CN113357858B - Control method of ice making device - Google Patents

Control method of ice making device Download PDF

Info

Publication number
CN113357858B
CN113357858B CN202110662239.5A CN202110662239A CN113357858B CN 113357858 B CN113357858 B CN 113357858B CN 202110662239 A CN202110662239 A CN 202110662239A CN 113357858 B CN113357858 B CN 113357858B
Authority
CN
China
Prior art keywords
ice
amount
taking
reference value
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110662239.5A
Other languages
Chinese (zh)
Other versions
CN113357858A (en
Inventor
赵斌堂
朱小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier Smart Home Co Ltd
Original Assignee
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haier Smart Home Co Ltd filed Critical Haier Smart Home Co Ltd
Priority to CN202110662239.5A priority Critical patent/CN113357858B/en
Publication of CN113357858A publication Critical patent/CN113357858A/en
Application granted granted Critical
Publication of CN113357858B publication Critical patent/CN113357858B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/187Ice bins therefor with ice level sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/02Level of ice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

The invention discloses a control method of an ice making device, which comprises the following steps: calculating the average ice-taking time interval and the average ice-taking amount in the preset time; determining a first reference value according to the average ice taking amount; judging whether the first reference value is less than an ice bank capacity; if the first reference value is smaller than the ice storage box capacity, judging whether the average ice taking time interval is larger than an ice making period; and if the average ice taking time interval is larger than the ice making period, setting the first reference value as a full ice judgment reference value, and setting the wind speed of an ice making fan as a first wind speed smaller than the rated wind speed. The control method of the ice making device can reduce the total ice making amount of the ice making device, and does not need to consume electric quantity to store a large amount of ice blocks; in addition, the utilization rate of ice cubes of a user is improved, and the freshness of the ice cubes is kept.

