CN113364035A - 一种中压直挂光伏发电***的拓扑结构 - Google Patents

一种中压直挂光伏发电***的拓扑结构 Download PDF

Info

Publication number
CN113364035A
CN113364035A CN202110655762.5A CN202110655762A CN113364035A CN 113364035 A CN113364035 A CN 113364035A CN 202110655762 A CN202110655762 A CN 202110655762A CN 113364035 A CN113364035 A CN 113364035A
Authority
CN
China
Prior art keywords
generation system
power generation
module
voltage direct
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110655762.5A
Other languages
English (en)
Inventor
朱一昕
宗瑜
樊启高
毕恺韬
贾捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202110655762.5A priority Critical patent/CN113364035A/zh
Publication of CN113364035A publication Critical patent/CN113364035A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种中压直挂光伏发电***的拓扑结构,包括多个功率模块,所述的功率模块内由光伏模块、高频隔离DC/DC变换器模块及DC/AC换流器模块组成,且多个功率模块并联通过级联H桥结构组成总体的拓扑结构,所述的功率模块均为独立设计,功率模块的输入侧不与公共直流母线相连,输出侧采用串联结构。本发明的拓扑结构中采用高频隔离DC/DC变换器,减小整机体积、重量,降低成本;采用级联H桥拓扑,减少电力电子器件数,方便实现冗余设计,无缝切换冗余模式,提高***运行安全性、稳定性;采用虚拟同步电机控制,可以向电网提供电压和频率支撑,增加***惯量与阻尼,能够更稳定地支撑电力网络的安全稳定运行。

Description

一种中压直挂光伏发电***的拓扑结构
技术领域
本发明涉及拓扑结构技术,尤其是指一种中压直挂光伏发电***的拓扑结构。
背景技术
由于化石能源大量开发导致的能源余量枯竭及严重的环境污染等问题,全球正大力发展可再生能源发电技术。我国作为能源大国,发展可再生能源发电技术,是推进能源生产和转型的重要措施。目前可利用的可再生能源中,太阳能因储量大、设备安装便利、规模灵活而被公认为21世纪可再生能源发展的主流方向。
中压直挂光伏发电***作为新型的光伏发电***结构,多应用于光伏电站并网发电,近年来在国内外研究者中收到广泛关注。传统的光伏发电***选用工频升压变压器,有体积大、成本高昂、转换效率低等缺点。采用高频隔离变换器代替工频升压变压器,无夜间损耗和无功损耗,不需要无功补偿装置,有利于***效率和功率密度的提升。
在中压直挂光伏发电***研究现状中,对***的拓扑研究和控制方式研究尤为关键。目前研究的中压直挂光伏发电***大多采用基于模块化多电平变换器(modularmultilevel converter,MMC)的级联型拓扑,该拓扑需要大量电力电子开关器件,会使得***复杂度,绝缘成本升高,效率降低。
除拓扑结构外,控制方式也会对整个***的性能产生直接影响。光伏发电主要是以电力电子变流器作为并网接口,与传统同步发电机不同,电力电子变流器不具备有利于电网稳定运行的旋转惯量和阻尼特性。随着分布式电源在电力***中的渗透率不断提升,将对电力***的安全稳定运行带来严峻挑战。传统光伏发电并网采用电压外环结合电流内环的双闭环控制方式,控制简单但无法向电网提供功率支撑,无法解决光伏并网渗透率提高带来的***惯量减少的问题。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中单个电力电子器件耐压不足的问题与MMC型结构***复杂、开关器件数量多、成本高昂的问题,从而提供一种采用虚拟同步电机控制的中压直挂光伏发电***拓扑结构。
为解决上述技术问题,本发明提供的一种中压直挂光伏发电***的拓扑结构,包括多个功率模块,所述的功率模块内由光伏模块、高频隔离DC/DC变换器模块及DC/AC换流器模块组成,且多个功率模块并联通过级联H桥结构组成总体的拓扑结构,所述的功率模块均为独立设计,功率模块的输入侧不与公共直流母线相连,输出侧采用串联结构。
在本发明的一个实施例中,所述的光伏模块、高频隔离DC/DC变换器模块及DC/AC换流器模块之间采用依次串联相连结构。
在本发明的一个实施例中,所述的光伏模块的输入端为1kV直流电压。
在本发明的一个实施例中,所述的每个功率模块中光伏模块经高频隔离DC/DC变换器,再通过DC/AC换流器实现并网。
在本发明的一个实施例中,所述的每个功率模块输出侧采用每个功率模块输出串联的结构,使输出为中压交流电。
在本发明的一个实施例中,所述的高频隔离DC/DC变换器模块采用的是单移相控制方式。
在本发明的一个实施例中,所述的高频隔离DC/DC变换器模块内每个桥臂上下两个开关管为180°互补导通。
在本发明的一个实施例中,所述的每个桥臂之间对角开关管同时导通。
在本发明的一个实施例中,所述的DC/AC换流器模块采用虚拟同步电机控制策略,通过在控制上模拟同步发电机的运行机制。
在本发明的一个实施例中,所述的DC/AC换流器模块等效的VSM的极对数为1。
本发明与现有技术相比的优点在于:本发明的拓扑结构中采用高频隔离DC/DC变换器,减小整机体积、重量,降低成本;采用级联H桥拓扑,减少电力电子器件数,方便实现冗余设计,无缝切换冗余模式,提高***运行安全性、稳定性;采用虚拟同步电机控制,可以向电网提供电压和频率支撑,增加***惯量与阻尼,能够更稳定地支撑电力网络的安全稳定运行。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
图1是本发明一种中压直挂光伏发电***的总体结构示意图;
图2是本发明一种中压直挂光伏发电***的主电路拓扑示意图;
图3是本发明一种中压直挂光伏发电***的主电路拓扑中单个功率模块示意图;
图4是本发明一种中压直挂光伏发电***的主电路拓扑中高频隔离DC/DC模块完整周期内的工作波形;
图5是本发明一种中压直挂光伏发电***的主电路拓扑中高频隔离DC/DC模块等效数学模型;
图6是本发明一种中压直挂光伏发电***的主电路拓扑中DC/AC模块虚拟同步电机控制的控制框图。
如图所示:1、光伏模块,2、高频隔离DC/DC变换器模块,3、DC/AC换流器模块。
具体实施方式
如图1所示,本实施例提供一种中压直挂光伏发电***的拓扑结构,包括多个功率模块,所述的功率模块内由光伏模块1、高频隔离DC/DC变换器模块2及DC/AC换流器模块3组成,且多个功率模块并联通过级联H桥结构组成总体的拓扑结构,所述的功率模块均为独立设计,功率模块的输入侧不与公共直流母线相连,输出侧采用串联结构,在某个功率模块出现故障退出运行时,***可以很好地实现冗余,降低维护成本。
进一步,所述的光伏模块1、高频隔离DC/DC变换器模块2及DC/AC换流器模块3之间采用依次串联相连结构。
如图2所示,所述的光伏模块1的输入端为1kV直流电压,经高频隔离DC/DC变换器及DC/AC换流器后,与其他功率模块输出串联实现并网。
所述的每个功率模块输出侧采用每个功率模块输出串联的结构,使输出为中压交流电。
作为改进,由于目前电网正在大力发展直流输电及新能源,而新能源具有间歇性、随机性、不稳定性等特征,所以亟需解决新能源并网对电网的冲击问题,提高受端电网对电压和频率的支撑能力。现在一般厂家对于变压器多选择工频升压变压器,因体积大、占地面积大、损耗较高而使成本较为高昂,而用高频隔离变换器代替工频升压变压器,无夜间损耗和无功损耗,不需要无功补偿装置,有利于***效率和功率密度的提升。
