学 液体燃料的激波管外雾化预混和进气新方法
CN206192829U (zh) * 2016-11-15 2017-05-24 上海理工大学 一种超低排放烟尘监测装置
CN107014950A (zh) * 2017-06-15 2017-08-04 华北电力大学(保定) 一种激波管实验装置
WO2019108731A1 (en) * 2017-11-30 2019-06-06 Xinova, LLC Dynamic light scattering for particle size distribution measurement
CN108644810A (zh) * 2018-06-07 2018-10-12 南京航空航天大学 一种双预膜式超声波喷嘴
CN109084986A (zh) * 2018-09-18 2018-12-25 江苏心源航空科技有限公司 一种燃烧试验用超声波燃料雾化装置
CN110823786A (zh) * 2019-11-19 2020-02-21 江苏苏净集团有限公司 一种液体中微小颗粒的检测装置和方法
CN111486032A (zh) * 2020-05-05 2020-08-04 浙江大学 基于激波管试验平台的纳米流体燃料实时超声雾化***
CN111520712A (zh) * 2020-06-09 2020-08-11 中国农业科学院农业环境与可持续发展研究所 一种适用于热解油的超声波雾化燃烧***及方法
CN111795911A (zh) * 2020-08-07 2020-10-20 中国矿业大学(北京) 不同雾化液滴粒径测试装置和方法
CN112085994A (zh) * 2020-09-30 2020-12-15 浙江理工大学 声悬浮气液两相激波管实验装置和实验方法

Also Published As

Publication number Publication date
CN113390762A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113390762B (zh) 超声速气流下激波对燃料液滴蒸发过程影响的研究装置
US20180245988A1 (en) Measurement apparatus applicable to two-dimensional reconstruction of gas in combustion flow field
CN113390765B (zh) 超声速气流下激波对燃料液滴蒸发过程影响的研究方法
CN103344777B (zh) 热防护材料高温低压离解氧环境试验装置
CN109696447B (zh) 一种软x射线显微成像装置
CN108732046B (zh) 一种多灾种耦合作用下的钢制储油罐壁面破坏实验平台及其实验方法
CN109765185A (zh) 一种采用单光声池测量多组分气体的激光光声光谱检测装置
CN112085994A (zh) 声悬浮气液两相激波管实验装置和实验方法
CN104405553A (zh) 柴油机喷油嘴各孔喷油规律测量装置
CN112304620B (zh) 高压和振荡环境下燃料液滴蒸发燃烧实验装置及使用方法
CN111272817A (zh) 激光辐照下热粉尘引燃可燃气体***特性参数测试装置
CN111751484A (zh) 一种固液火箭发动机燃料燃速测量***
CN110823514A (zh) 高焓气固两相横向射流与超声速气流耦合作用发生装置及测量***
Heltsley et al. Design and characterization of the Stanford 6 inch expansion tube
CN201673116U (zh) 一种用于测量低气压条件下喷雾特性的实验装置
CN208270376U (zh) 一种粒度在线监测***
CN105675202A (zh) 一种空间发动机羽流场真空微差压测量***
CN113936533B (zh) 一种用于自燃型燃料点火特性研究的实验装置及方法
CN101865786B (zh) 一种用于测量低气压条件下喷雾特性的实验装置
CN115560990B (zh) 超声速气固两相横向射流实验平台及射流测量方法
Sankar et al. Liquid atomization by coaxial rocket injectors
CN104198394A (zh) 一种插拔式滤光片盘结构的光声光谱检测装置
KR100935659B1 (ko) 극초음속유동을 이용한 실험장치
CN210092028U (zh) 一种用于机载气溶胶质谱仪的控压进样装置
CN115459036B (zh) 一种多功能透明结构深紫外准分子激光传输装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant