CN113351157A - 一种改性锂低硅沸石分子筛及其制备方法 - Google Patents

一种改性锂低硅沸石分子筛及其制备方法 Download PDF

Info

Publication number
CN113351157A
CN113351157A CN202110614791.7A CN202110614791A CN113351157A CN 113351157 A CN113351157 A CN 113351157A CN 202110614791 A CN202110614791 A CN 202110614791A CN 113351157 A CN113351157 A CN 113351157A
Authority
CN
China
Prior art keywords
molecular sieve
modified
zeolite molecular
silicon
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110614791.7A
Other languages
English (en)
Inventor
管英富
张剑锋
杨云
李旭
李娅玲
梁力友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research and Desigin Institute of Chemical Industry
Haohua Chemical Science and Technology Corp Ltd
Original Assignee
Southwest Research and Desigin Institute of Chemical Industry
Haohua Chemical Science and Technology Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research and Desigin Institute of Chemical Industry, Haohua Chemical Science and Technology Corp Ltd filed Critical Southwest Research and Desigin Institute of Chemical Industry
Priority to CN202110614791.7A priority Critical patent/CN113351157A/zh
Publication of CN113351157A publication Critical patent/CN113351157A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/082X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种应用于吸附氮气、甲烷、一氧化碳等气体的低硅X型改性沸石分子筛,该分子筛可用于气体吸附分离、催化、离子交换等多种领域,具体为一种改性锂低硅沸石分子筛及其制备方法。该分子筛以低硅X型沸石分子筛原粉为原料,用锂离子交换去除Na‑LXS中钠离子,改性后的沸石分子筛显著提高了氮气、甲烷、一氧化碳等气体吸附容量,可广泛用于催化、离子交换、吸附分离等领域。

Description

一种改性锂低硅沸石分子筛及其制备方法
技术领域
本发明涉及一种应用于吸附氮气、甲烷、一氧化碳等气体的低硅X型改性沸石分子筛,该分子筛可用于气体吸附分离、催化、离子交换等多种领域,具体为一种改性锂低硅沸石分子筛及其制备方法。
背景技术
具有八面沸石结构(FAU)、硅铝原子比在1.0~1.1范围内的X型沸石分子筛称为低硅X型沸石分子筛(简称LSX),其合成的原粉基本组成为钠离子型(Na-LXS),因其晶体骨架具有较高电荷密度和较大孔径,具有良好的吸附性能,因而备受关注。
LXS具有分离气体效应是因为分子筛中的阳离子电场与气体之间存在着相互作用,这种相互作用与阳离子在分子筛中所处的位点及阳离子的种类有关。由于硅铝原子比低时骨架中铝氧四面体[AlO2]-增多而负电荷增加,为了保持沸石骨架的电荷平衡和稳定,就需要增加钠离子等阳离子的数量,这就形成了吸附中心,经离子交换改变阳离子种类和数量,可增强对气体的吸附作用力。Na-LXS脱水后,只有在SⅡ、SⅢ位置的阳离子才能与分子直径大于
Figure BDA0003096941070000011
的吸附质分子接触,并对吸附质分子具有较强的作用力,吸附性能更高。
铝原子含量增加还使分子筛骨架空间增大,经过其他金属离子交换去除钠离子后,氮气、甲烷、一氧化碳等吸附量可能增大,与氢气、氧气等组分的分离系数更高,有利于提高化工工艺过程性能、降低运行费用,在气体吸附分离、催化、离子交换等多种领域引起人们的关注。而高氮气、甲烷、一氧化碳吸附容量的低硅沸石分子筛的组成、结构、制备和生产是复杂的***过程,涉及到LSX合成、离子交换、成型、活化等问题。
传统无粘结剂5A分子筛对氮气吸附容量约0.5mmol/g、甲烷吸附容量约0.6mmol/g、一氧化碳吸附容量约1.3mmol/g。目前国内外文献和专利报道的锂离子、钙离子、银离子等交换的低硅沸石分子筛主要提高氮气吸附量,用于空气分离制氧领域。
美国专利(USP5068023,1993)指出,Li-LSX对氮气吸附容量比普通X和5A分子筛高2~3倍,从而引起变压吸附制氧的极大关注。美国专利(USP5068023,1993)指出,Li-LSX的锂离子交换度大于70%时,氮吸附容量才显著体高。
关莉莉等(Acta Phys.Chim.Sin.,2002,18:998~1004)对Na-LSX进行钙离子交换,发现随着钙离子交换度增加,该分子筛对氮气吸附量直线增长。Sicar等(USP4557763,1996)利用稀土金属离子(Sr2+)对Ca-LSX进行改性,Coe等(USP4481081,2002)利用镁、钙、锶和钡等金属离子对Na-LSX进行离子交换,均可提高对氮气的吸附容量。
刘利爽等(CN 102784617A)用锂和银离子交换改性A型、13X型、低硅铝比13X型分子筛,采用两段式PSA/VPSA,氮气为吸附相,可以制备纯度大于98%的氧气。
孙继红等(CN 103539150A)先通过离子锂交换Na-LSX分子筛到一定交换度后,再用钙离子得到[(Li,Ca)-LSX],减少锂离子用量,其氮气吸附量最大值结余LI-LSX和Ca-LSX之间。
李建波等(CN 108854947 A)1)采用Ca2+与Na-LSX分子筛进行离子交换,将Na+全部交换成Ca2+;(2)采用Ag+与Ca-LSX分子筛进行离子交换,样品经过洗涤、过滤、干燥,再经过活化预处理,即得混合阳离子AgCa-LSX分子筛,改善了样品整体的N2吸附能力,可用于PSA/VPSA制氧工艺中N2/O2的选择性吸附剂。
可见,目前的研究和报道主要包括通过钙、锂、银等金属离子交换,提高低硅分子筛(LSX)的氮气吸附容量和氧氮气分离效率,而对甲烷、一氧化碳的吸附性能研究较少。
发明内容:
本发明针对现有分子筛吸附剂对氮气、甲烷、一氧化碳吸附量和吸附分离效率有待提高的问题,低硅沸石分子筛对甲烷、一氧化碳吸附性能研究较少的现状,提供一种改性锂低硅沸石分子筛;该改性锂低硅沸石分子筛对氮气、甲烷、一氧化碳吸附量都显著提高,在石油天然气分离、精细化工、吸附交换、气体分离提纯等领域具有广泛的应用潜力。
本申请的另外一个发明目的是提供以上所述分子筛的制备方法,该方法以低硅X型沸石分子筛原粉为原料,用锂离子交换去除Na-LXS中钠离子,操作简单易行。
为了实现上述目的,本发明的具体技术方案为:
一种改性锂低硅沸石分子筛,其采用的低硅分子筛为X型,其骨架中硅铝原子比为1.0~1.1,用于气体分吸附分离、催化和离子交换领域具有较好的吸附效果。
作为本申请中一种较好的实施方式,最终获得的改性锂低硅沸石分子筛组成为xLi2O·yNa2O·Al2O3·nSiO2,其中0.65≤x≤0.99,0.95≤x+y≤1.00,2.0≤n≤2.2。
作为本申请中一种较好的实施方式,改性锂低硅沸石分子筛的BET表面积为450~800m2/g,平均孔径为0.30~2.8nm。
作为本申请中一种较好的实施方式,以上所述改性低硅X沸石分子筛的制备方法包括以下步骤:
1)原粉预处理
将钠型低硅X沸石分子筛(Na-LSX)原粉在进行干燥后焙烧,放于干燥器中冷却备用;
2)离子改性
2.1)锂离子溶液改性,将经预处理后的Na-LSX原粉与锂离子溶液混合,搅拌均匀后过滤洗涤;将洗涤后的固体粉末重新加入上述氯化锂溶液(经预处理后的Na-LSX原粉与锂离子溶液混合溶液),重复上述过程,得改性LSX固体粉末;再将改性LSX固体粉末干燥后焙烧,得到锂离子改性的(Li,Na)-LSX沸石分子筛;
2.2锂离子固态改性,将上述预处理后的Na-LSX原粉,与LiCl粉末高速搅拌混合均匀后焙烧,然后经自然冷却、洗涤过滤,干燥冷却后得到改性Li-LSX型沸石分子筛;
3)成型活化
将上述得到的改性Li-LSX型沸石分子筛与粘结剂混合均匀后,然后将其成型后进行真空焙烧或在惰性气体保护下焙烧,再在惰性气体保护下冷却降温,即得机械性能和吸附性能合格的成型分子筛颗粒。
作为本申请中一种较好的实施方式,步骤1)Na-LSX原粉的干燥条件为,干燥温度100~150℃,干燥时间为1~3小时;焙烧条件为,以每分钟5~10℃的升温速度升温到400~550℃,焙烧时间为1-4小时。
作为本申请中一种较好的实施方式,步骤2.1)中所述的锂盐溶液为氢氧化锂、氯化锂或硝酸锂;锂离子溶液的浓度为0.1~0.5mol/L;Na-LSX原粉中钠离子与溶液中锂离子的摩尔比为1:0.4~1:2.0,搅拌条件为,温度85~95℃,搅拌时间为1~2小时。
作为本申请中一种较好的实施方式,步骤2.1)中改性LSX固体粉末的干燥温度为105~120℃,干燥时间为1.5~2小时后;焙烧温度为450~500℃,焙烧时间为1~2小时。
作为本申请中一种较好的实施方式,步骤2.2)中,Na-LSX原粉与LiCl粉末混合后,钠离子与锂原子的摩尔比为0.5~2.0;焙烧过程为,以1~2℃/min的速度从室温升至105~120℃,保持1~2小时;再以2~4℃/min的速度升温至400~550℃,保持1~4小时后自然冷却;干燥条件为温度100~150℃,干燥时间为1~5小时。
作为本申请中一种较好的实施方式,步骤3)中的粘结剂为羊甘土、高岭土、凹凸棒石和拟薄水铝石中任意的一种或几种的混合物,粘结剂的添加量为锂离子改性后的低硅沸石分子筛质量的5~20%。成型采取滚球成型或挤条成型,成型后的球状或条状分子筛。
作为本申请中一种较好的实施方式,步骤3)中的焙烧条件为,温度350~600℃,焙烧时间为2~12小时,焙烧过程升温速度控制在每分钟1~15℃,成型过程中样品的水分控制在5~20%之间。
经测试,在25℃、0.1MPa(绝压)下,改性锂低硅沸石分子筛的氮气吸附量为23.0~35.0ml/g,甲烷吸附量为18.0~40.0ml/g,一氧化碳吸附量为34.0~55.0ml/g,比常规5A分子筛和13X分子筛显著提高,在气体分吸附分离、催化和离子交换领域具有应用前景。
作为本申请中一种较好的实施方式,上述氯化锂质量百分含量不低于90%,可规格为分析纯、化学纯或工业级,在使用前100~120℃加热1~3小时干燥脱水。
与现有技术相比,本发明的积极效果体现在:
(一)、采用本方法制备得到的改性分子筛颗粒用Micromeritics ASAP2020HD吸附仪在液氮温度下测定BET表面积和孔径。其BET表面积450~800m2/g,平均孔径0.30~2.8nm。
(二)、用Micromeritics ASAP吸附仪进行氮气、甲烷、一氧化碳吸附量测试,测试条件为温度25℃、压力0.1MPa(绝压),所用气体为高纯气体。制备得到的改性锂低硅沸石分子筛的氮气吸附量为23.0~35.0ml/g,甲烷吸附量为18.0~40.0ml/g,一氧化碳吸附量为34.0~55.0ml/g。
(三)、由于Li+半径小、电荷密度高,对分子筛骨架影响小,使分子筛表面极性增强,本发明通过调整Li+在分子筛中所处位置、增加有效Li+数量,使改性分子筛对氮气、甲烷和一氧化碳等气体的吸附性能提高。
(四)、该改性锂低硅沸石分子筛以低硅分子筛(Na-LXS)原粉为原料,用锂离子的碱性化合物或盐类化合物将钠离子交换到一定程度后使锂离子负载于分子筛内部孔道结构中,实现低硅沸石分子筛的改性,使其具有较高的电荷密度和较大的孔径,表现出优越的选择吸附性能;在石油天然气分离、精细化工、吸附交换、气体分离提纯等领域具有广泛的应用潜力。
附图说明
图1为实施例中制备得到的改性低硅X沸石分子筛的XRD图
具体实施方式
一种改性锂低硅沸石分子筛,其采用的低硅分子筛为X型,其骨架中硅铝原子比为1.0~1.1,用于气体分吸附分离、催化和离子交换领域具有较好的吸附效果。
作为优选,该分子筛最终获得的改性锂低硅沸石分子筛组成为xLi2O·yNa2O·Al2O3·nSiO2,其中0.65≤x≤0.99,0.95≤x+y≤1.00,2.0≤n≤2.2。
一种以上所述改性低硅X沸石分子筛的制备方法,包括以下步骤:
1)原粉预处理
将钠型低硅X沸石分子筛(Na-LSX)原粉在100~15℃℃下干燥1~3小时,再以每分钟5~10℃的升温速度升温到400~550℃下焙烧1-4小时,放入干燥器中冷却备用;
2)离子改性
2.1)锂离子溶液改性
将上述预处理后的Na-LSX原粉与0.1~0.5mol/L的锂离子溶液混合,使Na-LSX原粉中钠离子与溶液中锂离子摩尔比在1:0.4~1:2.0范围内,并在85~95℃下搅拌1~2小时后过滤洗涤;将洗涤后的固体粉末重新加入上述氯化锂溶液,重复上述过程,使锂离子交换度在65~99%范围内即完成离子交换过程;将改性LSX固体粉末在105~120℃下干燥1.5~2小时后,再450℃下焙烧1~2小时得到锂离子改性的(Li,Na)-LSX沸石分子筛;
作为优选,所述锂盐溶液为氢氧化锂、氯化锂或硝酸锂的任意一种。
2.2)锂离子固态改性
将上述预处理后的Na-LSX原粉,与LiCl粉末高速搅拌混合均匀,控制原粉中钠离子与LiCl中锂原子摩尔比为0.5~2.0,然后放置于带盖坩埚后放入马沸炉加热焙烧,过程的温度控制为:以1~2℃/min的速度从室温到105~120℃,保持1~2小时;以2~4℃/min的速度到400~550℃,保持1~4小时后自然冷却,取出洗涤过滤,再在100~150℃下干燥1~5小时,冷却后得到改性Li-LSX型沸石分子筛。
上述氯化锂质量百分含量不低于90%,可规格为分析纯、化学纯或工业级,在使用前100~120℃加热1~3小时干燥脱水。
3)成型活化
将上述锂离子改性后的低硅沸石分子筛与5~20%质量比粘结剂充分混合均匀,粘结剂是羊甘土、高岭土、凹凸棒石、拟薄水铝石其中的一种或一种以上;成型采取滚球或挤条的任意一种。成型后的球状或条状分子筛,在350~600℃温度范围内真空或惰性气体保护下焙烧2~12小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。
成型过程中样品的水分控制在5~20%之间。焙烧过程升温速度控制在每分钟1~15℃。
性能测试
上述成型改性分子筛颗粒用Micromeritics ASAP吸附仪在液氮温度下测定BET表面积和孔径。其BET表面积450~800m2/g,平均孔径0.30~2.8nm。
用Micromeritics ASAP吸附仪进行氮气、甲烷、一氧化碳吸附量测试,测试条件为温度25℃、压力0.1MPa(绝压),所用气体为高纯气体。
上述改性锂低硅沸石分子筛的氮气吸附量为23.0~35.0ml/g,甲烷吸附量为18.0~40.0ml/g,一氧化碳吸附量为34.0~55.0ml/g。
上述改性锂低硅沸石分子筛用Bruker D8 advance X射线衍射仪测定晶体结构。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
本发明采用常规低硅分子筛原粉,其他试剂为分析纯,氦气、氮气、甲烷、一氧化碳等气体为高纯气体,交换度为该阳离子占总阳离子数的摩尔百分数。
以下实施例中,Na-LSX沸石分子筛预处理的方法相同,均为:将钠型低硅X沸石分子筛(Na-LSX)原粉在100℃下干燥2小时,再以每分钟7℃的升温速度升温到550℃下焙烧2小时,放入干燥器中冷却备用。
实施例1:
取100g预处理后的Na-LSX沸石分子筛与浓度为0.5mol/L的氯化锂溶液混合,使Na-LSX原粉中钠离子与溶液中锂离子摩尔比为1.5,在搅拌下维持85℃恒温2小时,过滤洗涤;将洗涤后的样品重新与上述氯化锂溶液混合,重复混合、恒温搅拌、过滤洗涤共3次,再将样品在100℃下干燥2小时,进入450℃下焙烧1小时后,得到(Li,Na)-LSX沸石分子筛。
将上述锂离子改性后的低硅分子筛与20%质量比粘结剂充分混合均匀,粘结剂是羊甘土;成型采取滚球成型。成型后的球状分子筛,在400℃温度范围内真空或惰性气体保护下焙烧12小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型改性分子筛颗粒。成型过程中样品的水分控制在5%之间。焙烧过程升温速度控制在每分钟1℃。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.80,y=0.17,n=2.0,BET表面积为450m2/g,氮气吸附量26.0ml/g,甲烷吸附量为23.0ml/g,一氧化碳吸附量为38.0ml/g。
实施例2:
取10g预处理后的Na-LSX沸石分子筛与浓度为0.1mol/L的硝酸锂溶液混合,使Na-LSX原粉中钠离子与溶液中锂离子摩尔比为0.6,搅拌下维持95℃恒温2小时,过滤洗涤;将洗涤后的样品重新与上述硝酸锂溶液混合,重复混合、恒温搅拌、过滤洗涤2次,再将样品在100℃下干燥3小时,进入450℃下焙烧1小时后,得到(Li,Na)-LSX沸石分子筛。
将上述锂离子改性后的低硅分子筛与5%质量比粘结剂充分混合均匀,粘结剂是高岭土;成型采取挤条成型。成型后的条状分子筛,在550℃温度范围内真空或惰性气体保护下焙烧2小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。成型过程中样品的水分控制在20%之间。焙烧过程升温速度控制在每分钟15℃。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.98,y=0.02,n=2.2,BET表面积为800m2/g,氮气吸附量35.0ml/g,甲烷吸附量为32.0ml/g,一氧化碳吸附量为52.0ml/g。
实施例3:
取50g预处理后的Na-LSX沸石分子筛与浓度为0.1mol/L氢氧化锂溶液混合,使Na-LSX原粉中钠离子与溶液中锂离子摩尔比为0.5,在搅拌下维持60℃恒温2小时,过滤洗涤;将洗涤后的样品重新与上述硝酸锂溶液混合,重复混合、恒温搅拌、过滤洗涤2次,再将样品在100℃下干燥3小时,进入450℃下焙烧1小时后,得到(Li,Na)-LSX沸石分子筛。
将上述锂离子改性后的低硅分子筛与5%质量比粘结剂充分混合均匀,粘结剂是拟薄水铝石;成型采取滚球成型。成型后的球状分子筛,在350℃温度范围内真空或惰性气体保护下焙烧6小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。成型过程中样品的水分控制在10%之间。焙烧过程升温速度控制在每分钟8℃。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.98,y=0.01,n=2.1,BET表面积为760m2/g,氮气吸附量28.0ml/g,甲烷吸附量为40.0ml/g,一氧化碳吸附量为53.0ml/g。
实施例4:
将预处理后的Na-LSX沸石分子筛原粉与LiCl粉末高速搅拌混合均匀,使Na-LSX原粉中钠离子与锂离子摩尔比为2.0,再放置于带盖坩埚后放入马沸炉加热焙烧,过程的温度控制为:以2℃/min的速度从室温到120℃,保持2小时;以4℃/min的速度到550℃,保持4小时后自然冷却,取出洗涤过滤2次。重复以上过程2次。再在150℃下干燥5小时,冷却后得到(Li,Na)-LSX型沸石分子筛。氯化锂为分析纯。
将上述锂离子改性后的低硅分子筛与10%质量比粘结剂充分混合均匀,粘结剂是凹凸棒石;成型采取滚球成型。成型后的球状分子筛,在400℃温度范围内真空或惰性气体保护下焙烧5小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.65,y=0.30,n=2.05,BET表面积为650m2/g,氮气吸附量23.0ml/g,甲烷吸附量为18.0ml/g,一氧化碳吸附量为34.0ml/g。
实施例5:
将上述低硅沸石分子筛原粉与其LiCl粉末高速搅拌混合均匀,使Na-LSX原粉中钠离子与锂离子摩尔比为0.4,再放置于带盖坩埚后放入马沸炉加热焙烧,过程的温度控制为:以1℃/min的速度从室温到120℃,保持2小时;以2℃/min的速度到500℃,保持4小时后自然冷却,取出洗涤过滤3次,再在150℃下干燥5小时,冷却后得到(Li,Na)-LSX型沸石分子筛。氯化锂为工业级。
将上述锂离子改性后的低硅分子筛与8%质量比粘结剂充分混合均匀,粘结剂是羊甘土和高岭土;成型采取挤条成型。成型后的条状分子筛,在450℃温度范围内真空或惰性气体保护下焙烧4小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.99,y=0.01,n=2.15,BET表面积为750m2/g,氮气吸附量32.0ml/g,甲烷吸附量为40.0ml/g,一氧化碳吸附量为55.0ml/g。
实施例6
将上述低硅沸石分子筛原粉与LiCl粉末高速搅拌混合均匀,使Na-LSX原粉中钠离子与锂离子摩尔比为0.6,再放置于带盖坩埚后放入马沸炉加热焙烧,过程的温度控制为:以1℃/min的速度从室温到120℃,保持2小时;以2℃/min的速度到550℃,保持4小时后自然冷却,取出洗涤过滤2次,再在150℃下干燥5小时,冷却后得到(Li,Na)-LSX型沸石分子筛。氯化锂为工业级。
将上锂离子改性后的低硅分子筛与8%质量比粘结剂充分混合均匀,粘结剂是羊甘土和拟薄水铝石;成型采取滚球成型。成型后的球状分子筛,在450℃温度范围内真空或惰性气体保护下焙烧10小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。
采用具体实施方式中的方法进行检测,上述改性锂低硅沸石分子筛x=0.96,y=0.02,n=2.05,BET表面积为680m2/g,氮气吸附量27.0ml/g,甲烷吸附量为34.0ml/g,一氧化碳吸附量为49.0ml/g。
实施例7
将上述干燥后的Na-LSX低硅沸石分子筛原粉与10%质量比粘结剂充分混合均匀,粘结剂为羊甘土和凹凸棒石;成型采取滚球成型。成型后的球状分子筛,在480℃温度范围内真空或惰性气体保护下焙烧6小时,惰性气体保护下冷却降温,得到机械性能和吸附性能合格的成型分子筛颗粒。
采用具体实施方式中的方法进行检测,上述改性钙低硅沸石分子筛x=0.005,y=0.99,n=2.0,BET表面积为780m2/g,氮气吸附量3.9ml/g,甲烷吸附量为4.7ml/g,一氧化碳吸附量为6.5ml/g。
前述本发明基本例及其各进一步选择例可以自由组合以形成多个实施例,均为本发明可采用并要求保护的实施例。本发明方案中,各选择例,与其他任何基本例和选择例都可以进行任意组合。本领域技术人员可知有众多组合。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种改性锂低硅沸石分子筛,其特征在于:采用的低硅分子筛为X型,其骨架中硅铝原子比为1.0~1.1,用于气体分吸附分离、催化和离子交换领域。
2.如权利要求1所述的改性锂低硅沸石分子筛,其特征在于:该分子筛的化学组成为xLi2O·yNa2O·Al2O3·nSiO2,其中0.65≤x≤0.99,0.95≤x+y≤1.00,2.0≤n≤2.2。
3.如权利要求1所述的改性锂低硅沸石分子筛,其特征在于:BET表面积为450~800m2/g,平均孔径为0.30~2.8nm。
4.如权利要求1-3中任意一项权利要求所述改性低硅X沸石分子筛的制备方法,其特征在于包括以下步骤:
1)原粉预处理
将Na-LSX原粉在进行干燥后焙烧,冷却备用;
2)离子改性
2.1)锂离子溶液改性,将经预处理后的Na-LSX原粉与锂离子溶液混合,搅拌均匀后过滤洗涤;将洗涤后的固体粉末重新加入上述氯化锂溶液,重复上述过程,得改性LSX固体粉末;再将改性LSX固体粉末干燥后焙烧,得到锂离子改性的(Li,Na)-LSX沸石分子筛,并进行化学组成测定;
2.2)锂离子固态改性,将上述预处理后的Na-LSX原粉,与LiCl粉末高速搅拌混合均匀后焙烧,然后经自然冷却、洗涤过滤,干燥冷却后得到改性Li-LSX型沸石分子筛,并进行化学组成测定;
3)成型活化
将上述得到的改性Li-LSX型沸石分子筛与粘结剂混合均匀后,然后将其成型后进行真空焙烧或在惰性气体保护下焙烧,再在惰性气体保护下冷却降温,即得。
5.如权利要求4所述改性低硅X沸石分子筛的制备方法,其特征在于:步骤1)Na-LSX原粉的干燥条件为,干燥温度100~150℃,干燥时间为1~3小时;焙烧条件为,以每分钟5~10℃的升温速度升温到400~550℃,焙烧时间为1-4小时。
6.如权利要求4所述改性低硅X沸石分子筛的制备方法,其特征在于:步骤2.1)中所述的锂盐溶液为氢氧化锂、氯化锂或硝酸锂;锂离子溶液的浓度为0.1~0.5mol/L;Na-LSX原粉中钠离子与溶液中锂离子的摩尔比为1:0.4~1:2.0,搅拌条件为,温度85~95℃,搅拌时间为1~2小时。
7.如权利要求4所述改性低硅X沸石分子筛的制备方法,其特征在于:步骤2.1)中改性LSX固体粉末的干燥温度为105~120℃,干燥时间为1.5~2小时后;焙烧温度为450℃,焙烧时间为1~2小时。
8.如权利要求4所述改性低硅X沸石分子筛的制备方法,其特征在于:步骤2.2)中,Na-LSX原粉与LiCl粉末混合后,钠离子与锂原子的摩尔比为0.5~2.0;焙烧过程为,以1~2℃/min的速度从室温升至100~120℃,保持2小时;再以2~4℃/min的速度升温至400~550℃,保持4小时后自然冷却;干燥条件为温度100~150℃,干燥时间为1~5小时。
9.如权利要求4所述改性低硅X沸石分子筛的制备方法,其特征在于:步骤3)中的粘结剂为羊甘土、高岭土、凹凸棒石和拟薄水铝石中任意的一种或几种的混合物,粘结剂的添加量为锂离子改性后的低硅沸石分子筛质量的5~20%;步骤3)中的焙烧条件为,温度350~600℃,焙烧时间为2~12小时,焙烧过程升温速度控制在每分钟1~15℃,成型过程中样品的水分控制在5~20%之间。
10.如权利要求4-9中任一权利要求所述改性低硅X沸石分子筛的制备方法,其特征在于:上述方法制备的改性锂低硅沸石分子筛在25℃、0.1MPa下,氮气吸附量为23.0~35.0ml/g,甲烷吸附量为18.0~40.0ml/g,一氧化碳吸附量为34.0~55.0ml/g。
CN202110614791.7A 2021-06-02 2021-06-02 一种改性锂低硅沸石分子筛及其制备方法 Pending CN113351157A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110614791.7A CN113351157A (zh) 2021-06-02 2021-06-02 一种改性锂低硅沸石分子筛及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110614791.7A CN113351157A (zh) 2021-06-02 2021-06-02 一种改性锂低硅沸石分子筛及其制备方法

Publications (1)

Publication Number Publication Date
CN113351157A true CN113351157A (zh) 2021-09-07

Family

ID=77531328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110614791.7A Pending CN113351157A (zh) 2021-06-02 2021-06-02 一种改性锂低硅沸石分子筛及其制备方法

Country Status (1)

Country Link
CN (1) CN113351157A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031093A (zh) * 2021-11-18 2022-02-11 江苏国瓷新材料科技股份有限公司 一种高效制备制氧分子筛的方法
CN114887586A (zh) * 2022-05-07 2022-08-12 西南化工研究设计院有限公司 一种低硅铝比锂分子筛的生产方法
CN115254177A (zh) * 2022-07-27 2022-11-01 中科洁力(福州)环保技术有限公司 一种高性能的分子筛制备方法
CN115382504A (zh) * 2022-09-13 2022-11-25 河南宣和钧釉环保材料有限公司 新型可释放负氧离子的Li-LSX型制氧分子筛及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211468A (zh) * 1997-07-22 1999-03-24 策卡有限公司 改良的粘结型沸石吸附剂,其制法及其在工业气体的非深冷分离中的应用
US20010045160A1 (en) * 2000-04-20 2001-11-29 Tosoh Corporation Method for purifying hydrogen-based gas mixture
CN101125664A (zh) * 2007-09-14 2008-02-20 北京工业大学 一种制备锂型低硅铝x型沸石分子筛的离子交换方法
CN101766987A (zh) * 2010-03-09 2010-07-07 上海绿强新材料有限公司 一种含锂改性低硅铝x型分子筛吸附剂及其制备方法
CN102502694A (zh) * 2011-10-11 2012-06-20 于向真 一种Li改性X分子筛及其制备方法
CN102826567A (zh) * 2012-08-24 2012-12-19 福建师范大学 一种利用钾长石制备锂型低硅铝x型分子筛的方法
CN103539150A (zh) * 2013-10-15 2014-01-29 北京工业大学 一种低硅铝比X型沸石分子筛[(Li, Ca)-LSX]的制备方法
CN107810053A (zh) * 2015-02-02 2018-03-16 阿肯马法国公司 具有高外表面积的沸石吸附剂及其用途
CN108675314A (zh) * 2018-08-07 2018-10-19 中船重工黄冈贵金属有限公司 一种锂型低硅铝比分子筛的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211468A (zh) * 1997-07-22 1999-03-24 策卡有限公司 改良的粘结型沸石吸附剂,其制法及其在工业气体的非深冷分离中的应用
US20010045160A1 (en) * 2000-04-20 2001-11-29 Tosoh Corporation Method for purifying hydrogen-based gas mixture
CN101125664A (zh) * 2007-09-14 2008-02-20 北京工业大学 一种制备锂型低硅铝x型沸石分子筛的离子交换方法
CN101766987A (zh) * 2010-03-09 2010-07-07 上海绿强新材料有限公司 一种含锂改性低硅铝x型分子筛吸附剂及其制备方法
CN102502694A (zh) * 2011-10-11 2012-06-20 于向真 一种Li改性X分子筛及其制备方法
CN102826567A (zh) * 2012-08-24 2012-12-19 福建师范大学 一种利用钾长石制备锂型低硅铝x型分子筛的方法
CN103539150A (zh) * 2013-10-15 2014-01-29 北京工业大学 一种低硅铝比X型沸石分子筛[(Li, Ca)-LSX]的制备方法
CN107810053A (zh) * 2015-02-02 2018-03-16 阿肯马法国公司 具有高外表面积的沸石吸附剂及其用途
CN108675314A (zh) * 2018-08-07 2018-10-19 中船重工黄冈贵金属有限公司 一种锂型低硅铝比分子筛的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031093A (zh) * 2021-11-18 2022-02-11 江苏国瓷新材料科技股份有限公司 一种高效制备制氧分子筛的方法
CN114887586A (zh) * 2022-05-07 2022-08-12 西南化工研究设计院有限公司 一种低硅铝比锂分子筛的生产方法
CN115254177A (zh) * 2022-07-27 2022-11-01 中科洁力(福州)环保技术有限公司 一种高性能的分子筛制备方法
CN115382504A (zh) * 2022-09-13 2022-11-25 河南宣和钧釉环保材料有限公司 新型可释放负氧离子的Li-LSX型制氧分子筛及其制备方法

Similar Documents

Publication Publication Date Title
CN113351157A (zh) 一种改性锂低硅沸石分子筛及其制备方法
US6514317B2 (en) Method for purifying hydrogen-based gas mixture
CN113371730A (zh) 一种改性钙低硅沸石分子筛及其制备方法
US6537348B1 (en) Method of adsorptive separation of carbon dioxide
US8377842B2 (en) Adsorbent for selective adsorption of carbon monoxide and process for preparation thereof
JP3776813B2 (ja) アルゴン/酸素選択性xゼオライト
KR19990014065A (ko) 공업 기체의 비극저온 분리를 위한, 향상된 응괴 흡착제, 그의 제조 방법 및 그의 용도
JP2001526172A (ja) 小さい孔を有する結晶性チタンモレキュラーシーブゼオライトおよびそれを気体分離過程で用いる使用
WO2003080236A1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
CN102784617A (zh) 一种含银分子筛吸附剂及其制备方法和应用
Xue et al. Unique allosteric effect-driven rapid adsorption of carbon dioxide in a newly designed ionogel [P 4444][2-Op]@ MCM-41 with excellent cyclic stability and loading-dependent capacity
JP4025228B2 (ja) 空気のサイズ/形態的選択分離用モレキュラーシーブ吸着剤の調製法
US5882625A (en) Faujasite adsorbents with nonuniform Al distribution
EP1485200A1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
KR100803771B1 (ko) 공기로부터 산소의 선택적 흡착을 위한 분자체 흡착제의제조 공정
JP4686889B2 (ja) 水素ガスの精製方法
KR20210082526A (ko) 고 규산질 형태의 제올라이트 rho
JP2002003215A (ja) 高純度低シリカx型ゼオライトバインダレス成形体およびそれを使用した気体分離方法
WO2000040332A1 (en) Lithium-based zeolites containing silver and copper and use thereof for selective adsorption
JP2001347123A (ja) 二酸化炭素の吸着分離方法
CN116396486B (zh) 优先吸附氩气的铝基金属有机骨架材料及其制法与应用
JP3772412B2 (ja) 低摩耗性ゼオライトビーズ成形体及びその製造方法
KR100636424B1 (ko) 흡착제의 제조방법 및 이를 이용한 기체의 정제방법
JP3334664B2 (ja) 気体分離用吸着剤
CN115715971B (zh) 一种高炉煤气脱硫吸附剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907