Description

Control method of ice making device
The present application is a divisional application entitled "control method and control system for ice making device" with application No. 201811420292.9, application date 2018, 11/26/month.
Technical Field
The invention relates to the field of ice making equipment, in particular to a control method of an ice making device.
Background
At present, in order to facilitate the use of users, ice makers are arranged in refrigerators of a plurality of refrigerator products, and generally, whether ice cubes in an ice storage box are full is detected, the ice makers are controlled to stop making ice in the full state, and ice making is started again after the ice cubes in the ice storage box are reduced, so that the electric quantity is not wasted. Detecting the ice-cube among the prior art is that the capacity according to the ice-cube storage box is generally set for full ice benchmark value, and it is lower to get the ice frequency as the user, and when using ice quantity less, the phenomenon of storing a large amount of ice-cubes in the ice-cube storage box for a long time can appear, one keeps a large amount of ice-cubes not to melt, can consume the electric quantity, two come the ice-cube to store the sublimation phenomenon that appears in the excessive time, and can appear the adhesion between the ice-cube, bring not good experience for follow-up use.
Disclosure of Invention
The invention aims to provide a control method and a control system of an ice making device.
In order to achieve the above object, an embodiment of the present invention provides a method of controlling an ice making device, the method including: calculating the average ice-taking time interval and the average ice-taking amount in the preset time; determining a first reference value according to the average ice taking amount; judging whether the first reference value is less than the ice bank capacity; if the first reference value is smaller than the ice storage box capacity, judging whether the average ice taking time interval is larger than an ice making period; if the average ice-taking time interval is larger than the ice-making period, setting the first reference value as a full ice judgment reference value; and if the first reference value is not less than the ice bank capacity, setting the ice bank capacity as a full ice judgment reference value.
As a further improvement of the present invention, after the step of determining whether the average ice-fetching time interval is greater than the ice-making period, the method further comprises: if the average ice-taking time interval is not greater than the ice-making period, judging whether the average ice-taking amount is less than a single ice-making amount; if the average ice-taking amount is smaller than the single ice-making amount, setting the first reference value as a full ice judgment reference value; and if the average ice fetching amount is not less than the single ice making amount, setting the capacity of the ice storage box as a full ice judgment reference value.
As a further improvement of the present invention, before the step of calculating the average ice-picking time interval and the average ice-picking amount within the preset time, the method further comprises: recording the ice taking times within the preset time; recording the time interval of two adjacent ice taking within the preset time; and calculating the average ice-taking time interval according to the ice-taking times and the time interval of two adjacent ice-taking times.
As a further improvement of the present invention, before the step of calculating the average ice-picking time interval and the average ice-picking amount within the preset time, the method further comprises: recording the ice taking times within a preset time; recording the current ice storage amount in the ice storage box; after each time of ice taking, recording the ice storage amount after the ice taking; calculating the single ice-taking amount according to the current ice-storing amount and the ice-storing amount after ice-taking; and calculating the average ice-taking amount according to the ice-taking times and the single ice-taking amount.
As a further improvement of the present invention, before the step of recording the amount of ice stored after ice harvesting after each ice harvesting, the method further comprises: after each time of ice taking, detecting the real-time distance from the distance sensor to the surface of the ice blocks in the ice storage box; calculating the height of the real-time ice blocks according to the height of the ice storage box and the real-time distance; and calculating the ice storage amount after ice taking according to the real-time ice block height, the bottom area of the ice storage box and the ice block density.
As a further improvement of the present invention, the method further comprises: setting the wind speed of an ice making fan as a first wind speed when the first reference value is set as a full ice judgment reference value, wherein the first wind speed is less than a rated wind speed; and when the ice storage box capacity is set as a full ice judgment reference value, setting the wind speed of the ice making fan as a second wind speed, wherein the second wind speed is greater than the rated wind speed.
In another aspect of the present invention, a control system of an ice making apparatus includes: the calculating unit is used for calculating the average ice taking time interval and the average ice taking amount in the preset time; the determining unit is used for determining a first reference value according to the average ice taking amount; a judging unit for judging whether the first reference value is smaller than the ice bank capacity; if the first reference value is smaller than the capacity of the ice storage box, the judging unit is further used for judging whether the average ice taking time interval is larger than the ice making period; the processing unit is used for setting the first reference value as a full ice judgment reference value when the average ice taking time interval is larger than an ice making period; the processing unit is further configured to set the ice bank capacity to a full ice judgment reference value if the first reference value is not less than the ice bank capacity.
As a further improvement of the present invention, when the average ice-fetching time interval is not greater than the ice-making period, the determining unit is further configured to determine whether the average ice-fetching amount is less than a single ice-making amount; when the average ice-taking amount is smaller than the single ice-making amount, the processing unit is further configured to set the first reference value as a full ice judgment reference value; when the average ice fetching amount is not less than the single ice making amount, the processing unit is further configured to set the ice bank capacity as a full ice judgment reference value.
