CN113321505A - 一种氧化锆基陶瓷材料及其制备方法 - Google Patents

一种氧化锆基陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113321505A
CN113321505A CN202110884903.0A CN202110884903A CN113321505A CN 113321505 A CN113321505 A CN 113321505A CN 202110884903 A CN202110884903 A CN 202110884903A CN 113321505 A CN113321505 A CN 113321505A
Authority
CN
China
Prior art keywords
zirconia
powder
raw material
biological ceramic
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110884903.0A
Other languages
English (en)
Inventor
孙婧
朱帅
孙佳慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangya Hospital of Central South University
Original Assignee
Xiangya Hospital of Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangya Hospital of Central South University filed Critical Xiangya Hospital of Central South University
Priority to CN202110884903.0A priority Critical patent/CN113321505A/zh
Publication of CN113321505A publication Critical patent/CN113321505A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • A61L27/105Ceramics or glasses containing Al2O3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种氧化锆基陶瓷材料及其制备方法,为了抑制氧化锆在环境中发生四方相向单斜相的转变,提高其低温老化性能,本发明以3Y‑TZP(氧化钇稳定的四方多晶氧化锆,其中氧化钇的摩尔含量为3%),以氧化铝和/或二氧化铈作为稳定剂,制备出了Y2O3‑ZrO2‑Al2O3/CeO2复合陶瓷材料。研究表明,稳定剂的加入可以大大优化其性能,进而延长氧化锆基生物陶瓷作为口腔种植体的使用时间,并且,同时添加两种稳定剂所取得的效果比单种稳定剂更佳。

Description

一种氧化锆基陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷材料领域,具体涉及一种氧化锆基陶瓷材料及其制备方法。
背景技术
陶瓷是指用天然或人工合成的粉末化合物经过成形和高温烧结制成的一类无机非金属材料,因其具有高硬度、高熔点、高耐腐蚀性能等优点而广泛应用于各个领域。
另外,口腔种植是指通过在牙槽骨内植入牙种植体,借以支撑、固定义齿完成缺牙修复的方法。伴随口腔种植技术的进步,口腔种植的目的从早期的缺牙功能修复发展到如今对修复美观与健康的更高追求;适应症也从无牙颌或游离端缺失扩展至各类牙缺失。另外,种植体还可以用于口腔颅颌面缺损修复,以解决赝复体的固位问题。
由于牙种植体出于口腔的特殊环境,种植体材料必须具备以下条件:①口腔组织对材料有较好的耐受性,材料对组织没有或仅有极弱的化学刺激,不产生支持骨的吸收;②对体液有抗腐蚀性,能长期保持所需的机械性能;③必须具有良好的生物相容性;④材料对骨组织应有良好的生物力学适应性。由于具有优异的耐腐蚀性能,良好的生物相容性,惰性生物陶瓷氧化锆已成为广泛应用的口腔种植体材料。然而,在口腔的低温潮湿环境中,氧化锆生物陶瓷会发生T-M相变,从而降低其力学性能,这个过程称之为低温老化过程。有鉴于此,如何使生物陶瓷氧化锆保持良好的低温老化性能,将直接决定其在口腔中的使用时长。
发明内容
针对现有技术存在的问题,本发明旨在提供一种氧化锆基陶瓷材料及其制备方法,以解决传统的氧化锆陶瓷低温老化性能不佳的问题。
一种氧化锆基陶瓷材料的制备方法,包括以下步骤:
A.按化学计量准确称量氧化钇稳定氧化锆粉末和稳定剂粉末作为原料,将原料粉末在880-950℃下煅烧2.5-3.0h;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20-24h;
C.在25-28MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250-260MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5-3.0h得到氧化锆生物陶瓷材料,烧结温度为1200-1400℃。
进一步地,所述氧化钇稳定氧化锆粉末中氧化钇的摩尔含量为3%。
进一步地,所述氧化锆为四方多晶相。
进一步地,所述稳定剂为氧化铝或二氧化铈中的一种或两种。
进一步地,所述稳定剂的含量为0.5wt-2.4wt%。
进一步地,所述稳定剂为氧化铝和二氧化铈。
进一步地,所述氧化铝的含量为1.0wt%,所述二氧化铈的含量为1.4wt%。
另外,本发明还提供了一种氧化锆基陶瓷材料,所述陶瓷材料由上述方法制备而得。
为了抑制氧化锆在环境中发生四方相向单斜相的转变,提高其低温老化性能,本发明以3Y-TZP(氧化钇稳定的四方多晶氧化锆,其中氧化钇的摩尔含量为3%),以氧化铝和/或二氧化铈作为稳定剂,制备出了Y2O3-ZrO2-Al2O3/CeO2复合生物陶瓷材料。研究表明,稳定剂的加入可以大大优化其性能,进而延长氧化锆基生物陶瓷作为口腔种植体的使用时间,并且,同时添加两种稳定剂所取得的效果比单种稳定剂更佳。
具体实施方式
下面通过具体实施例来验证本发明的技术效果,但是本发明的实施方式不局限于此。
实施例1
A.按化学计量准确称量3Y-TZP粉末和Al2O3粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3粉末的质量含量为原料粉末总质量的0.5%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例2
A.按化学计量准确称量3Y-TZP粉末和Al2O3粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3粉末的质量含量为原料粉末总质量的1.0%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例3
A.按化学计量准确称量3Y-TZP粉末和Al2O3粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3粉末的质量含量为原料粉末总质量的1.4%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例4
A.按化学计量准确称量3Y-TZP粉末和Al2O3粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3粉末的质量含量为原料粉末总质量的2.0%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例5
A.按化学计量准确称量3Y-TZP粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中CeO2粉末的质量含量为原料粉末总质量的0.5%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例6
A.按化学计量准确称量3Y-TZP粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中CeO2粉末的质量含量为原料粉末总质量的1.0%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例7
A.按化学计量准确称量3Y-TZP粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中CeO2粉末的质量含量为原料粉末总质量的1.4%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例8
A.按化学计量准确称量3Y-TZP粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中CeO2粉末的质量含量为原料粉末总质量的2.0%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例9
A.按化学计量准确称量3Y-TZP粉末、Al2O3粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3的质量含量为原料粉末总质量的1.0%粉末,CeO2粉末的质量含量为原料粉末总质量的1.4%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例10
A.按化学计量准确称量3Y-TZP粉末和Al2O3粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3的质量含量为原料粉末总质量的2.4%粉末;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例11
A.按化学计量准确称量3Y-TZP粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中CeO2粉末的质量含量为原料粉末总质量的2.4%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
实施例12
A.按化学计量准确称量3Y-TZP粉末、Al2O3粉末和CeO2粉末作为原料,将原料粉末在880℃下煅烧2.5h,其中Al2O3的质量含量为原料粉末总质量的1.0%粉末,CeO2粉末的质量含量为原料粉末总质量的1.0%;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20h;
C.在25MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5h得到氧化锆生物陶瓷材料,烧结温度为1400℃。
接下来,采用高压反应釜对不同样品在130℃的水蒸气中进行72h的低温老化实验,并以3Y-TZP粉末制备而得的生物陶瓷材料作为对照组。使用X射线衍射仪,衍射靶Cu-Kα在40kV工作电压和40mA工作电流下以0.02°/s扫描速度和27-33°(2θ)扫描范围测量所有实验样品的相变含量。
表1 各样品相变含量
编号 各样品相变含量/%
实施例1 25.37
实施例2 22.89
实施例3 15.54
实施例4 14.31
实施例5 28.96
实施例6 23.76
实施例7 17.21
实施例8 15.20
实施例9 7.52
实施例10 12.28
实施例11 13.01
实施例12 12.99
对照组 47.69
在向Y-TZP(氧化钇稳定的四方多晶氧化锆)材料中加入Al2O3或CeO2后,可以有效阻碍生物陶瓷发生t(四方相)→m(单斜相)转变,进而提高了陶瓷材料的低温老化性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

1.一种氧化锆基陶瓷材料的制备方法,其特征在于:包括以下步骤:
A.按化学计量准确称量氧化钇稳定氧化锆粉末和稳定剂粉末作为原料,将原料粉末在880-950℃下煅烧2.5-3.0h;
B.将原料粉末放入行星式球磨机中,在乙醇环境下球磨20-24h;
C.在25-28MPa下使用压片机单轴压下得到生物陶瓷胚体;
D.采用冷等静压工艺,在250-260MPa的压力下进一步致密化生物陶瓷胚体;
E.在空气中烧结2.5-3.0h得到氧化锆生物陶瓷材料,烧结温度为1200-1400℃。
2.一种如权利要求1所述的制备方法,其特征在于:所述氧化钇稳定氧化锆粉末中氧化钇的摩尔含量为3%。
3.一种如权利要求1所述的制备方法,其特征在于:所述氧化锆为四方多晶相。
4.一种如权利要求1所述的制备方法,其特征在于:所述稳定剂为氧化铝或二氧化铈中的一种或两种。
5.一种如权利要求1所述的制备方法,其特征在于:所述稳定剂的含量为0.5wt-2.4wt%。
6.一种如权利要求4所述的制备方法,其特征在于:所述稳定剂为氧化铝和二氧化铈。
7.一种如权利要求4所述的制备方法,其特征在于:所述氧化铝的含量为1.0wt%,所述二氧化铈的含量为1.4wt%。
8.一种氧化锆基陶瓷材料,其特征在于,所述陶瓷材料由权利要求1-7中任一方法制备而得。
CN202110884903.0A 2021-08-03 2021-08-03 一种氧化锆基陶瓷材料及其制备方法 Pending CN113321505A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110884903.0A CN113321505A (zh) 2021-08-03 2021-08-03 一种氧化锆基陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110884903.0A CN113321505A (zh) 2021-08-03 2021-08-03 一种氧化锆基陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113321505A true CN113321505A (zh) 2021-08-31

Family

ID=77426942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110884903.0A Pending CN113321505A (zh) 2021-08-03 2021-08-03 一种氧化锆基陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113321505A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510011A (zh) * 2002-12-24 2004-07-07 湖南省新化长青电子器件有限责任公司 一种氧化锆工程陶瓷及其制备方法
CN1593371A (zh) * 2004-06-28 2005-03-16 李石保 一种牙科修复体的制备方法
CN1673184A (zh) * 2004-03-23 2005-09-28 松下电工株式会社 ZrO2-Al2O3复合陶瓷材料及其生产方法
CN101039877A (zh) * 2004-09-01 2007-09-19 先进纳米技术有限公司 氧化锆陶瓷
CN104193331A (zh) * 2014-07-30 2014-12-10 北京固圣生物科技有限公司 骨植入假体用氧化锆基复合陶瓷及由其制备的骨植入假体
CN105801113A (zh) * 2014-12-29 2016-07-27 北京有色金属研究总院 一种低单斜相氧化钇部分稳定二氧化锆粉体及其制备方法
CN108530064A (zh) * 2012-08-20 2018-09-14 陶瓷技术有限责任公司 基于氧化锆的复合材料
CN112851342A (zh) * 2021-02-03 2021-05-28 中新棠国业(苏州)医疗科技有限公司 一种氧化锆陶瓷材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510011A (zh) * 2002-12-24 2004-07-07 湖南省新化长青电子器件有限责任公司 一种氧化锆工程陶瓷及其制备方法
CN1673184A (zh) * 2004-03-23 2005-09-28 松下电工株式会社 ZrO2-Al2O3复合陶瓷材料及其生产方法
CN1593371A (zh) * 2004-06-28 2005-03-16 李石保 一种牙科修复体的制备方法
CN101039877A (zh) * 2004-09-01 2007-09-19 先进纳米技术有限公司 氧化锆陶瓷
CN108530064A (zh) * 2012-08-20 2018-09-14 陶瓷技术有限责任公司 基于氧化锆的复合材料
CN104193331A (zh) * 2014-07-30 2014-12-10 北京固圣生物科技有限公司 骨植入假体用氧化锆基复合陶瓷及由其制备的骨植入假体
CN105801113A (zh) * 2014-12-29 2016-07-27 北京有色金属研究总院 一种低单斜相氧化钇部分稳定二氧化锆粉体及其制备方法
CN112851342A (zh) * 2021-02-03 2021-05-28 中新棠国业(苏州)医疗科技有限公司 一种氧化锆陶瓷材料及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MOHSEN GOLIESKARDI等人: "Microstructural, tribological, and degradation properties of Al2O3- and CeO2-doped 3 mol.% yttria-stabilized zirconia bioceramic for biomedical application", 《JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE》 *
庄咏翔等人: "不同时间及厚度对牙科氧化锆低温老化影响的研究", 《口腔颌面修复学杂志》 *
张立德: "《超微粉体制备与应用技术》", 31 January 2001, 北京:中国石化出版社 *
李家驹: "《陶瓷工艺学》", 30 June 2006, 北京:中国轻工业出版社 *
毕见强等人: "《特种陶瓷工艺与性能》", 31 March 2008, 哈尔滨工业大学出版社 *
马伟民: "《氧化物陶瓷刀具与仿真切削》", 30 October 2014, 北京:冶金工业出版社 *

Similar Documents

Publication Publication Date Title
Palmero et al. Towards long lasting zirconia-based composites for dental implants. Part I: Innovative synthesis, microstructural characterization and in vitro stability
Kim et al. Mechanical properties, phase stability, and biocompatibility of (Y, Nb)‐TZP/Al2O3 composite abutments for dental implant
Lazar et al. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics
KR101639708B1 (ko) 가공성 지르코니아
Khaskhoussi et al. Effect of TiO2 addition on microstructure of zirconia/alumina sintered ceramics
Dehestani et al. Phase stability and mechanical properties of zirconia and zirconia composites
CN104995155B (zh) 基于氧化锆的单相和多相材料
Asharaf et al. Zirconia: properties and application" a review
Dos Santos et al. Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants
WO2013190043A2 (en) CeO2-STABILIZED ZrO2 CERAMICS FOR DENTAL APPLICATIONS
Zhao et al. Low temperature degradation of alumina-toughened zirconia in artificial saliva
Vaquero-Aguilar et al. Zirconia implant abutments: microstructural analysis
Özcan et al. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance
US9353010B2 (en) Alumina-zirconia ceramic implants and related materials, apparatus, and methods
CN113321505A (zh) 一种氧化锆基陶瓷材料及其制备方法
JP2002362972A (ja) 生体用ジルコニアセラミックスとその製造方法
Prisco et al. Effect of aging and porcelain sintering on rotational freedom of internal-hex one-piece zirconia abutments.
Ban et al. Mechanical properties of zirconia/alumina nano-composite after soaking in various water-based conditions
Alwade et al. Zirconia in dental and other biomedical applications: An overview
Zhou et al. Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al 2 O 3/BN dental ceramics
JP2517249B2 (ja) 高強度ジルコニア系hip焼結体
Aivazi et al. Effect of alumina addition to zirconia nano-composite on low temperature degradation process and biaxial strength
Denry et al. Crystalline phase evolution and thermal behavior of zirconia‐lanthanum aluminate ceramics produced by surface modification
Wang et al. Densification and biocompatibility of sintering 3.0 mol% yttria-tetragonal ZrO2 polycrystal ceramics with x wt% Fe2O3 and 5.0 wt% mica powders additive
Zhou et al. Effect of grain boundary segregation on low-temperature aging of 3% yttrium oxide stabilized zirconia ceramics co-doped with GeO2 and TiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210831