当所述整体拓扑结构由3个功率模块输出串联而成,所述的光伏模块1的输入端为1kV直流电压,功率模块的输出为10kV中压交流电,如图3所示,输入端与输出端之间设有级联H桥拓扑结构,由于级联H桥结构输出选择串联结构,只需保持输出均压即可,即单个功率模块单个功率模块输出3.33kV。采用级联H桥结构,减少电力电子器件数,在某个功率模块因故障退出运行时,可以实现冗余设计,无缝切换冗余模式,提高***运行安全性、稳定性。
如图5的高频隔离DC/DC模块等效数学模型所示,所述的高频隔离DC/DC变换器模块2采用的是单移相控制方式,在不考虑死区时间的情况下,每个桥臂上下两个开关管为180°互补导通,对角开关管同时导通,该控制方式仅有一个自由度,惯性小,动态性能高,控制简单,易于实现。定义移相占空比为
Figure BDA0003112698490000059
Figure BDA0003112698490000052
在一个开关周期内将变换器分为十种开关模态,通过对十种开关模态分析可知变换器工作原理如下:变换器正向工作时,SL1、SL4和SL2、SL3的驱动信号波形分别超前SN1、SN4和SN2、SN3,此时
Figure BDA0003112698490000053
反向工作时,SL1、SL4和SL2、SL3的驱动信号波形分别滞后SN1、SN4和SN2、SN3,此时
Figure BDA0003112698490000054
根据模态分析可得,电感电流可表示为:
Figure BDA0003112698490000055
高频隔离DC/DC模块功率传输计算公式为:
Figure BDA0003112698490000056
高频隔离DC/DC模块输出电流为:
Figure BDA0003112698490000057
高频隔离DC/DC模块完整周期内工作波形及等效数学模型见附图4。
该结构的DC/AC换流器模块可采用虚拟同步发电机控制策略,通过在控制上模拟同步发电机的运行机制,在外特性上与同步发电机相似,具有向电网提供频率和电压支撑并增加***惯量和阻尼的能力,可有效解决光伏电源并网渗透率提高带来的***惯量减少的问题。
设该结构的DC/AC换流器模块等效的VSM的极对数为1,则VSMD的转子机械特性方程为:
Figure BDA0003112698490000058
式中:J为转子转动惯量;D为阻尼系数;Tm和Te分别为机械转矩和电磁转矩;ω为机械角速度;ω0为电网同步角速度;θ为功角。
如图6的控制框图所示,虚拟同步发电机控制策略在传统下垂控制的基础上引入转子摆动方程,增加了***的阶数,分布式电源的功率响应特性也相应发生变化。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种中压直挂光伏发电***的拓扑结构,包括多个功率模块,其特征在于,所述的功率模块内由光伏模块(1)、高频隔离DC/DC变换器模块(2)及DC/AC换流器模块(3)组成,且多个功率模块并联通过级联H桥结构组成总体的拓扑结构,所述的功率模块均为独立设计,功率模块的输入侧不与公共直流母线相连,输出侧采用串联结构。
2.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的光伏模块(1)、高频隔离DC/DC变换器模块(2)及DC/AC换流器模块(3)之间采用依次串联相连结构。
3.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的光伏模块(1)的输入端为1kV直流电压。
4.根据权利要求2所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的每个功率模块中光伏模块(1)经高频隔离DC/DC变换器,再通过DC/AC换流器实现并网。
5.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的每个功率模块输出侧采用每个功率模块输出串联的结构,使输出为中压交流电。
6.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的高频隔离DC/DC变换器模块(2)采用的是单移相控制方式。
7.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的高频隔离DC/DC变换器模块(2)内每个桥臂上下两个开关管为180°互补导通。
8.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的每个桥臂之间对角开关管同时导通。
9.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的DC/AC换流器模块(3)采用虚拟同步电机控制策略,通过在控制上模拟同步发电机的运行机制。
10.根据权利要求1所述的一种中压直挂光伏发电***的拓扑结构,其特征在于:所述的DC/AC换流器模块(3)等效的VSM的极对数为1。
CN202110655762.5A 2021-06-11 2021-06-11 一种中压直挂光伏发电***的拓扑结构 Pending CN113364035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110655762.5A CN113364035A (zh) 2021-06-11 2021-06-11 一种中压直挂光伏发电***的拓扑结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110655762.5A CN113364035A (zh) 2021-06-11 2021-06-11 一种中压直挂光伏发电***的拓扑结构

Publications (1)

Publication Number Publication Date
CN113364035A true CN113364035A (zh) 2021-09-07

Family

ID=77533958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110655762.5A Pending CN113364035A (zh) 2021-06-11 2021-06-11 一种中压直挂光伏发电***的拓扑结构

Country Status (1)

Country Link
CN (1) CN113364035A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545282A (zh) * 2023-04-06 2023-08-04 山东艾诺智能仪器有限公司 一种高频隔离交流电源的高低挡切换方法及交流电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097966A (zh) * 2011-02-14 2011-06-15 东南大学 级联型兆瓦级光伏并网逆变器
CN105743121A (zh) * 2015-12-10 2016-07-06 国家电网公司 一种直接并网型光伏电站电路拓扑结构
US10700614B1 (en) * 2019-10-25 2020-06-30 Institute Of Electrical Engineering, Chinese Academy Of Sciences Series-type photovoltaic high-voltage DC grid-connected converter topological circuit and modulation method thereof
CN111600333A (zh) * 2020-04-30 2020-08-28 青岛鼎信通讯股份有限公司 一种10kV中压直挂式光伏电站***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097966A (zh) * 2011-02-14 2011-06-15 东南大学 级联型兆瓦级光伏并网逆变器
CN105743121A (zh) * 2015-12-10 2016-07-06 国家电网公司 一种直接并网型光伏电站电路拓扑结构
US10700614B1 (en) * 2019-10-25 2020-06-30 Institute Of Electrical Engineering, Chinese Academy Of Sciences Series-type photovoltaic high-voltage DC grid-connected converter topological circuit and modulation method thereof
CN111600333A (zh) * 2020-04-30 2020-08-28 青岛鼎信通讯股份有限公司 一种10kV中压直挂式光伏电站***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545282A (zh) * 2023-04-06 2023-08-04 山东艾诺智能仪器有限公司 一种高频隔离交流电源的高低挡切换方法及交流电源
CN116545282B (zh) * 2023-04-06 2024-03-19 山东艾诺智能仪器有限公司 一种高频隔离交流电源的高低挡切换方法及交流电源

Similar Documents

Publication Publication Date Title
CN107947221B (zh) 一种电力电子变压器直流故障穿越方法
CN101820230B (zh) 高频隔离型并网逆变器
CN101741094B (zh) 一种基于可关断器件的移动式输电装置
CN201608660U (zh) 高频隔离型并网逆变器
CN102684183B (zh) 基于直流局域网的分布式发电***及控制方法
CN109412443A (zh) 三相电压型准z源组串式光伏并网逆变***
CN103259282B (zh) 一种非隔离型及隔离型光伏并网逆变器软并网方法
CN107834602A (zh) 一种微源半桥变流器串联型微电网***
CN106712084A (zh) 一种用于串联直流海上风电场的风力发电***
CN102710200A (zh) 一种高温超导励磁磁通切换电机构成的直驱型风力发电***
CN107026468A (zh) 一种基于自抗扰控制技术的微网实验***
CN104967146A (zh) 一种微电网并网与离网控制***
CN113364035A (zh) 一种中压直挂光伏发电***的拓扑结构
CN113595431B (zh) 级联H桥Buck型高频环节单级多输入双向DC/AC变换器
CN102437807B (zh) 变频变压器控制***
CN104037796B (zh) 并网型多回路低温余热发电***
CN104158377A (zh) 一种应用于海上平台的风浪开关磁阻发电机***
CN202676881U (zh) 基于双转子电机变速恒频风力发电的测试***
CN109412182B (zh) 一种模块化无电解电容的光伏能量***及其调制方法
CN203466578U (zh) 一种10kW风光互补实验***
CN201616677U (zh) 一种基于可关断器件的移动式输电装置
CN114336701B (zh) 一种适用于高功率大容量的中压直挂式储能***拓扑结构
CN102832635B (zh) 基于直驱模块化多电平变换器的风力发电并网控制***
CN203859534U (zh) 并网型多回路低温余热发电***
CN111614112A (zh) 一种矩阵变换器的虚拟同步发电机控制方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907

RJ01 Rejection of invention patent application after publication