CN113388776B - 一种井控装置用f22材质、其锻造方法及热处理工艺 - Google Patents

一种井控装置用f22材质、其锻造方法及热处理工艺 Download PDF

Info

Publication number
CN113388776B
CN113388776B CN202010173324.0A CN202010173324A CN113388776B CN 113388776 B CN113388776 B CN 113388776B CN 202010173324 A CN202010173324 A CN 202010173324A CN 113388776 B CN113388776 B CN 113388776B
Authority
CN
China
Prior art keywords
equal
less
blank
heating
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010173324.0A
Other languages
English (en)
Other versions
CN113388776A (zh
Inventor
高超
杨武
谈安宝
闫沛堂
马宏儒
杨宪军
刘林
陈伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Lanshi Superalloy New Materials Co ltd
Original Assignee
Lanzhou Lanshi Group Co ltd Casting And Forging Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Lanshi Group Co ltd Casting And Forging Branch filed Critical Lanzhou Lanshi Group Co ltd Casting And Forging Branch
Priority to CN202010173324.0A priority Critical patent/CN113388776B/zh
Publication of CN113388776A publication Critical patent/CN113388776A/zh
Application granted granted Critical
Publication of CN113388776B publication Critical patent/CN113388776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种井控装置用F22材质、其锻造方法及热处理工艺,所述F22材质化学成分主要包括C、Si、Mn、P、S、Cr、Ni、Mo、V,残余元素包括Cu、As、Sb、Sn及气体元素,剩余为Fe及无法避免的杂质元素。该合金钢坯料锻造过程包括4火次,锻造比≥5,钢坯经过加热后始锻温度为1220℃,终锻温度为800℃,最后一火次修正终锻温度700℃。锻造完锻件经过正火、淬火、回火的热处理工艺满足标准要求。通过本发明技术方案制造的F22材质井控装置不仅具有优良的强硬度和塑性等综合力学性能指标,还具有较高的晶粒度级别和较少的非金属夹杂物。

Description

一种井控装置用F22材质、其锻造方法及热处理工艺
技术领域
本发明涉及一种井控装置用F22材质、其锻造方法及热处理工艺,属于钢铁材料加工技术领域。
背景技术
在石油天然气钻井施工中,为安全的钻过高压油、气层并避免发生钻井井喷失控事故,需要在钻井的井口上安装一套钻井井控装置。井控装置的作用就是当井内出现溢流、井涌时可快速及时关闭井口,防止井喷事故的发生,所以井控装置必须具有耐高压、耐腐蚀的特性。随着石油钻采行业向着深海及极地严寒地区发展,对应的井控装置也必须具备较高的低温韧性以避免低温高压条件下井控装置失效发生安全事故,这就要求井控装置必须进行性能提升。F22是一种优秀的低合金钢,通过选择合理的成分,锻造及热处理,最终可达到优良的综合力学性能,特别是具有较高低温冲击韧性。
发明内容
本发明的目的是提供一种井控装置用F22材质、其锻造方法及热处理工艺,通过本办法最终可获得优良的综合力学性能,特别是具有较高低温冲击韧性。
为了达到上述目的,本发明技术方案如下:
一种井控装置用F22材质,其化学成分按照质量百分比计,具有以下成分:C:0.10%- 0.15%,Mn:0.40% - 0.60%,Si:0.20% - 0.35%,P≤0.015%,S≤0.010%,Cr:2.00% -2.50%,Mo:0.90% - 1.10%,Ni≤0.50%,Cu≤0.50%,AS≤0.005%,Sn≤0.005%,Sb≤0.003%,气体元素[H] ≤2PPm, [O] ≤30PPm, [N] ≤60PPm,其余为Fe及不可避免的杂质元素。
进一步的,所述井控装置用F22材质,除了满足上述化学成分,其原材料冶炼采用电炉冶炼,炉外精炼及真空脱气和模铸的工艺,模注坯料保温结束脱模后进行锻造。
一种井控装置用F22材质的锻造方法,包括4火次,锻造比≥5;具体步骤如下:
(1)模注坯料加热到1220℃保温6h,通过炉门窥视孔观察坯料是否均匀加热及烧透,确保无阴阳面和透热的条件下出炉锻造,使用上下平砧将坯料倒棱滚圆至直径D1,高度H1后使用剁刀将坯料底部去掉,回炉加热;
(2)回炉坯料加热4h后进行一次镦拔,镦粗序分三次进行缓慢镦粗,单次下压量分别为:150mm、200mm、200mm,为保证镦粗过程坯料均匀受力,使用镦粗盖板;坯料镦粗至D2,高度H2后进行三维锻造再拔长至直径D1,高度H1,回炉加热;
(3)回炉坯料加热4h后进行二次镦拔,采用步骤(2)所述的镦拔方式,二次镦拔结束后回炉加热;
(4)二次镦拔完坯料加热4h后进行制坯,使用平砧将坯料锻成长L,宽W,高H3方形坯,余料带冒口锻成D3的圆形后剁去冒口;
(5)在冒口使用内径D4的垫圈锻出高度为H4的法兰圆台阶,使用外径D5,高度H5的冲头,正反双面进行冲孔;冲头放正,防止冲歪、冲斜,移除垫圈冲头后修整至工艺尺寸,整个锻造过程保证锻造温度≥800℃,修整外形尺寸过程保证锻造温度≥700℃。
一种井控装置用F22材质的热处理工艺,采用正火,淬火加回火,包括以下几个步骤:
(a)正火:≤300℃以下装炉,升温速度≤120℃/h,升温至600-650℃保温3h,然后以≤120℃/h升温至920-950℃保温15h,炉温均匀性满足±10℃,以空冷的方式冷却;
(b)淬火:正火冷却至≤300℃以下装炉,升温速度≤120℃/h,升温至600-650℃保温3h,然后以≤120℃/h升温至900-930℃保温12h,炉温均匀性满足±10℃,以水冷的方式冷却,冷却水温在20-35℃,循环水流速25-40mm/s,入水后进行摆动,摆动时间不少于20min,水冷2-3h以后进行回火处理;
(c)回火:淬火水冷2-3h以后进行回火处理,≤300℃以下装炉,升温速度≤100℃/h,升温至650-680℃保温15h后空冷,炉温均匀性满足±8℃。
进一步的,步骤(b)所描述的淬火过程,为提升淬火效果,快速进入贝氏体转变阶段,要求淬火水温20-35℃,流速25-40mm/s,并通过不断摆动打破蒸汽膜,进入对流阶段加速热交换。
进一步的,为提高淬透深度,获得较好力学性能和微观组织形态,正火后进行粗加工处理,去除表面氧化皮和过大的毛坯余量。
本发明所述F22材质是一种低合金钢,对化分成分进行了优化,C元素是增加淬透性的主要元素,可明显提升强度指标,但是C含量过高会影响低温冲击韧性,所以对C含量控制到标准范围的中上限。Si元素作为冶炼过程还原剂和脱氧剂会促进脆性夹杂物形成,并增加脱碳倾向,固Si元素控制到标准下限。Mo元素能使钢的晶粒细化,提高淬透性和热强性能,合金钢中加入钼,能提高机械性能,还可以抑制合金钢由于火而引起的脆性,所以将Mo元素控制到标准上限提升整体性能。Cr元素在合金中,虽显著提高强度、硬度,但同时降低塑性和韧性,Cr元素控制至中下限水平以保证冲击韧性。Ni元素提高钢的强度,而又保持良好的塑性和韧性,还有较高的耐腐蚀能力,所以将Ni元素控制到标准上限。P、S、AS、Cu、AS、Sn、Sb、[H]、[O]、[N]等有害残余元素及气体元素按照现场条件及设备能力依据标准进行严格控制。通过本发明而冶炼的F22材质具有极高的纯净度,通过后序的锻造和热处理能够获得优良的力学性能,晶粒度和夹杂物级别。
有益效果:
(1)本发明对井控装置用F22材质成分进行了优化,通过技术方案中说述的锻造及热处理工艺方法,能够获得综合力学性能优良的井控装置锻件,通过现场多次装备使用后,完全满足技术标准要求。
(2)通过本发明技术方案制备的井控装置用F22材质锻件,具有极高的-29℃低温冲击韧性,可达到180J以上,奥氏体晶粒度8级,非金属夹杂物A、B、C、D、DS均不超过0.5,远远高于标准要求。
(3)本发明对F22材质井控装置生产制造厂家无特殊的要求,冶炼锻造热处理技术方案容易实施。
附图说明
图1为钢坯倒棱滚圆示意图;
图2为钢坯镦拔示意图;
图3为制方坯切除冒口示意图;
图4为垫圈工装锻造法兰圆台阶、冲孔示意图;
图5为最终锻件示意图。
具体实施方式
结合井控装置用F22双壳体防喷器产品实例,对本发明进行阐述。
该产品实例采用电弧炉熔炼,LF炉精炼及VD浇铸的冶炼工艺,具有以下质量百分比成分(%):C:0.10-0.15,Mn:0.40-0.60,Si:0.20-0.35,P≤0.015,S≤0.010,Cr:2.00-2.50,Mo:0.90-1.10,Ni≤0.50,Cu≤0.50,AS≤0.005,Sn≤0.005, Sb≤0.003,气体元素[H] ≤2PPm, [O] ≤30PPm, [N] ≤60PPm,其余为Fe及不可避免的杂质元素。
该产品实例为方形台与法兰圆台阶结合,并带内通孔的结构,锻重11T,现场使用50MN快锻压机锻造,采用钢坯重量15T,利用率75%。锻造过程包括4火次,锻造比≥5,成品尺寸总长1000mm,方形台尺寸1050mm×850mm×650mm,法兰圆台阶尺寸Φ850×350mm,内通孔尺寸Φ300mm,最详细的锻造过程包括以下步骤:
(1)模注坯料加热到1220℃保温6h,确保烧透无阴阳面条件下出炉锻造,使用上下平砧将坯料倒棱滚圆至直径D1=1000mm,高度H1=1800mm,使用剁刀将坯料底部去掉,回炉加热,如图1所示;
(2)回炉坯料加热4H后进行一次镦拔,镦粗序分三次进行缓慢镦粗,单次下压量分别为:150mm、200mm、200mm,为保证镦粗过程坯料均匀受力,使用镦粗盖板;坯料镦粗至D2=1200mm,H2=1250mm,如图2所示,再通过三维锻造再拔长至直径D1=1000mm,高度H1=1800mm,回炉加热;
(3)回炉坯料加热4H后进行二次镦拔,采用步骤(2)所述的镦拔方式,二次镦拔结束后回炉加热;
(4)镦拔完坯料加热4H后进行制坯,使用平砧将坯料锻成L=1050mm,W=850mm,H3=650mm的方形坯,其余部分连同冒口端制成直径D3=825mm的圆并剁去冒口,如图3所示;
(5)在圆端使用内径D4=850mm的垫圈锻出高度为H4=350mm的法兰圆台阶,使用外径D5=280mm,高度H5=700mm的冲头,正反双面进行冲孔。冲头放正,防止冲歪、冲斜,移除垫圈冲头后修整至工艺尺寸,如图4、5所示,整个锻造过程保证锻造温度≥800℃,修整外形尺寸过程保证锻造温度≥700℃。
一种井控装置用F22材质采用正火,淬火加回火的热处理工艺,包括以下几个步骤:
(a)正火:≤300℃以下装炉,升温速度≤120℃/h,升温至650℃保温3H,然后以≤120℃/h升温至930℃保温15h,炉温均匀性满足±10℃,以空冷的方式冷却;
(b)淬火:正火冷却至≤300℃以下装炉,升温速度≤120℃/h,升温至650℃保温3H,然后以≤120℃/h升温至920℃保温12h,炉温均匀性满足±10℃,以水冷的方式冷却,冷却水温在20-35℃,循环水流速25-40mm/s,入水后进行摆动,摆动时间不少于20min,水冷2h以后进行回火处理;
(c)回火:淬火水冷2h以后进行回火处理,≤300℃以下装炉,升温速度≤100℃/h,升温至675℃保温15h后空冷,炉温均匀性满足±8℃。
热处理后锻件本体取样进行力学性能检测,按照ASTM A370分别检测抗拉强度Rm,屈服强度Rp0.2,延伸率A%,断面收缩率Z%,低温-29℃冲击AKV,布氏硬度HBW,晶粒度级别及夹杂物分析。
经过检测,该产品实例达到以下检测结果:
项目 Rm/Mpa <![CDATA[Rp<sub>0.2</sub>/Mpa]]> A% Z% -29℃ KV/J HBW
标准值 ≥655 ≥517 ≥18 ≥35 ≥27 210-234
实测值 695 585 25.5 75 185 185 183 247
奥氏体晶粒度达到8.0级,非金属夹杂物A、B、C、Ds均为0,,D为0.5,总和为0.5。该产品实施经过检验后力学性能、晶粒度级别及夹杂物分析均满足标准要求。
本发明对井控装置用F22材质成分进行了优化,通过技术方案中说述的锻造及热处理工艺方法,能够获得综合力学性能优良的纯净锻件,通过多次现场装备使用后,完全满足技术标准要求。特别是利用本发明制造的井控装置F22材质不但具有极高的低温冲击韧性,远远超出标准要求,还具备较高晶粒度和纯净度。

Claims (1)

1.一种井控装置用F22材质,其特征在于:其化学成分按照质量百分比计,具有以下成分:C:0.10% - 0.15%,Mn:0.40% - 0.60%,Si:0.20% - 0.35%,P≤0.015%,S≤0.010%,Cr:2.00% - 2.50%,Mo:0.90% - 1.10%,Ni≤0.50%,Cu≤0.50%,AS≤0.005%,Sn≤0.005%,Sb≤0.003%,气体元素[H] ≤2PPm, [O] ≤30PPm, [N] ≤60PPm,其余为Fe及不可避免的杂质元素;原材料冶炼采用电炉冶炼,炉外精炼及真空脱气和模铸的工艺,模注坯料保温结束脱模后进行锻造;所述的井控装置用F22材质的锻造方法,其特征在于:包括4火次,锻造比≥5;具体步骤如下:
(1)模注坯料加热到1220℃保温6h,通过炉门窥视孔观察坯料是否均匀加热及烧透,确保无阴阳面和透热的条件下出炉锻造,使用上下平砧将坯料倒棱滚圆至直径D1,高度H1后使用剁刀将坯料底部去掉,回炉加热;
(2)回炉坯料加热4h后进行一次镦拔,镦粗序分三次进行缓慢镦粗,单次下压量分别为:150mm、200mm、200mm,为保证镦粗过程坯料均匀受力,使用镦粗盖板;坯料镦粗至D2,高度H2后进行三维锻造再拔长至直径D1,高度H1,回炉加热;
(3)回炉坯料加热4h后进行二次镦拔,采用步骤(2)所述的镦拔方式,二次镦拔结束后回炉加热;
(4)二次镦拔完坯料加热4h后进行制坯,使用平砧将坯料锻成长L,宽W,高H3方形坯,余料带冒口锻成D3的圆形后剁去冒口;
(5)在冒口使用内径D4的垫圈锻出高度为H4的法兰圆台阶,使用外径D5,高度H5的冲头,正反双面进行冲孔;冲头放正,防止冲歪、冲斜,移除垫圈冲头后修整至工艺尺寸,整个锻造过程保证锻造温度≥800℃,修整外形尺寸过程保证锻造温度≥700℃;
(6)热处理工艺,采用正火,淬火加回火,包括以下几个步骤:
(a)正火:≤300℃以下装炉,升温速度≤120℃/h,升温至600-650℃保温3h,然后以≤120℃/h升温至920-950℃保温15h,炉温均匀性满足±10℃,以空冷的方式冷却;为提高淬透深度,获得较好力学性能和微观组织形态,正火后进行粗加工处理,去除表面氧化皮和过大的毛坯余量;
(b)淬火:正火冷却至≤300℃以下装炉,升温速度≤120℃/h,升温至600-650℃保温3h,然后以≤120℃/h升温至900-930℃保温12h,炉温均匀性满足±10℃,以水冷的方式冷却,冷却水温在20-35℃,循环水流速25-40mm/s,入水后进行摆动,摆动时间不少于20min,水冷2-3h以后进行回火处理;为提升淬火效果,快速进入贝氏体转变阶段,要求淬火水温20-35℃,流速25-40mm/s,并通过不断摆动打破蒸汽膜,进入对流阶段加速热交换;
(c)回火:淬火水冷2-3h以后进行回火处理,≤300℃以下装炉,升温速度≤100℃/h,升温至650-680℃保温15h后空冷,炉温均匀性满足±8℃。
CN202010173324.0A 2020-03-13 2020-03-13 一种井控装置用f22材质、其锻造方法及热处理工艺 Active CN113388776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010173324.0A CN113388776B (zh) 2020-03-13 2020-03-13 一种井控装置用f22材质、其锻造方法及热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010173324.0A CN113388776B (zh) 2020-03-13 2020-03-13 一种井控装置用f22材质、其锻造方法及热处理工艺

Publications (2)

Publication Number Publication Date
CN113388776A CN113388776A (zh) 2021-09-14
CN113388776B true CN113388776B (zh) 2023-04-14

Family

ID=77616033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010173324.0A Active CN113388776B (zh) 2020-03-13 2020-03-13 一种井控装置用f22材质、其锻造方法及热处理工艺

Country Status (1)

Country Link
CN (1) CN113388776B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564567C (zh) * 2003-10-20 2009-12-02 杰富意钢铁株式会社 扩管用无缝油井钢管及其制造方法
US20080105341A1 (en) * 2006-11-02 2008-05-08 Huff Philip A Heat treatment of inlaid pressure vessels
US20080078081A1 (en) * 2006-09-28 2008-04-03 Huff Philip A High pressure-rated ram blowout preventer and method of manufacture
CN102181793B (zh) * 2011-04-02 2012-05-30 南京迪威尔重型锻造股份有限公司 深海采油设备输送立管用钢锻件制造工艺
CN102899447B (zh) * 2012-09-21 2014-05-07 江苏金石铸锻有限公司 A182 F22(12Cr2Mo1)的EAF+VOD冶炼方法
CN104017966A (zh) * 2014-04-28 2014-09-03 张家港海锅重型锻件有限公司 深海防爆装置用f22钢锻件的生产工艺
CN105385821B (zh) * 2015-10-21 2017-09-12 苏州雷格姆海洋石油设备科技有限公司 一种用于深海中高温高压环境下的设备零件的原料生产方法
CN105925894B (zh) * 2016-06-23 2017-08-22 江阴兴澄特种钢铁有限公司 一种超厚高强抗层状撕裂q500d‑z35水电机组钢板及其制造方法
CN107937831B (zh) * 2017-11-16 2019-09-10 兰州兰石集团有限公司 压力容器用12Cr2Mo1V合金钢及其锻造热处理工艺
CN109261869B (zh) * 2018-09-19 2020-06-09 无锡继平锻造有限公司 一种转换法兰锻件的锻造及热处理工艺
CN110106308A (zh) * 2019-04-30 2019-08-09 无锡市法兰锻造有限公司 一种高性能12Cr2Mo1锻件的制造方法
CN110283974A (zh) * 2019-07-22 2019-09-27 洛阳中创重型机械有限公司 一种压力容器用12Cr2Mo1V钢锻件的热处理工艺

Also Published As

Publication number Publication date
CN113388776A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN102837165B (zh) 大功率采煤机末级传动齿轮的制造方法
CN109622836B (zh) 一种壳体锻件的锻造及热处理工艺
CN111020409B (zh) 一种高强度微合金钢、水下油气管线快速连接器及制造方法
CN112281069A (zh) 深海采油树装备用8630超长锻件的生产方法
CN111286682B (zh) 一种低合金超高强度钢及其热处理工艺
CN112626412B (zh) 一种耐蚀高强低合金钢及其制备方法
CN110923571A (zh) 一种风机风电回转齿圈环锻件的制造方法
CN114411043A (zh) 一种大型热锻热作模具钢的制备方法
WO2021208181A1 (zh) 一种低温高韧高温高强及高淬透性热模钢及制备技术
CN108411210B (zh) 一种深海动态柔性立管用耐酸超高强钢及其制备方法
CN109023104B (zh) 4Cr13塑料模具钢及其制备方法
CN113388776B (zh) 一种井控装置用f22材质、其锻造方法及热处理工艺
CN107675097B (zh) 具有良好侧弯性能的高强钢q690d钢板及其生产方法
CN112553525B (zh) 一种中碳低合金高强钢及其制备方法
CN111647797B (zh) 一种高速工具钢及其钢热处理方法
CN115125457A (zh) 一种连铸大圆坯生产的耐-50℃低温石化热交换器管板用钢及其制造方法
CN114318162A (zh) 一种高冲击性能水轮机用法兰锻件及其制造方法
CN112501507A (zh) 一种压裂泵液缸用高强度合金结构钢及其制备方法
CN113528965A (zh) 加氢站加氢站特大型压缩机用高强度耐腐叶轮17-4ph锻件的生产工艺
CN113584379A (zh) 一种低碳高硬度高韧性结合的模具钢及其生产工艺
CN108907061B (zh) 一种树头四通阀的制造方法
CN110714158A (zh) 一种地质钻探用合金钢无缝钢管及其加工方法
CN114438405B (zh) 耐低温油管阀门及其制备方法
CN104862603A (zh) 用于石油化工的高合金低硬度无缝钢管的热处理方法
CN111647798B (zh) 一种木工用高速工具钢材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231128

Address after: No.506, west section of Yellow River Avenue, Lanzhou New Area, Lanzhou City, Gansu Province

Patentee after: Lanzhou Lanshi Superalloy New Materials Co.,Ltd.

Address before: 730000, No. 506, west section of Huanghe Avenue, Lanzhou New District, Lanzhou City, Gansu Province

Patentee before: Lanzhou Lanshi Group Co.,Ltd. Casting and Forging Branch

TR01 Transfer of patent right