As a further improvement of the present invention, the control system further comprises: the recording unit is used for recording the ice taking times within the preset time; recording the time interval of two adjacent ice taking within the preset time; the computing unit is further to: and calculating the average ice-taking time interval according to the ice-taking times and the time interval of two adjacent ice-taking times.
As a further improvement of the present invention, the recording unit is further configured to: recording the ice taking times within a preset time; recording the current ice storage amount in the ice storage box; after each time of ice taking, recording the ice storage amount after the ice taking; the computing unit is further to: calculating the single ice taking amount according to the current ice storing amount and the ice storing amount after ice taking; and calculating the average ice-taking amount according to the ice-taking times and the single ice-taking amount.
As a further improvement of the present invention, the control system further comprises: the detection unit is used for detecting the real-time distance from the distance sensor to the surface of ice cubes in the ice storage box: the computing unit is further to: calculating the height of the real-time ice blocks according to the height of the ice storage box and the real-time distance; and calculating the ice storage amount after ice taking according to the real-time ice block height, the bottom area of the ice storage box and the ice block density.
As a further improvement of the present invention, the control system further comprises: a wind speed adjusting unit for setting a wind speed of an ice making fan to a first wind speed when the first reference value is set to a full ice judgment reference value, the first wind speed being less than a rated wind speed; when the ice storage box capacity is set as a full ice judgment reference value, the wind speed adjusting unit is further configured to set the wind speed of the ice making fan to be a second wind speed, and the second wind speed is greater than the rated wind speed.
Compared with the prior art, the control method and the control system of the ice making device disclosed by the invention can determine the full ice judgment reference value according to the average ice taking time interval and the average ice taking amount of a user in the preset time; when the user does not take ice for a long time, the full ice judgment reference value can be set to be smaller, the total ice making quantity of the ice making device can be reduced, and the electric quantity does not need to be consumed to store a large number of ice blocks; and moreover, the utilization rate of ice cubes of a user is improved, and the freshness of the ice cubes is kept.
Drawings
Fig. 1 is a schematic flow chart of a control method of an ice making device according to an embodiment of the present invention;
fig. 2 is a flowchart illustrating a method of controlling an ice making device according to an embodiment of the present invention;
fig. 3 is a flowchart illustrating a method of controlling an ice making device according to an embodiment of the present invention;
fig. 4 is a flowchart illustrating a method of controlling an ice making device according to an embodiment of the present invention;
fig. 5 is a flowchart illustrating a method of controlling an ice making device according to an embodiment of the present invention;
fig. 6 is a schematic configuration diagram of a control system of the ice making device according to an embodiment of the present invention;
fig. 7 is a schematic configuration diagram of a control system of the ice making device according to an embodiment of the present invention.
Detailed Description
The present invention will be described in detail below with reference to specific embodiments shown in the drawings. These embodiments are not intended to limit the present invention, and structural, methodological, or functional changes made by those skilled in the art according to these embodiments are included in the scope of the present invention.
It will be understood that terms used herein such as "upper," "above," "lower," "below," and the like, refer to relative positions in space and are used for convenience in description to describe one element or feature's relationship to another element or feature as illustrated in the figures. The spatially relative positional terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
Generally, an ice making device includes an ice making tray, an ice bank, a full ice detection mechanism, and a controller. The ice making tray is used for making ice cubes, the ice storage box is used for storing the ice cubes discharged by the ice making tray, and the ice full detection mechanism is used for detecting whether the ice cubes in the ice storage box reach a full ice judgment reference value. When the ice blocks in the ice storage box reach the full ice judgment reference value, the controller controls the ice making tray to stop making ice.
As shown in fig. 1 to 5, an embodiment of the present invention discloses a method for controlling an ice making device. As shown in fig. 1, the method includes:
and S11, calculating the average ice-taking time interval and the average ice-taking amount in the preset time.
Specifically, the preset time may be set to 1 week or 1 month, and the average ice-fetching time interval and the average ice-fetching amount for the user to fetch ice are calculated during the preset time. The ice-taking time interval refers to the time length of the user between two adjacent ice-taking processes, and the average ice-taking time interval is the average value of the time lengths of the user between two adjacent ice-taking processes; the ice-picking amount refers to the weight of ice picked up by a user each time the ice is picked up, and the average ice-picking amount is the average value of the weights of ice picked up by the user each time the ice is picked up.
And S12, determining a first reference value according to the average ice-taking amount.
Specifically, the first reference value is set as the average ice picking amount plus a redundancy amount, and the redundancy amount is set according to experiments or experience, and generally speaking, the redundancy amount is set to be between 5% and 20% of the average ice picking amount.
Generally, the amount of ice used by a user at a time is maintained at a value that is not very different, and therefore, if the amount of ice stored in the ice bank is maintained at an average ice-picking amount level, the ice-using requirement of the user in most cases can be satisfied. However, the user may occasionally take ice larger than the average amount of ice taken, and therefore, the first reference value is set to the average amount of ice taken plus the redundancy amount in order to satisfy the situation that the user takes ice more than the average amount of ice taken at a certain time.
S13, it is determined whether the first reference value is less than the ice bank capacity.
Generally, in the related art, the ice bank capacity is set to the full ice determination reference value. As can be seen from the above, the first reference value is the sum of the average ice-fetching amount and the redundancy amount, and thus the first reference value is likely to be larger than the capacity of the ice bank. When the first reference value is greater than the capacity of the ice bank, setting the first reference value as the full ice determination reference value at this time may cause a problem of overflowing of ice cubes within the ice bank. When the first reference value is smaller than the ice bank capacity, it indicates that the amount of ice taken by the user each time is small, that is, a smaller value may be set as the full ice determination reference value. Therefore, it is first necessary to judge the magnitude relation of the first reference value and the ice bank capacity to determine the subsequent step with the judgment result. Specifically, the method comprises the following steps: if the first reference value is smaller than the ice bank capacity, step S14 is executed to determine whether the average ice-fetching time interval is greater than the ice-making cycle. If the first reference value is not less than the ice bank capacity, the process proceeds to step S16, where the ice bank capacity is set to the full ice determination reference value.
And S14, judging whether the average ice-taking time interval is larger than an ice-making period.
And after determining that the first reference value is smaller than the ice storage box capacity, continuously judging the relation between the average ice taking time interval and the ice making period. Specifically, the ice making cycle refers to a time interval of the ice making device in two adjacent ice making processes. The ice making cycle is typically a preset value. When the average ice fetching time interval is greater than the ice making period, it indicates that the ice fetching frequency of the user is low, and at this time, step S15 is executed to set the first reference value as the full ice judgment reference value.
S15, the first reference value is set as a full ice determination reference value.
At this time, the first reference value is smaller than the capacity of the ice storage box, and the average ice taking time is larger than the ice making period, which indicates that the user needs low ice, the full ice judgment reference value can be set as a small first reference value, the total ice making amount of the ice making device can be reduced, and the ice making device does not need to consume electric quantity to store a large amount of ice blocks; and the control system can stop continuously making ice in time after judging that the ice blocks in the ice storage box reach the first reference value, and start making ice after the user takes the ice so as to keep the ice blocks fresh.
S16, the ice bank capacity is set to a full ice determination reference value.
At this time, the first reference value is not less than the ice bank capacity or the average ice-taking time is not greater than the ice-making cycle. That is, at this time, the user may set the ice storage capacity (i.e., the maximum value of storable ice) as the full ice determination reference value with a large ice pickup amount or a high ice pickup frequency.
The control method of the ice making device can determine the reference value of full ice judgment according to the average ice taking time interval and the average ice taking amount of a user in the preset time; when the user does not take ice for a long time, the full ice judgment reference value can be set to be smaller, the total ice making quantity of the ice making device can be reduced, and the electric quantity does not need to be consumed to store a large number of ice blocks; in addition, the utilization rate of ice cubes of a user is improved, and the freshness of the ice cubes is kept.
Further, after step S14, the method further includes:
and S17, judging whether the average ice-taking amount is less than the single ice-making amount.
And when the average ice-taking time interval is not more than the ice-making period, judging whether the average ice-taking amount is less than the single ice-making amount or not. The single ice making amount refers to the weight of ice made by the ice making tray after performing an ice making process once. Comparing the average ice-fetching amount with the single ice-making amount, if the average ice-fetching amount is smaller than the single ice-making amount, indicating that the ice-fetching amount is small, executing the step S15, and setting the first reference value as a full ice judgment reference value; if the average ice-fetching amount is not less than the single ice-making amount, which indicates that the ice-fetching amount is large, the step S16 is executed to set the ice bank capacity as the full ice determination reference value.
As shown in fig. 2, before step S11, the method further includes:
and S101, recording the ice taking times within the preset time.
The preset time can be 1 day, 1 week or 1 month, can be preset in the program of the ice making device, and can also be set according to the specific needs of the user. The embodiment of the present invention will be described with reference to 1 month as an example. For example, the user takes ice 3 times in a 1 week period.
And S102, recording the time interval between two adjacent ice taking within the preset time.
Within 1 week, the interval between the 1 st ice harvest and the 2 nd ice harvest is 10 hours, and the interval between the 2 nd ice harvest and the 3 rd ice harvest is 20 hours.
And S103, calculating an average ice-taking time interval according to the ice-taking times and the time intervals of two adjacent ice-taking times.
As mentioned above, the average ice harvest interval is: (10 + 20)/2 =15 hours.
As shown in fig. 3, after step S101, the method further includes:
and S104, recording the current ice storage amount in the ice storage box.
Before each time of taking ice, the current ice storage amount in the ice storage box is recorded. For example, the current ice storage amounts before the 1 st, 2 nd and 3 rd ice fetches are 5kg, 4.5kg and 4.1kg, respectively.
And S105, recording the ice storage amount after ice taking after each ice taking.
After the ice is taken for the 1 st time, the 2 nd time and the 3 rd time, the ice storage amount after ice taking is 4.5kg, 4.1kg and 3.8kg respectively.
And S106, calculating the single ice taking amount according to the current ice storing amount and the ice storing amount after ice taking.
The single ice harvest for the 1 st, 2 nd and 3 rd harvest can be calculated to be 5-4.5=0.5kg, 4.5-4.1=0.4kg, 4.1-3.8=0.3kg, respectively.
And S107, calculating the average ice-taking amount according to the ice-taking times and the single ice-taking amount.
The average ice harvest was (0.5 +0.4+ 0.3)/3 =0.4kg over a 1 week period.
As shown in fig. 4, after step S104 and before step S105, the method further includes:
s1041, after each time of ice taking, detecting a real-time distance from the distance sensor to the surface of the ice blocks in the ice storage box.
Specifically, the distance sensor is disposed above the ice bank at a position corresponding to an upper opening thereof, that is, a distance from the distance sensor to a bottom wall of the ice bank is a height of the ice bank. After each ice pick, the distance sensor can detect the real-time distance L from the distance sensor to the surface of the ice cubes in the ice storage box.
And S1042, calculating the height of the real-time ice blocks according to the height of the ice storage box and the real-time distance.
Ice bank height H 0 Generally, the real-time distance L is a preset value, and the real-time ice block height M can be calculated in the following manner: m = H 0 -L。
And S1043, calculating the ice storage amount after ice taking according to the real-time ice block height, the bottom area of the ice storage box and the ice block density.
At this time, the real-time ice height M is known, and the ice bank floor area S can be calculated from the length, width and height parameters of the ice bank, and the ice density p is also known. The ice storage amount Q = M × S × p after the ice is taken can be obtained.
As shown in fig. 5, after step S15, the method further includes:
and S151, setting the wind speed of the ice making fan as a first wind speed, wherein the first wind speed is less than the rated wind speed.
At this time, the first reference value is set as a full ice judgment reference value, and the first reference value is smaller than the capacity of the ice storage box, which shows that the ice demand of a user is not large, the rotating speed of the ice making fan can be reduced, less cold energy is used for refrigeration, and the energy consumption and the noise are further reduced. Accordingly, the wind speed of the ice making fan can be set to a first wind speed less than the rated wind speed. The rated wind speed is generally the normal wind speed preset by the ice making fan.
After step S16, the method further includes:
and S161, setting the wind speed of the ice making fan to be a second wind speed, wherein the second wind speed is greater than the rated wind speed.
In this case, the ice bank capacity is set to the full ice determination reference value, which indicates that the demand for ice by the user is large and a large amount of ice needs to be made quickly. The rotating speed of the fan is increased, the cold quantity is increased, and rapid ice making is carried out, so that the wind speed of the ice making fan can be set to be a second wind speed which is greater than the rated wind speed.
Referring to fig. 6-7, a control system 200 for an ice making apparatus is provided according to an embodiment of the present invention. As shown in fig. 6, the control system may include: a calculating unit 210, a determining unit 220, a judging unit 230 and a processing unit 240.
The calculating unit 210 may be configured to calculate an average ice fetching time interval and an average ice fetching amount within a preset time. Specifically, the preset time may be set to 1 week or 1 month, and the average ice-fetching time interval and the average ice-fetching amount for the user to fetch ice are calculated during the preset time. The ice-taking time interval refers to the time length of the user between two adjacent ice-taking processes, and the average ice-taking time interval is the average value of the time lengths of the user between two adjacent ice-taking processes; the ice-picking amount refers to the weight of ice picked up by a user each time the ice is picked up, and the average ice-picking amount is the average value of the weights of ice picked up by the user each time the ice is picked up.
The determining unit 220 may be configured to determine a first reference value according to the average ice harvest. Specifically, the first reference value is set as the average ice picking amount plus a redundancy amount, and the redundancy amount is set according to experiments or experience, and generally speaking, the redundancy amount is set to be between 5% and 20% of the average ice picking amount. Generally, the amount of ice used by the user at a time is kept at a value that is not very different, and therefore, if the amount of ice stored in the ice bank is kept at the level of the average amount of ice taken, the ice using requirement of the user in most cases can be satisfied. However, the user may occasionally take ice larger than the average amount of ice taken, and therefore, the first reference value is set to the average amount of ice taken plus the redundancy amount in order to satisfy the situation that the user takes ice more than the average amount of ice taken at a certain time.
The judging unit 230 may be configured to judge whether the first reference value is less than the ice bank capacity. Generally, in the related art, the ice bank capacity is set to the full ice determination reference value. As can be seen from the above, the first reference value is the sum of the average ice-fetching amount and the redundancy amount, and thus the first reference value is likely to be larger than the capacity of the ice bank. When the first reference value is larger than the capacity of the ice bank, the first reference value is set as the full ice judgment reference value, which may cause the problem of ice cubes in the ice bank overflowing. When the first reference value is smaller than the ice bank capacity, it indicates that the amount of ice taken by the user each time is small, that is, a smaller value may be set as the full ice determination reference value. Therefore, it is first necessary to judge the magnitude relation of the first reference value and the ice bank capacity to determine the subsequent step with the judgment result.
The judgment unit 230 may be further configured to judge whether the average ice-fetching time interval is greater than an ice-making cycle if the first reference value is less than the ice bank capacity. And after determining that the first reference value is smaller than the ice storage box capacity, continuously judging the relation between the average ice taking time interval and the ice making period. Specifically, the ice making cycle refers to a time interval between two adjacent ice making processes of the ice making device. The ice making cycle is typically a preset value. And when the average ice fetching time interval is greater than the ice making period, the ice fetching frequency of the user is lower.
The processing unit 240 may be configured to set the first reference value as a full ice determination reference value if the average ice-fetching time interval is greater than an ice-making period. At this time, the user needs low ice, and the full-ice judgment reference value can be set as a first small reference value, so that the total ice making quantity of the ice making device is reduced, and the electric quantity is not required to be consumed to store a large quantity of ice blocks; and, after determining that the ice cubes inside the ice storage box reach the first reference value, the processing unit 240 may timely control the ice making tray to stop making ice continuously, and start making ice after the user picks up ice, so as to keep the ice cubes fresh.
The processing unit 240 is further configured to set the ice bank capacity to a full ice determination reference value if the first reference value is not less than the ice bank capacity. At this time, the user may set the ice storage capacity (i.e., the maximum value of the storable ice) as the full ice determination reference value when the ice pickup amount is large or the ice pickup frequency is high.
Further, when the average ice fetching time interval is not greater than the ice making period, the determining unit 230 is further configured to determine whether the average ice fetching amount is less than a single ice making amount. The single ice making amount refers to the weight of ice made by the ice making tray after performing an ice making process once. Comparing the average ice-fetching quantity with the single ice-making quantity, if the average ice-fetching quantity is less than the single ice-making quantity, it is indicated that the ice-fetching quantity is less,
when the average ice-fetching amount is smaller than the single ice-making amount, the processing unit 240 is further configured to set the first reference value as a full ice determination reference value. The processing unit 240 is further configured to set the ice bank capacity to a full ice determination reference value when the average ice-making amount is not less than the single ice-making amount.
In the embodiment of the present invention, as shown in fig. 7, the control system may further include a recording unit 250, where the recording unit 250 is configured to record the number of times of ice harvesting within a preset time and record a time interval between two adjacent times of ice harvesting within the preset time. The preset time can be 1 day, 1 week or 1 month, can be preset in the program of the ice making device, and can also be set according to the specific needs of the user. The embodiment of the present invention will be described with reference to 1 month as an example. For example, the user takes ice 3 times in a 1 week period. Within 1 week, the interval between the 1 st ice harvest and the 2 nd ice harvest is 10 hours, and the interval between the 2 nd ice harvest and the 3 rd ice harvest is 20 hours.
The computing unit 210 is further configured to: and calculating the average ice-taking time interval according to the ice-taking times and the time interval of two adjacent ice-taking times. As mentioned above, the average ice harvest interval is 1 week: (10 + 20)/2 =15 hours.
The recording unit 250 is further configured to: and recording the current ice storage amount in the ice storage box. After each ice pick-up, the amount of ice stored after the ice pick-up is recorded. Before each time of taking ice, the current ice storage amount in the ice storage box is recorded. For example, the current ice storage amounts before the 1 st, 2 nd and 3 rd ice fetches are 5kg, 4.5kg and 4.1kg, respectively. After the ice is taken for the 1 st time, the 2 nd time and the 3 rd time, the ice storage amount after ice taking is 4.5kg, 4.1kg and 3.8kg respectively.
The computing unit 210 is further configured to: calculating the single ice taking amount according to the current ice storing amount and the ice storing amount after ice taking; and calculating the average ice-taking amount according to the ice-taking times and the single ice-taking amount.
The single ice taking amount of the 1 st ice taking, the 2 nd ice taking and the 3 rd ice taking can be calculated to be 5-4.5=0.5kg, 4.5-4.1=0.4kg and 4.1-3.8=0.3kg respectively. The average amount of ice taken over the 1 week period was (0.5 +0.4+ 0.3)/3 =0.4 kg.
In an embodiment of the present invention, as shown in fig. 7, the control system may further include a detection unit 260, and the detection unit 260 may be configured to detect a real-time distance from the distance sensor to the surface of the ice cubes inside the ice storage box. Specifically, the distance sensor is disposed above the ice bank at a position corresponding to an upper opening thereof, that is, a distance from the distance sensor to a bottom wall of the ice bank is a height of the ice bank. After each ice pick, the distance sensor can detect the real-time distance L from the distance sensor to the surface of the ice cubes in the ice storage box.
The calculating unit 210 is further configured to calculate a real-time ice height according to the ice bank height and the real-time distance; and calculating the ice storage amount after ice taking according to the real-time ice block height, the bottom area of the ice storage box and the ice block density.
Ice bank height H 0 Generally, the real-time distance L is a preset value, and the real-time ice block height M can be calculated in the following manner: m = H 0 -L. The ice bank floor area S can be calculated from the length, width, and height parameters of the ice bank, and the ice density p is also a known number. The stored ice amount Q = M × S × p after the ice is taken can be obtained.
In the embodiment of the present invention, as shown in fig. 7, the control system may further include a wind speed adjusting unit 270. The wind speed adjusting unit 270 may be configured to set the wind speed of the ice making fan to a first wind speed if the first reference value is set to the ice-full determination reference value, the first wind speed being less than the rated wind speed. At this time, the first reference value is set as a full ice judgment reference value, and the first reference value is smaller than the capacity of the ice storage box, which shows that the ice demand of a user is not large, the rotating speed of the ice making fan can be reduced, less cold energy is used for refrigeration, and the energy consumption and the noise are further reduced. Accordingly, the wind speed of the ice making fan can be set to a first wind speed less than the rated wind speed. The rated wind speed is generally the normal wind speed preset by the ice making fan.
The wind speed adjusting unit 270 may be further configured to set the wind speed of the ice making fan to a second wind speed, which is greater than the rated wind speed, if the ice bank capacity is set to the full ice determination reference value.
In this case, the ice bank capacity is set to the full ice determination reference value, which indicates that the user has a large demand for ice and needs to make a large amount of ice quickly. The rotating speed of the fan is increased, the cold quantity is increased, and rapid ice making is carried out, so that the wind speed of the ice making fan can be set to be a second wind speed which is greater than the rated wind speed.
It should be understood that although the present description refers to embodiments, not every embodiment contains only a single technical solution, and such description is for clarity only, and those skilled in the art should make the description as a whole, and the technical solutions in the embodiments can also be combined appropriately to form other embodiments understood by those skilled in the art.
The above-listed detailed description is only a specific description of a possible embodiment of the present invention, and they are not intended to limit the scope of the present invention, and equivalent embodiments or modifications made without departing from the technical spirit of the present invention should be included in the scope of the present invention.

Claims (9)

1. A control method of an ice making apparatus, characterized in that the control method comprises:
calculating the average ice-taking time interval and the average ice-taking amount in the preset time;
determining a first reference value according to the average ice taking amount;
judging whether the first reference value is smaller than the ice bank capacity;
if the first reference value is smaller than the ice storage box capacity, judging whether the average ice taking time interval is larger than an ice making period;
if the average ice taking time interval is larger than the ice making period, setting the first reference value as a full ice judgment reference value, and setting the wind speed of an ice making fan as a first wind speed smaller than a rated wind speed;
setting the ice bank capacity as a full ice judgment reference value if the first reference value is not less than the ice bank capacity;
the first reference value is the average ice taking amount plus the redundancy amount, and the redundancy amount is 5% -20% of the average ice taking amount.
2. The method of controlling an ice maker as set forth in claim 1, wherein if the first reference value is not less than the ice bank capacity, the ice bank capacity is set to a full ice determination reference value, and the wind speed of the ice making fan is set to a second wind speed greater than the rated wind speed.
3. The control method of an ice making apparatus as claimed in claim 1, further comprising: and if the average ice taking time interval is not more than the ice making period, setting the capacity of the ice storage box as a full ice judgment reference value.
4. The control method of an ice making apparatus according to claim 1, further comprising:
after the average ice-taking time interval is not more than the ice-making period, judging whether the average ice-taking amount is less than the single ice-making amount or not;
if the average ice-taking amount is not less than the single ice-making amount, setting the capacity of the ice storage box as a full ice judgment reference value, and setting the wind speed of the ice-making fan as a second wind speed which is greater than the rated wind speed;
and if the average ice-taking amount is smaller than the single ice-making amount, setting the first reference value as a full ice judgment reference value.
5. The control method of an ice making apparatus according to claim 1, further comprising:
after the average ice-taking time interval is not more than the ice-making period, judging whether the average ice-taking amount is less than the single ice-making amount or not;
if the average ice-taking amount is smaller than the single ice-making amount, setting the first reference value as a full ice judgment reference value, and setting the wind speed of an ice-making fan as a first wind speed smaller than a rated wind speed;
and if the average ice fetching amount is not less than the single ice making amount, setting the capacity of the ice storage box as a full ice judgment reference value.
6. The control method of an ice making apparatus as claimed in claim 1 or 5, wherein before calculating an average ice fetching time interval and an average ice fetching amount within a preset time, the control method further comprises:
recording the ice taking times within a preset time;
recording the current ice storage amount in the ice storage box;
after each time of ice taking, recording the ice storage amount after the ice taking;
calculating the single ice-taking amount according to the current ice-storing amount and the ice-storing amount after ice-taking;
and calculating the average ice-taking amount according to the ice-taking times and the single ice-taking amount.
7. The control method of an ice making apparatus according to claim 6, further comprising:
after each time of ice taking, recording the real-time distance from the distance sensor to the surface of an ice block in the ice storage box before the ice storage amount after the ice taking is recorded;
calculating the height of the real-time ice blocks according to the height of the ice storage box and the real-time distance;
and calculating the ice storage amount after ice taking according to the real-time ice block height, the bottom area of the ice storage box and the ice block density.
8. The control method of an ice making apparatus as claimed in claim 1, wherein before calculating an average ice-picking time interval and an average ice-picking amount within a preset time, the control method further comprises:
recording the ice taking times within the preset time;
recording the time interval of two adjacent ice taking within the preset time;
and calculating the average ice-taking time interval according to the ice-taking times and the time interval of two adjacent ice-taking times.
9. The control method of an ice making apparatus according to claim 1, further comprising: and setting the first reference value as a full ice judgment reference value, stopping continuously making ice after judging that the ice blocks in the ice storage box reach the first reference value, and starting to make ice after the user picks up the ice.
CN202110662239.5A 2018-11-26 2018-11-26 Control method of ice making device Active CN113357858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110662239.5A CN113357858B (en) 2018-11-26 2018-11-26 Control method of ice making device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110662239.5A CN113357858B (en) 2018-11-26 2018-11-26 Control method of ice making device
CN201811420292.9A CN111219917B (en) 2018-11-26 2018-11-26 Control method and control system of ice making device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201811420292.9A Division CN111219917B (en) 2018-11-26 2018-11-26 Control method and control system of ice making device

Publications (2)

Publication Number Publication Date
CN113357858A CN113357858A (en) 2021-09-07
CN113357858B true CN113357858B (en) 2022-09-20

Family

ID=70827108

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110662239.5A Active CN113357858B (en) 2018-11-26 2018-11-26 Control method of ice making device
CN201811420292.9A Active CN111219917B (en) 2018-11-26 2018-11-26 Control method and control system of ice making device

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201811420292.9A Active CN111219917B (en) 2018-11-26 2018-11-26 Control method and control system of ice making device

Country Status (2)

Country Link
CN (2) CN113357858B (en)
WO (1) WO2020108266A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526568B (en) * 2022-01-06 2023-07-14 上海宝路通咖啡机有限公司 Ice machine with internet of things function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238106A (en) * 1989-11-15 1991-05-22 Toshiba Kk Automatic ice maker for a household refrigerator
CN1703604A (en) * 2002-10-10 2005-11-30 迈尔高装备公司 Ice machine with remote monitoring
CN101165441A (en) * 2006-10-20 2008-04-23 Lg电子株式会社 Ice making apparatus
CN102135358A (en) * 2011-02-23 2011-07-27 合肥美的荣事达电冰箱有限公司 Evaporator type ice-making device and refrigerator having same
CN103851877A (en) * 2014-02-28 2014-06-11 海信容声(广东)冰箱有限公司 Control method of automatic ice maker system of refrigerator
CN106257162A (en) * 2015-06-17 2016-12-28 东部大宇电子株式会社 The ice machine of full ice position can be adjusted, for adjusting the apparatus and method of full ice position
CN106885442A (en) * 2015-12-15 2017-06-23 三星电子株式会社 Refrigerator and its control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318211B2 (en) * 1996-09-03 2002-08-26 松下冷機株式会社 Automatic ice making equipment
JP2001153515A (en) * 1999-11-25 2001-06-08 Sanyo Electric Co Ltd Ice machine
KR20070025488A (en) * 2005-09-02 2007-03-08 엘지전자 주식회사 Dispenser control method for refrigerator
KR101436157B1 (en) * 2006-09-20 2014-09-01 엘지전자 주식회사 Refrigerator
WO2008035942A2 (en) * 2006-09-20 2008-03-27 Lg Electronics, Inc. Refrigerator
KR20080065418A (en) * 2007-01-09 2008-07-14 엘지전자 주식회사 An ice bank for refrigerator
US8720464B2 (en) * 2009-10-13 2014-05-13 Lg Electronics Inc. Method for controlling water supply amount and refrigerator using the same
JP2013007510A (en) * 2011-06-23 2013-01-10 Hitachi Appliances Inc Refrigerator
KR101668251B1 (en) * 2015-01-26 2016-10-21 엘지전자 주식회사 Refrigerator and Control method of the same
CN206469560U (en) * 2017-01-23 2017-09-05 深圳市爱思诺制冷设备有限公司 The ice storage box of adjustable full ice height

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238106A (en) * 1989-11-15 1991-05-22 Toshiba Kk Automatic ice maker for a household refrigerator
CN1703604A (en) * 2002-10-10 2005-11-30 迈尔高装备公司 Ice machine with remote monitoring
CN101165441A (en) * 2006-10-20 2008-04-23 Lg电子株式会社 Ice making apparatus
CN102135358A (en) * 2011-02-23 2011-07-27 合肥美的荣事达电冰箱有限公司 Evaporator type ice-making device and refrigerator having same
CN103851877A (en) * 2014-02-28 2014-06-11 海信容声(广东)冰箱有限公司 Control method of automatic ice maker system of refrigerator
CN106257162A (en) * 2015-06-17 2016-12-28 东部大宇电子株式会社 The ice machine of full ice position can be adjusted, for adjusting the apparatus and method of full ice position
CN106885442A (en) * 2015-12-15 2017-06-23 三星电子株式会社 Refrigerator and its control method

Also Published As

Publication number Publication date
CN113357858A (en) 2021-09-07
CN111219917B (en) 2021-06-22
CN111219917A (en) 2020-06-02
WO2020108266A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2019114665A1 (en) Control method of ice maker
CN111219918B (en) Control method and control system of ice making device
US6725680B1 (en) Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
US6694754B1 (en) Refrigeration appliance with pulsed defrost heater
CN113357858B (en) Control method of ice making device
US6532751B1 (en) Method of maximizing ice production in a refrigeration appliance
CN105928316A (en) Control method and system of inverter compressor, and refrigerator
CN110094931B (en) Refrigerator temperature control method and device and refrigerator
US20080092567A1 (en) Ice maker with ice bin level control
EP1589305A1 (en) Ice-Making Apparatus
US10736271B2 (en) Automatic product fill method and control system
CN112393508B (en) Frosting time calculation method and refrigeration equipment
US8720464B2 (en) Method for controlling water supply amount and refrigerator using the same
CN113970220A (en) Refrigerator and ice making control method thereof
CN113108529B (en) Refrigerator, ice maker and ice making state monitoring method
JP5474590B2 (en) Ice storage
CN110307691A (en) For the control method of refrigerator ice-making, control device and refrigerator
CA2442277C (en) Cooling of milk in an automatic milking system
CN113124623B (en) Defrosting control method and device for refrigeration equipment and condensing unit
JP3130778B2 (en) Refrigerator with automatic ice machine
CN114791191B (en) Refrigerator, defrosting control method and device thereof and computer readable storage medium
CN113669997B (en) Refrigerator defrosting control method and device and refrigerator
WO2021213529A1 (en) Ice making apparatus and refrigerator
JPH08261629A (en) Refrigerator
JP2013007510A (en) Refrigerator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant