CN113316913B - 在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置 - Google Patents

在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置 Download PDF

Info

Publication number
CN113316913B
CN113316913B CN202080008892.3A CN202080008892A CN113316913B CN 113316913 B CN113316913 B CN 113316913B CN 202080008892 A CN202080008892 A CN 202080008892A CN 113316913 B CN113316913 B CN 113316913B
Authority
CN
China
Prior art keywords
pusch
symbols
symbol
pusch repetition
repetition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080008892.3A
Other languages
English (en)
Other versions
CN113316913A (zh
Inventor
崔庚俊
卢珉锡
郭真三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilus Institute of Standards and Technology Inc
Original Assignee
Wilus Institute of Standards and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilus Institute of Standards and Technology Inc filed Critical Wilus Institute of Standards and Technology Inc
Publication of CN113316913A publication Critical patent/CN113316913A/zh
Application granted granted Critical
Publication of CN113316913B publication Critical patent/CN113316913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供的是一种用于在无线通信***中由终端向基站发送PUSCH的方法。该方法包括:用于从基站接收包括关于半静态上行链路符号、灵活符号和下行链路符号的配置信息的RRC信号的步骤;用于接收用于调度包括至少一个PUSCH重复的PUSCH传输的PDCCH的步骤;用于确定用于发送PUSCH重复的所需数目的符号中的至少一个是否不能发送PUSCH重复的步骤;以及用于基于关于是否不能发送PUSCH重复的确定来将PUSCH重复发送到基站的步骤。当不能发送PUSCH重复时,符号中的至少一个是通过配置信息指定为半静态下行链路符号的符号。

Description

在无线通信***中发送上行链路共享信道的方法以及使用该 方法的装置
技术领域
本公开涉及一种无线通信***,并且具体地,涉及一种用于在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置。
背景技术
在***(4G)通信***的商业化之后,为了满足对无线数据业务的越来越多的需求,正在努力开发新的第五代(5G)通信***。5G通信***被称作为超4G网络通信***、后LTE***或新无线电(NR)***。为了实现高数据传输速率,5G通信***包括使用6GHz或更高的毫米波(mmWave)频带来操作的***,并且在确保覆盖范围方面包括使用6GHz或更低的频带来操作的通信***,使得基站和终端中的实现方式在考虑中。
第三代合作伙伴计划(3GPP)NR***提高了网络的频谱效率并且使得通信提供商能够在给定带宽上提供更多的数据和语音服务。因此,3GPP NR***被设计成除了支持大量语音之外还满足对高速数据和媒体传输的需求。NR***的优点是在相同平台上具有更高的吞吐量和更低的延迟,支持频分双工(FDD)和时分双工(TDD),以及因增强的最终用户环境和简单架构而具有低运营成本。
为了减轻无线电波的路径损耗并且增加mmWave频带中的无线电波的传输距离,在5G通信***中,讨论了波束成形、大规模多输入/输出(大规模MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形、组合了模拟波束成形和数字波束成形的混合波束成形以及大规模天线技术。此外,为了***的网络改进,在5G通信***中,正在进行与演进型小小区、高级小小区、云无线电接入网络(云RAN)、超密集网络、装置到装置通信(D2D)、车辆到一切通信(V2X)、无线回程、非陆地网络通信(NTN)、移动网络、协作通信、协调多点(CoMP)、干扰消除等有关的技术开发。此外,在5G***中,正在开发作为高级编码调制(ACM)方案的混合FSK与QAM调制(FQAM)和滑动窗口叠加编码(SWSC)以及作为高级连接技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
同时,在人类生成并消费信息的以人类为中心的连接网络中,因特网已经演进成物联网(IoT)网络,该IoT网络在诸如物体的分布式组件之间交换信息。通过与云服务器的连接将IoT技术与大数据处理技术组合的万物互联(IoE)技术也正在兴起。为了实现IoT,需要诸如感测技术、有线/无线通信和网络基础设施、服务接口技术及安全技术的技术要素,使得近年来,已经研究了诸如传感器网络、机器到机器(M2M)和机器类型通信(MTC)的技术以在物体之间进行连接。在IoT环境中,能够提供智能互联网技术(IT)服务,该智能IT服务收集并分析从所联网的物体生成的数据以在人类生活中创造新价值。通过现有信息技术(IT)和各个行业的融合和混合,能够将IoT应用于诸如智能家居、智能建筑、智能城市、智能汽车或联网汽车、智能电网、医疗保健、智能家电和高级医疗服务的领域。
因此,已经进行了各种尝试以将5G通信***应用于IoT网络。例如,诸如传感器网络、机器到机器(M2M)和机器类型通信(MTC)的技术是通过诸如波束成形、MIMO和阵列天线的技术来实现的。作为上述大数据处理技术的云RAN的应用是5G技术和IoT技术的融合的示例。通常,移动通信***被开发以在确保用户的活动的同时提供语音服务。
然而,移动通信***不仅在逐渐扩展语音服务而且还扩展数据服务,并且现在已经发展到提供高速数据服务的程度。然而,在当前正在提供服务的移动通信***中,由于资源短缺现象和用户的高速服务需求,需要更高级的移动通信***。
发明内容
技术问题
本公开的实施例提供一种用于在无线通信***中由终端向基站重复地发送物理上行链路共享信道(PUSCH)的方法及其终端。
技术方案
根据本公开的实施例,一种用于在无线通信***中由终端向基站发送物理上行链路共享信道(PUSCH)的方法可以包括:从基站接收包括与半静态上行链路符号、灵活符号和下行链路符号有关的配置信息的无线电资源控制(RRC)信号;接收用于调度包括至少一个PUSCH重复的PUSCH传输的物理下行链路控制信道(PDCCH);确定用于PUSCH重复的传输的所需数目的符号中的至少一个是否对应于在其中不允许发送PUSCH重复的情况;以及基于关于是否对应于在其中不允许发送PUSCH重复的情况的确定,将PUSCH重复发送到基站。
根据一个方面,在其中不允许发送PUSCH重复的情况可以包括符号中的至少一个是通过配置信息被指定为半静态下行链路符号的符号的情况。
根据一个方面,PUSCH重复的发送可以包括在从用于PUSCH重复的传输的所需数目的符号当中排除在其中不允许发送PUSCH重复的至少一个符号之后的剩余的符号中发送PUSCH重复。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个被定位在时隙边界之前并且符号中的至少一个被定位在时隙边界之后的情况。
根据一个方面,PUSCH重复的发送可以包括在其中允许发送PUSCH重复的符号当中的最快符号中发送PUSCH重复。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个对应于继半静态下行链路符号之后的阈值数目或更少的灵活符号的情况。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个被包括在同步信号(SS)/物理广播信道(PBCH)块传输资源中的情况。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个是继同步信号(SS)/物理广播信道(PBCH)块传输资源之后的阈值数目或更少的灵活符号的情况。
根据一个方面,该方法进一步可以包括通过RRC信号从基站接收关于在其中不允许发送PUSCH重复的至少一个符号的信息,其中,在其中不允许发送PUSCH重复的情况进一步可以包括其中关于来自PDCCH的至少一个符号的信息指示不允许发送PUSCH重复的情况。
根据一个方面,响应于对具有与包括PUSCH重复的PUSCH相同的HARQ过程编号(HPN)的PUSCH的调度而挂起PUSCH重复的发送。
根据一个方面,PDCCH可以将从0到13的值指示为PUSCH传输的起始符号位置(S),并且将从1到14的值指示为用于传输的PUSCH的长度(L),并且S和L的和可以具有从1到27的值。
根据本公开的另一实施例,一种在无线通信***中向基站发送物理上行链路共享信道(PUSCH)的终端包括:通信模块,该通信模块被配置成接收包括与半静态上行链路符号、灵活符号和下行链路符号有关的配置信息的无线电资源控制(RRC)信号,接收用于调度包括至少一个PUSCH重复的PUSCH传输的物理下行链路控制信道(PDCCH),或者向基站发送PUSCH重复;存储器,该存储器被配置成存储由终端使用的控制程序和数据;以及处理器,该处理器被配置成确定用于PUSCH重复的传输的所需数目的符号中的至少一个是否对应于在其中不允许发送PUSCH重复的情况,并且基于关于是否对应于在其中不允许发送PUSCH重复的情况的确定,控制PUSCH重复的传输。
根据一个方面,在其中不允许发送PUSCH重复的情况可以包括符号中的至少一个是通过配置信息被指定为半静态下行链路符号的符号的情况。
根据一个方面,处理器可以控制PUSCH重复的传输,使得在从用于PUSCH重复的传输的所需数目的符号当中排除在其中不允许发送PUSCH重复的至少一个符号之后的剩余的符号中发送PUSCH重复。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个被定位在时隙边界之前并且符号中的至少一个被定位在时隙边界之后的情况。
根据一个方面,处理器可以控制PUSCH重复的传输,使得在其中允许发送PUSCH重复的符号当中的最快符号中发送PUSCH重复。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个对应于继半静态下行链路符号之后的阈值数目或更少的灵活符号的情况。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个被包括在同步信号(SS)/物理广播信道(PBCH)块传输资源中的情况。
根据一个方面,在其中不允许发送PUSCH重复的情况进一步可以包括符号中的至少一个是继同步信号(SS)/物理广播信道(PBCH)块传输资源之后的阈值数目或更少的灵活符号的情况。
根据一个方面,通信模块进一步被配置成通过RRC信号从基站接收关于在其中不允许发送PUSCH重复的至少一个符号的信息,并且在其中不允许发送PUSCH重复的情况进一步可以包括其中关于来自PDCCH的至少一个符号的信息指示不允许发送PUSCH重复的情况。
根据一个方面,处理器可以控制PUSCH重复的传输,使得响应于对具有与包括PUSCH重复的PUSCH相同的HARQ过程编号(HPN)的PUSCH的调度而挂起PUSCH重复的传输。
根据一个方面,PDCCH可以将从0到13的值指示为PUSCH传输的起始符号位置(S),并且将从1到14的值指示为用于传输的PUSCH的长度(L),并且S和L的和可以具有从1到27的值。
有益效果
根据本公开的实施例,在用于在无线通信***中由终端向基站重复地发送PUSCH的方法中,允许终端尽可能迅速地向基站重复地发送PUSCH,由此能够实现在5G无线通信***中提供低延迟和高可靠***的目标性能。
可从本公开获得的有益效果不限于以上提及的有益效果,并且本文未提及的其他有益效果将由本公开所属领域的技术人员从以下描述中清楚地理解。
附图说明
图1图示无线通信***中使用的无线帧结构的示例。
图2图示无线通信***中的下行链路(DL)/上行链路(UL)时隙结构的示例。
图3是用于说明在3GPP***中使用的物理信道和使用该物理信道的典型信号传输方法的图。
图4a和图4b图示在3GPP NR***中用于初始小区接入的SS/PBCH块。
图5a和图5b图示用于在3GPP NR***中发送控制信息和控制信道的过程。
图6图示在3GPP NR***中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET)。
图7图示用于在3GPP NR***中配置PDCCH搜索空间的方法。
图8是图示载波聚合的概念图。
图9是用于说明信号载波通信和多载波通信的图。
图10是示出其中应用跨载波调度技术的示例的图。
图11是示出根据本公开的实施例的UE和基站的配置的框图。
图12是图示根据实施例的用于在无线通信***中由终端向基站发送PUSCH重复的方法的流程图。
图13图示下行链路符号、时隙边界和PUSCH重复之间的关系。
图14图示PUSCH重复与继半静态DL符号之后的阈值数目或更少的灵活符号之间的关系。
图15图示用于终止PUSCH重复传输的条件。
图16图示用于对PUSCH重复次数进行计数的方法。
图17图示超过时隙边界的PUSCH传输。
图18图示根据本公开的一个方面的第一PUSCH传输方法。
图19图示根据本公开的一个方面的第二PUSCH传输方法。
图20图示根据本公开的一个方面的第三PUSCH传输方法。
图21图示根据本公开的一个方面的第四PUSCH传输方法。
图22图示关于在其中不能发送PUSCH重复的符号的信息的传输的实施例。
图23图示用于PUSCH的覆盖范围扩展和迅速解码的PUSCH重复传输。
图24图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的复用或捎带。
图25图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的UCI传输。
图26图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中,已省略了被省略的DM-RS的假定下的UCI传输。
图27图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中,用于相邻DM-RS-发送PUSCH重复的传输的UCI复用的第一方法。
图28图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中,用于相邻DM-RS-发送PUSCH重复的传输的UCI复用的第三方法。
图29图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的UCI复用的省略。
图30图示在具有时隙内跳变配置的PUSCH在至少一个符号中重叠的情况下的UCI传输。
图31图示超过时隙边界重复地发送PUSCH重复的情况。
具体实施方式
说明书中使用的术语通过考虑本发明中的功能尽可能采纳当前广泛地使用的通用术语,但是可以根据本领域的技术人员的意图、习惯和新技术的出现来改变这些术语。另外,在特定情况下,存在由申请人任意地选择的术语,并且在这种情况下,其含义将在本发明的对应描述部分中描述。因此,意图是揭示说明书中使用的术语不应该仅基于该术语的名称来分析,而是应该基于整个说明书中术语和内容的实质含义来分析。
在整个说明书和随后的权利要求书中,当描述了一个元件“连接”到另一元件时,该元件可以“直接连接”到另一元件或通过第三元件“电连接”到另一元件。另外,除非明确地相反描述,否则词语“包括”将被理解成暗示包括所述元件,而不暗示排除任何其它元件。此外,在一些示例性实施例中,诸如基于特定阈值的“大于或等于”或“小于或等于”的限制分别可以用“大于”或“小于”适当地替换。
可以在各种无线接入***中使用以下技术:诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波-FDMA(SC-FDMA)等。CDMA可以由诸如通用陆地无线电接入(UTRA)或CDMA2000的无线技术来实现。TDMA可以由诸如全球移动通信***(GSM)/通用分组无线电服务(GPRS)/增强型数据速率GSM演进(EDGE)的无线技术来实现。OFDMA可以由诸如IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、演进型UTRA(E-UTRA)等的无线技术来实现。UTRA是通用移动电信***(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用演进型UMTS陆地无线电接入(E-UTRA)的演进型UMTS(E-UMTS)的一部分,并且LTE高级(A)是3GPP LTE的演进版本。3GPP新无线电(NR)是与LTE/LTE-A分开设计的***,并且是用于支持作为IMT-2020的要求的增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类型通信(mMTC)服务的***。为了清楚的描述,主要描述了3GPP NR,但是本发明的技术思想不限于此。
除非在本说明书中另外指定,否则基站可以是指如3GPP NR中所定义的下一代节点B(gNB)。此外,除非另有说明,否则终端可以指用户设备(UE)。在下文中,为了促进对描述的理解,将每个内容单独地划分成实施例并且进行描述,但是实施例中的每一个可以彼此结合地使用。在本公开中,UE的配置可以指示由基站的配置。具体地,基站可以向UE发送信道或信号以配置UE的操作或无线通信***中使用的参数值。
图1图示无线通信***中使用的无线帧结构的示例。
参考图1,3GPP NR***中使用的无线帧(或无线电帧)可以具有10ms(ΔfmaxNf/100)*Tc)的长度。此外,无线帧包括大小相等的10个子帧(SF)。在此,Δfmax=480*103Hz,Nf=4096,Tc=1/(Δfref*Nf,ref),Δfref=15*103Hz,并且Nf,ref=2048。可以将从0至9的编号分别分配给一个无线帧内的10个子帧。每个子帧的长度为1ms并且可以根据子载波间隔包括一个或多个时隙。更具体地,在3GPP NR***中,可以使用的子载波间隔是15*2μkHz,并且μ能够具有μ=0、1、2、3、4的值作为子载波间隔配置。也就是说,可以将15kHz、30kHz、60kHz、120kHz和240kHz用于子载波间隔。长度为1ms的一个子帧可以包括2μ个时隙。在这种情况下,每个时隙的长度为2ms。可以将从0至2μ-1的编号分别分配给一个子帧内的2μ个时隙。此外,可以将从0至10*2μ-1的编号分别分配给一个无线帧内的时隙。可以通过无线帧编号(也被称为无线帧索引)、子帧编号(也被称为子帧索引)和时隙编号(或时隙索引)中的至少一个来区分时间资源。
图2图示无线通信***中的下行链路(DL)/上行链路(UL)时隙结构的示例。特别地,图2示出3GPP NR***的资源网格的结构。
每天线端口有一个资源网格。参考图2,时隙在时域中包括多个正交频分复用(OFDM)符号并且在频域中包括多个资源块(RB)。一个OFDM符号也是指一个符号区间。除非另外指定,否则可以将OFDM符号简称为符号。一个RB包括频域中的12个连续子载波。参考图2,从每个时隙发送的信号可以由包括Nsize,μ grid,x*NRB sc个子载波和Nslot symb个OFDM符号的资源网格来表示。这里,当信号是DL信号时x=DL,而当信号是UL信号时x=UL。Nsize,μ grid,x表示根据子载波间隔成分μ的资源块(RB)的数目(x是DL或UL),并且Nslot symb表示时隙中的OFDM符号的数目。NRB sc是构成一个RB的子载波的数目并且NRB sc=12。可以根据多址方案将OFDM符号称为循环移位OFDM(CP-OFDM)符号或离散傅立叶变换扩展OFDM(DFT-s-OFDM)符号。
一个时隙中包括的OFDM符号的数目可以根据循环前缀(CP)的长度而变化。例如,在正常CP的情况下,一个时隙包括14个OFDM符号,但是在扩展CP的情况下,一个时隙可以包括12个OFDM符号。在特定实施例中,只能在60kHz子载波间隔下使用扩展CP。在图2中,为了描述的方便,作为示例一个时隙被配置有14个OFDM符号,但是可以以类似的方式将本公开的实施例应用于具有不同数目的OFDM符号的时隙。参考图2,每个OFDM符号在频域中包括Nsize,μ grid,x*NRB sc个子载波。可以将子载波的类型划分成用于数据传输的数据子载波、用于参考信号的传输的参考信号子载波和保护频带。载波频率也被称为中心频率(fc)。
一个RB可以由频域中的NRB sc(例如,12)个连续子载波定义。为了参考,可以将配置有一个OFDM符号和一个子载波的资源称为资源元素(RE)或音调。因此,一个RB能够被配置有Nslot symb*NRB sc个资源元素。资源网格中的每个资源元素能够由一个时隙中的一对索引(k,l)唯一地定义。k可以是在频域中从0至Nsize,μ grid,x*NRB sc–1被指配的索引,并且l可以是在时域中从0至Nslot symb–1被指配的索引。
为让UE从基站接收信号或向基站发送信号,UE的时间/频率可以与基站的时间/频率同步。这是因为当基站和UE同步时,UE能够确定在正确的时间对DL信号进行解调并且发送UL信号所必需的时间和频率参数。
时分双工(TDD)或不成对频谱中使用的无线电帧的每个符号可以被配置有DL符号、UL符号和灵活符号中的至少一个。在频分双工(FDD)或成对频谱中用作DL载波的无线电帧可以被配置有DL符号或灵活符号,而用作UL载波的无线电帧可以被配置有UL符号或灵活符号。在DL符号中,DL传输是可能的,但是UL传输是不可能的。在UL符号中,UL传输是可能的,但是DL传输是不可能的。可以根据信号将灵活符号确定为被用作DL或UL。
关于每个符号的类型的信息,即表示DL符号、UL符号和灵活符号中的任何一个的信息,可以配置有小区特定或公共的无线电资源控制(RRC)信号。此外,关于每个符号的类型的信息可以附加地配置有UE特定或专用RRC信号。基站通过使用小区特定RRC信号来通知i)小区特定的时隙配置的周期、ii)从小区特定的时隙配置的周期的开头起仅具有DL符号的时隙的数目、iii)从紧接在仅具有DL符号的时隙之后的时隙的第一符号起的DL符号的数目、iv)从小区特定的时隙配置的周期的结束起仅具有UL符号的时隙的数目、以及v)从紧接在仅具有UL符号的时隙之前的时隙的最后符号起的UL符号的数目。这里,未配置有UL符号和DL符号中的任何一个的符号是灵活符号。
当关于符号类型的信息配置有UE特定的RRC信号时,基站可以以小区特定的RRC信号用信号通知灵活符号是DL符号还是UL符号。在这种情况下,UE特定的RRC信号不能将配置有小区特定的RRC信号的DL符号或UL符号改变成另一符号类型。UE特定的RRC信号可以用信号通知每个时隙的对应时隙的Nslot symb个符号当中的DL符号的数目以及对应时隙的Nslot symb个符号当中的UL符号的数目。在这种情况下,时隙的DL符号可以连续地被配置有时隙的第一符号至第i个符号。此外,时隙的UL符号可以连续地被配置有时隙的第j个符号至最后符号(其中i<j)。在时隙中,未配置有UL符号和DL符号中的任何一个的符号是灵活符号。
图3是用于说明3GPP***(例如,NR)中使用的物理信道和使用该物理信道的典型信号传输方法的图。
如果UE的电源被打开或者UE驻留在新小区中,则UE执行初始小区搜索(S101)。具体地,UE可以在初始小区搜索中与BS同步。为此,UE可以从基站接收主同步信号(PSS)和辅同步信号(SSS)以与基站同步,并且获得诸如小区ID的信息。此后,UE能够从基站接收物理广播信道并且获得小区中的广播信息。
在初始小区搜索完成后,UE根据物理下行链路控制信道(PDCCH)和PDCCH中的信息来接收物理下行链路共享信道(PDSCH),使得UE能够获得比通过初始小区搜索获得的***信息更具体的***信息(S102)。这里,由UE接收到的***信息是用于UE在无线电资源控制(RRC)中的物理层处适当地操作的小区公共***信息,并且被称为剩余***信息(RSMI)或***信息块(SIB)1。
当UE最初接入基站或者不具有用于信号传输的无线电资源时(当UE处于RRC_IDLE模式时),UE可以对基站执行随机接入过程(操作S103至S106)。首先,UE能够通过物理随机接入信道(PRACH)发送前导(S103)并且通过PDCCH和所对应的PDSCH从基站接收针对前导的响应消息(S104)。当UE接收到有效的随机接入响应消息时,UE通过由通过PDCCH从基站发送的UL许可所指示的物理上行链路共享信道(PUSCH)来向基站发送包括UE的标识符等的数据(S105)。接下来,UE等待PDCCH的接收作为用于冲突解决的基站的指示。如果UE通过UE的标识符成功地接收到PDCCH(S106),则终止随机接入过程。在随机接入过程期间,UE可以获得UE在RRC层中的物理层处适当地操作所必要的UE特定***信息。当UE从RRC层获得UE特定***信息时,UE进入RRC_CONNECTED模式。
RRC层被用于消息生成和管理以在UE与无线电接入网络(RAN)之间进行控制。更具体地,在RRC层中,基站和UE可以执行小区***信息的广播、寻呼消息的递送管理、移动性管理和切换、测量报告及其控制、UE能力管理、以及包括对小区中的所有UE必要的现有管理的存储管理。通常,由于从RRC层发送的信号(在下文中,称为RRC信号)的更新比物理层中的传输/接收周期(即,传输时间间隔,TTI)长,所以RRC信号可以长时间维持不变。
在上述过程之后,UE接收PDCCH/PDSCH(S107)并且发送物理上行链路共享信道(PUSCH)/物理上行链路控制信道(PUCCH)(S108)作为一般UL/DL信号传输过程。特别地,UE可以通过PDCCH来接收下行链路控制信息(DCI)。DCI可以包括针对UE的诸如资源分配信息的控制信息。另外,DCI的格式可以根据预定用途而变化。UE通过UL向基站发送的上行链路控制信息(UCI)包括DL/UL ACK/NACK信号、信道质量指示符(CQI)、预编码矩阵索引(PMI)、秩指示符(RI)等。这里,可以将CQI、PMI和RI包括在信道状态信息(CSI)中。在3GPP NR***中,UE可以通过PUSCH和/或PUCCH来发送诸如上述HARQ-ACK和CSI的控制信息。
图4图示用于3GPP NR***中的初始小区接入的SS/PBCH块。
当电源接通或者想要接入新小区时,UE可以获得与该小区的时间和频率同步并且执行初始小区搜索过程。UE可以在小区搜索过程期间检测小区的物理小区标识Ncell ID。为此,UE可以从基站接收同步信号,例如,主同步信号(PSS)和辅同步信号(SSS),并且与基站同步。在这种情况下,UE能够获得诸如小区标识(ID)的信息。
参考图4a,将更详细地描述同步信号(SS)。能够将同步信号分类为PSS和SSS。PSS可以用于获得时域同步和/或频域同步,诸如OFDM符号同步和时隙同步。SSS能够用于获得帧同步和小区组ID。参考图4a和表2,SS/PBCH块能够在频率轴上被配置有连续的20个RB(=240个子载波),并且能够在时间轴上被配置有连续的4个OFDM符号。在这种情况下,在SS/PBCH块中,通过第56个至第182个子载波,在第一OFDM符号中发送PSS并且在第三OFDM符号中发送SSS。这里,SS/PBCH块的最低子载波索引从0起编号。在发送PSS的第一OFDM符号中,基站不通过剩余子载波,即第0个至第55个子载波和第183个至第239个子载波来发送信号。此外,在发送SSS的第三OFDM符号中,基站不通过第48个至第55个子载波和第183个至第191个子载波来发送信号。基站通过SS/PBCH块中除了以上信号以外的剩余RE来发送物理广播信道(PBCH)。
[表1]
SS允许通过三个PSS和SSS的组合将总共1008个唯一物理层小区ID分组成336个物理层小区标识符组,每个组包括三个唯一标识符,具体地,使得每个物理层小区ID将仅仅是一个物理层小区标识符组的一部分。因此,物理层小区ID Ncell ID=3N(1) ID+N(2) ID能够由指示物理层小区标识符组的范围从0至335的索引N(1) ID和指示物理层小区标识符组中的物理层标识符的范围从0至2的索引N(2) ID唯一地定义。UE可以检测PSS并且识别三个唯一物理层标识符中的一个。此外,UE能够检测SSS并且识别与物理层标识符相关联的336个物理层小区ID中的一个。在这种情况下,PSS的序列dPSS(n)如下。
d PSS(n)=1-2x(m)
m=(n+43N(2)ID)mod 127
0≤n<127
这里,x(i+7)=(x(i+4)+x(i))mod2
并且被给出为[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
此外,SSS的序列dSSS(n)如下。
d SSS(n)=[1-2x 0((n+m 0)mod 127][1-2x i((n+m 1)mod 127]
m 0=15floor(N(1)ID/112)+5N(2)ID
m1=N(1)ID mod 112
0≤n<127
这里,x 0(i+7)=(x 0(i+4)+x 0(i))mod 2,
x 1(i+7)=(x 1(i+1)+x 1(i))mod 2,并且被给出为
[x 0(6)x 0(5)x 0(4)x 0(3)x 0(2)x 0(1)x 0(0)]=[0 0 0 0 0 0 1]
[x 1(6)x 1(5)x 1(4)x 1(3)x 1(2)x 1(1)x1(0)]=[0 0 0 0 0 0 1]。
可以将具有10ms长度的无线电帧划分成具有5ms长度的两个半帧。参考图4b,将描述在每个半帧中发送SS/PBCH块的时隙。发送SS/PBCH块的时隙可以是情况A、B、C、D和E中的任何一种。在情况A中,子载波间隔是15kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况B中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是{4,8,16,20}+28*n。在这种情况下,在3GHz或更低的载波频率下,n=0。此外,在高于3GHz且低于6GHz的载波频率下可以为n=0、1。在情况C中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况D中,子载波间隔是120kHz并且SS/PBCH块的起始时间点是第({4,8,16,20}+28*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8、10、11、12、13、15、16、17、18。在情况E中,子载波间隔是240kHz并且SS/PBCH块的起始时间点是第({8,12,16,20,32,36,40,44}+56*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8。
图5图示在3GPP NR***中发送控制信息和控制信道的过程。参考图5a,基站可以将用无线电网络临时标识符(RNTI)掩码的(例如,异或运算)的循环冗余校验(CRC)添加到控制信息(例如,下行链路控制信息(DCI))(S202)。基站可以用根据每个控制信息的目的/目标确定的RNTI值对CRC进行加扰。由一个或多个UE使用的公共RNTI能够包括***信息RNTI(SI-RNTI)、寻呼RNTI(P-RNTI)、随机接入RNTI(RA-RNTI)和发送功率控制RNTI(TPC-RNTI)中的至少一个。此外,UE特定的RNTI可以包括小区临时RNTI(C-RNTI)和CS-RNTI中的至少一个。此后,基站可以在执行信道编码(例如,极性编译)(S204)之后根据用于PDCCH传输的资源量来执行速率匹配(S206)。此后,基站可以基于以控制信道元素(CCE)为基础的PDCCH结构来复用DCI(S208)。此外,基站可以对经复用的DCI应用诸如加扰、调制(例如,QPSK)、交织等的附加过程(S210),并且然后将DCI映射到要被发送的资源。CCE是用于PDCCH的基本资源单元,并且一个CCE可以包括多个(例如,六个)资源元素组(REG)。一个REG可以被配置有多个(例如12个)RE。可以将用于一个PDCCH的CCE的数目定义为聚合等级。在3GPPNR***中,可以使用1、2、4、8或16的聚合等级。图5b是与CCE聚合等级和PDCCH的复用有关的图,并且图示用于一个PDCCH的CCE聚合等级的类型以及据此在控制区域中发送的CCE。
图6图示在3GPP NR***中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET)。
CORESET是时间-频率资源,在该时间-频率资源中,PDCCH(即用于UE的控制信号)被发送。此外,可以将要稍后描述的搜索空间映射到一个CORESET。因此,UE可以监视被指定为CORESET的时间-频率域而不是监视用于PDCCH接收的所有频带,并且对映射到CORESET的PDCCH进行解码。基站可以向UE针对每个小区配置一个或多个CORESET。CORESET可以在时间轴上被配置有最多三个连续的符号。此外,可以在频率轴上以六个连续的PRB为单位配置CORESET。在图5的实施例中,CORESET#1被配置有连续的PRB,而CORESET#2和CORESET#3被配置有不连续的PRB。CORESET能够位于时隙中的任何符号中。例如,在图5的实施例中,CORESET#1开始于时隙的第一符号,CORESET#2开始于时隙的第五符号,并且CORESET#9开始于时隙的第九符号。
图7图示用于在3GPP NR***中设置PUCCH搜索空间的方法。
为了将PDCCH发送到UE,每个CORESET可以具有至少一个搜索空间。在本公开的实施例中,搜索空间是能够用来发送UE的PDCCH的所有时间-频率资源(在下文中为PDCCH候选)的集合。搜索空间可以包括要求3GPP NR的UE共同搜索的公共搜索空间和要求特定UE搜索的终端特定的搜索空间或UE特定的搜索空间。在公共搜索空间中,UE可以监视被设置为使得属于同一基站的小区中的所有UE共同搜索的PDCCH。此外,可以为每个UE设置UE特定的搜索空间,使得UE在根据UE而不同的搜索空间位置处监视分配给每个UE的PDCCH。在UE特定的搜索空间的情况下,由于可以分配PDCCH的有限控制区域,UE之间的搜索空间可以部分地重叠并被分配。监视PDCCH包括在搜索空间中对PDCCH候选进行盲解码。当盲解码成功时,可以表达为(成功地)检测/接收到PDCCH,而当盲解码失败时,可以表达为未检测到/未接收到或者未成功地检测/接收到PDCCH。
为了说明的方便,用一个或多个UE先前已知的组公共(GC)RNTI被加扰以便向一个或多个UE发送DL控制信息的PDCCH被称为组公共(GC)PDCCH或公共PDCCH。此外,用特定UE已经知道的特定终端的RNTI被加扰以便向特定UE发送UL调度信息或DL调度信息的PDCCH被称为特定UE的PDCCH。可以将公共PDCCH包括在公共搜索空间中,并且可以将UE特定的PDCCH包括在公共搜索空间或UE特定的PDCCH中。
基站可以通过PDCCH向每个UE或UE组用信号通知关于与作为传输信道的寻呼信道(PCH)和下行链路共享信道(DL-SCH)的资源分配有关的信息(即,DL许可)或与上行链路共享信道(UL-SCH)和混合自动重传请求(HARQ)的资源分配有关的信息(即,UL许可)。基站可以通过PDSCH来发送PCH传输块和DL-SCH传输块。基站可以通过PDSCH来发送排除特定控制信息或特定服务数据的数据。此外,UE可以通过PDSCH来接收排除特定控制信息或特定服务数据的数据。
基站可以在PDCCH中包括关于向哪个UE(一个或多个UE)发送PDSCH数据并且该PDSCH数据将如何由所对应的UE接收并解码的信息,并且发送PDCCH。例如,假定在特定的PDCCH上发送的DCI用RNTI“A”被CRC掩码,并且DCI指示PDSCH被分配给无线电资源“B”(例如,频率位置)并且指示传输格式信息“C”(例如,传输块大小、调制方案、编码信息等)。UE使用UE具有的RNTI信息来监视PDCCH。在这种情况下,如果存在使用“A”RNTI对PDCCH执行盲解码的UE,则该UE接收PDCCH,并且通过所接收到的PDCCH的信息来接收由“B”和“C”指示的PDSCH。
表2示出无线通信***中使用的物理上行链路控制信道(PUCCH)的实施例。
[表2]
PUCCH格式 0FDM符号的长度 比特数
0 1-2 ≤2
1 4-14 ≤2
2 1-2 >2
3 4-14 >2
4 4-14 >2
PUCCH可以用于发送以下UL控制信息(UCI)。
-调度请求(SR):用于请求UL UL-SCH资源的信息。
-HARQ-ACK:对PDCCH的响应(指示DL SPS释放)和/或对PDSCH上的DL传输块(TB)的响应。HARQ-ACK指示是否接收到在PDCCH或PDSCH上发送的信息。HARQ-ACK响应包括肯定ACK(简称为ACK)、否定ACK(在下文中为NACK)、不连续传输(DTX)或NACK/DTX。这里,术语HARQ-ACK与HARQ-ACK/NACK和ACK/NACK混合使用。通常,ACK可以由比特值1表示,而NACK可以由比特值0表示。
-信道状态信息(CSI):关于DL信道的反馈信息。UE基于由基站发送的CSI-参考信号(RS)来生成它。多输入多输出(MIMO)相关的反馈信息包括秩指示符(RI)和预编码矩阵指示符(PMI)。能够根据由CSI指示的信息将CSI划分成CSI部分1和CSI部分2。
在3GPP NR***中,可以使用五种PUCCH格式来支持各种服务场景、各种信道环境和帧结构。
PUCCH格式0是能够发送1比特或2比特HARQ-ACK信息或SR的格式。能够通过时间轴上的一个或两个OFDM符号和频率轴上的一个RB来发送PUCCH格式0。当在两个OFDM符号中发送PUCCH格式0时,可以通过不同的RB来发送两个符号上的相同序列。在这种情况下,序列可以是从用于PUCCH格式0的基础序列的循环移位(CS)序列。通过此,UE能够获得频率分集增益。具体地,UE可以根据Mbit比特UCI(Mbit=1或2)来确定循环移位(CS)值mcs。此外,其中长度12的基础序列基于预定CS值mcs被循环移位的序列可以被映射到1个RB的1个OFDM符号和12个RE并且被发送。当可用于UE的循环移位的数目是12并且Mbit=1时,可以将1比特UCI 0和1分别映射到具有循环移位值的差为6的两个循环移位序列。此外,当Mbit=2时,可以将2比特UCI 00、01、11和10分别映射到其中循环移位值的差为3的四个循环移位序列。
PUCCH格式1可以递送1比特或2比特HARQ-ACK信息或SR。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式1。这里,由PUCCH格式1占据的OFDM符号的数目可以是4至14中的一个。更具体地,可以对Mbit=1的UCI进行BPSK调制。UE可以利用正交相移键控(QPSK)对Mbit=2的UCI进行调制。信号是通过将已调制的复数值符号d(0)乘以长度12的序列来获得的。在这种情况下,序列可以是用于PUCCH格式0的基础序列。UE通过时间轴正交覆盖码(OCC)扩展PUCCH格式1被分配到的偶数编号的OFDM符号以发送所获得的信号。PUCCH格式1根据要使用的OCC的长度来确定在一个RB中复用的不同的UE的最大数目。解调参考信号(DMRS)可以用OCC被扩展并且被映射到PUCCH格式1的奇数编号的OFDM符号。
PUCCH格式2可以递送超过2个比特的UCI。可以通过时间轴上的一个或两个OFDM符号和频率轴上的一个或多个RB来发送PUCCH格式2。当在两个OFDM符号中发送PUCCH格式2时,通过两个OFDM符号在不同的RB中发送的序列可以彼此相同。这里,序列可以是多个已调制的复数值符号d(0)、...、d(Msymbol-1)。这里,Msymbol可以是Mbit/2。通过这个,UE可以获得频率分集增益。更具体地,对Mbit个比特UCI(Mbit>2)进行比特级加扰、QPSK调制,并且将其映射到一个或两个OFDM符号的RB。这里,RB的数目可以是1至16中的一个。
PUCCH格式3或PUCCH格式4可以递送超过2个比特的UCI。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式3或PUCCH格式4。由PUCCH格式3或PUCCH格式4占据的OFDM符号的数目可以是4至14中的一个。具体地,UE利用-二进制相移键控(BPSK)或QPSK对Mbit个比特UCI(Mbit>2)进行调制以生成复数值符号d(0)至d(Msymb-1)。这里,当使用π/2-BPSK时,Msymb=Mbit,而当使用QPSK时,Msymb=Mbit/2。UE可以不对PUCCH格式3应用块单位扩展。然而,UE可以使用长度为12的PreDFT-OCC来对一个RB(即,12个子载波)应用块单位扩展,使得PUCCH格式4可以具有两种或四种复用能力。UE对扩展信号执行发送预编码(或DFT预编码)并且将其映射到每个RE以发送扩展信号。
在这种情况下,可以根据由UE发送的UCI的长度和最大编码速率来确定由PUCCH格式2、PUCCH格式3或PUCCH格式4占据的RB的数目。当UE使用PUCCH格式2时,UE可以通过PUCCH一起发送HARQ-ACK信息和CSI信息。当UE可以发送的RB的数目大于PUCCH格式2、PUCCH格式3或PUCCH格式4可以使用的RB的最大数目时,UE可以根据UCI信息的优先级在不发送一些UCI信息的情况下,仅发送剩余的UCI信息。
可以通过RRC信号来配置PUCCH格式1、PUCCH格式3或PUCCH格式4以指示时隙中的跳频。当配置了跳频时,可以用RRC信号配置要跳频的RB的索引。当通过时间轴的N个OFDM符号来发送PUCCH格式1、PUCCH格式3或PUCCH格式4时,第一跳可以具有floor(N/2)个OFDM符号并且第二跳可以具有ceiling(N/2)个OFDM符号。
PUCCH格式1、PUCCH格式3或PUCCH格式4可以被配置成在多个时隙中重复地发送。在这种情况下,可以通过RRC信号来配置重复地发送PUCCH的时隙的数目K。重复地发送的PUCCH必须开始于每个时隙中恒定位置的OFDM符号,并且具有恒定长度。当通过RRC信号将其中UE应该发送PUCCH的时隙的OFDM符号当中的一个OFDM符号指示为DL符号时,UE可以不在对应的时隙中发送PUCCH并且将PUCCH的传输延迟到下一个时隙以发送PUCCH。
同时,在3GPP NR***中,UE可以使用小于或等于载波(或小区)的带宽的带宽来执行传输/接收。为此,UE可以被配置有由载波的带宽的一部分的连续带宽构成的带宽部分(BWP)。根据TDD操作或者在不成对频谱中操作的UE对于一个载波(或小区)可以接收最多四个DL/UL BWP对。此外,UE可以激活一个DL/UL BWP对。根据FDD操作或者在成对频谱中操作的UE可以在下行链路载波(或小区)上接收最多4个DL BWP并且在上行链路载波(或小区)上接收最多4个UL BWP。对于每个载波(或小区)UE可以激活一个DL BWP和UL BWP。UE可能不在除激活的BWP以外的时间-频率资源中接收或发送。可以将激活的BWP称为活动BWP。
基站可以通过下行链路控制信息(DCI)来指示由UE配置的BWP当中的激活的BWP。通过DCI指示的BWP被激活,而其它配置的BWP被停用。在以TDD操作的载波(或小区)中,基站可以在调度PDSCH或PUSCH的DCI中包括指示激活的BWP的带宽部分指示符(BPI),以改变UE的DL/UL BWP对。UE可以接收调度PDSCH或PUSCH的DCI并且可以基于BPI识别激活的DL/ULBWP对。在以FDD操作的下行链路载波(或小区)的情况下,基站可以在调度PDSCH的DCI中包括指示激活的BWP的BPI以改变UE的DL BWP。在以FDD操作的上行链路载波(或小区)的情况下,基站可以在调度PUSCH的DCI中包括指示激活的BWP的BPI以改变UE的UL BWP。
图8是图示载波聚合的概念图。
载波聚合是这样的方法,其中UE使用被配置有UL资源(或分量载波)和/或DL资源(或分量载波)的多个频率块或(在逻辑意义上的)小区作为一个大逻辑频带以便无线通信***使用更宽的频带。一个分量载波也可以被称为称作主小区(PCell)或辅小区(SCell)或主SCell(PScell)的术语。然而,在下文中,为了描述的方便,使用术语“分量载波”。
参考图8,作为3GPP NR***的示例,整个***频带可以包括最多16个分量载波,并且每个分量载波可以具有最多400MHz的带宽。分量载波可以包括一个或多个物理上连续的子载波。尽管在图8中示出了每个分量载波具有相同的带宽,但是这仅仅是示例,并且每个分量载波可以具有不同的带宽。另外,尽管每个分量载波被示出为在频率轴上彼此相邻,但是附图是在逻辑概念上被示出,并且每个分量载波可以物理上彼此相邻,或者可以间隔开。
不同的中心频率可以被用于每个分量载波。另外,可以在物理上相邻的分量载波中使用一个公共中心频率。假定在图8的实施例中所有分量载波是物理上相邻的,则中心频率A可以被用在所有分量载波中。另外,假定各自的分量载波彼此物理上不相邻,则中心频率A和中心频率B能够被用在每个分量载波中。
当通过载波聚合来扩展总***频带时,能够以分量载波为单位来定义用于与每个UE通信的频带。UE A可以使用作为总***频带的100MHz,并且使用所有五个分量载波来执行通信。UE B1~B5能够仅使用20MHz带宽并且使用一个分量载波来执行通信。UE C1和C2分别可以使用40MHz带宽并且使用两个分量载波来执行通信。这两个分量载波可以在逻辑上/物理上相邻或不相邻。UE C1表示使用两个不相邻分量载波的情况,而UE C2表示使用两个相邻分量载波的情况。
图9是用于说明信号载波通信和多载波通信的图。特别地,图9(a)示出单载波子帧结构并且图9(b)示出多载波子帧结构。
参考图9(a),在FDD模式下,一般的无线通信***可以通过一个DL频带和与其相对应的一个UL频带来执行数据传输或接收。在另一特定实施例中,在TDD模式下,无线通信***可以在时域中将无线电帧划分成UL时间单元和DL时间单元,并且通过UL/DL时间单元来执行数据传输或接收。参考图9(b),能够将三个20MHz分量载波(CC)聚合到UL和DL中的每一个中,使得能够支持60MHz的带宽。每个CC可以在频域中彼此相邻或不相邻。图9(b)示出ULCC的带宽和DL CC的带宽相同且对称的情况,但是能够独立地确定每个CC的带宽。此外,具有不同数目的UL CC和DL CC的不对称载波聚合是可能的。可以将通过RRC分配/配置给特定UE的DL/UL CC称作特定UE的服务DL/UL CC。
基站可以通过激活UE的服务CC中的一些或全部或者停用一些CC来执行与UE的通信。基站能够改变要激活/停用的CC,并且改变要激活/停用的CC的数目。如果基站将对于UE可用的CC分配为小区特定的或UE特定的,则除非针对UE的CC分配被完全重新配置或者UE被切换,否则所分配的CC中的至少一个不会被停用。未由UE停用的一个CC被称作为主CC(PCC)或主小区(PCell),而基站能够自由地激活/停用的CC被称作辅CC(SCC)或辅小区(SCell)。
同时,3GPP NR使用小区的概念来管理无线电资源。小区被定义为DL资源和UL资源的组合,即,DL CC和UL CC的组合。小区可以被单独配置有DL资源,或者可以被配置有DL资源和UL资源的组合。当支持载波聚合时,DL资源(或DL CC)的载波频率与UL资源(或UL CC)的载波频率之间的链接可以由***信息来指示。载波频率是指每个小区或CC的中心频率。与PCC相对应的小区被称为PCell,而与SCC相对应的小区被称为SCell。DL中与PCell相对应的载波是DL PCC,而UL中与PCell相对应的载波是UL PCC。类似地,DL中与SCell相对应的载波是DL SCC,而UL中与SCell相对应的载波是UL SCC。根据UE能力,服务小区可以被配置有一个PCell和零个或更多个SCell。在处于RRC_CONNECTED状态但未配置用于载波聚合或者不支持载波聚合的UE的情况下,只有一个服务小区仅配置有PCell。
如上所述,载波聚合中使用的术语“小区”与指通过一个基站或一个天线组来提供通信服务的某个地理区域的术语“小区”区分开。也就是说,还可以将一个分量载波称为调度小区、被调度的小区、主小区(PCell)、辅小区(SCell)或主SCell(PScell)。然而,为了区分表示某个地理区域的小区和载波聚合的小区,在本公开中,将载波聚合的小区称为CC,并且将地理区域的小区称为小区。
图10是示出其中应用跨载波调度技术的示例的图。当设置跨载波调度时,通过第一CC发送的控制信道可以使用载波指示符字段(CIF)来调度通过第一CC或第二CC发送的数据信道。CIF被包括在DCI中。换句话说,设置调度小区,并且在该调度小区的PDCCH区域中发送的DL许可/UL许可调度被调度的小区的PDSCH/PUSCH。也就是说,在调度小区的PDCCH区域中存在用于多个分量载波的搜索区域。PCell基本上可以是调度小区,并且特定SCell可以由上层指定为调度小区。
在图10的实施例中,假定了三个DL CC被合并。这里,假定了DL分量载波#0是DLPCC(或PCell),并且DL分量载波#1和DL分量载波#2是DL SCC(或SCell)。此外,假定了将DLPCC设置为PDCCH监视CC。当未通过UE特定的(或UE组特定或小区特定)更高层信令配置跨载波调度时,CIF被禁用,并且每个DL CC能够根据NR PDCCH规则在没有CIF的情况下仅发送用于调度其PDSCH的PDCCH(非跨载波调度、自载波调度)。同时,如果通过UE特定的(或UE组特定或小区特定)更高层信令配置了跨载波调度,则CIF被启用,并且特定CC(例如,DL PCC)可以使用CIF来不仅发送用于调度DL CC A的PDSCH的PDCCH而且还发送用于调度另一CC的PDSCH的PDCCH(跨载波调度)。另一方面,在另一DL CC中不发送PDCCH。因此,UE监视不包括CIF的PDCCH以根据是否为UE配置了跨载波调度来接收自载波调度的PDSCH,或者监视包括CIF的PDCCH以接收跨载波调度的PDSCH。
另一方面,图9和图10图示3GPP LTE-A***的子帧结构,并且可以将相同或类似的配置应用于3GPP NR***。然而,在3GPP NR***中,图9和图10的子帧可以用时隙替换。
图11是示出根据本公开的实施例的UE和基站的配置的框图。在本公开的实施例中,UE可以利用被保证为便携且移动的各种类型的无线通信装置或计算装置来实现。可以将UE称为用户设备(UE)、站(STA)、移动订户(MS)等。此外,在本公开的实施例中,基站控制并管理与服务区域相对应的小区(例如,宏小区、毫微微小区、微微小区等),并且执行信号传输、信道指定、信道监视、自我诊断、中继等的功能。可以将基站称为下一代节点B(gNB)或接入点(AP)。
如附图中所示,根据本公开的实施例的UE 100可以包括处理器110、通信模块120、存储器130、用户接口140和显示单元150。
首先,处理器110可以在UE 100内执行各种指令或过程并处理数据。此外,处理器110可以控制包括UE 100的每个单元的整个操作,并且可以控制数据在各单元之间的传输/接收。这里,处理器110可以被配置成执行根据本公开中描述的实施例的操作。例如,处理器110可以接收时隙配置信息,基于时隙配置信息确定时隙配置,并且根据所确定的时隙配置来执行通信。
接下来,通信模块120可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块120可以以内部或外部形式包括多个网络接口卡(NIC),诸如蜂窝通信接口卡121和122以及未授权频带通信接口卡123。在附图中,通信模块120被示为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡121可以通过使用移动通信网络与基站200、外部装置和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡121可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡121的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以下频带中依照蜂窝通信标准或协议来独立地与基站200、外部装置和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡122可以通过使用移动通信网络与基站200、外部装置和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡122可以包括使用大于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡122的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以上的频带中依照蜂窝通信标准或协议独立地与基站200、外部装置和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡123通过使用作为未授权频带的第三频带与基站200、外部装置和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器110的指令提供未授权频带通信服务。未授权频带通信接口卡123可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz或5GHz的频带。未授权频带通信接口卡123的至少一个NIC模块可以根据由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或依赖地与基站200、外部装置和服务器中的至少一个执行无线通信。
存储器130存储UE 100中使用的控制程序及用于其的各种数据。这样的控制程序可以包括与基站200、外部装置和服务器当中的至少一个执行无线通信所需要的规定程序。
接下来,用户接口140包括UE 100中提供的各种输入/输出手段。换句话说,用户接口140可以使用各种输入手段来接收用户输入,并且处理器110可以基于所接收到的用户输入控制UE 100。此外,用户接口140可以使用各种输出手段来基于来自处理器110的指令执行输出。
接下来,显示单元150在显示屏幕上输出各种图像。显示单元150可以基于来自处理器110的控制指令输出各种显示对象,诸如由处理器110执行的内容或用户界面。
此外,根据本公开的实施例的基站200可以包括处理器210、通信模块220和存储器230。
首先,处理器210可以执行各种指令或程序,并且处理基站200的内部数据。此外,处理器210可以控制基站200中的各单元的整个操作,并且控制数据在各单元之间的传输和接收。这里,处理器210可以被配置成执行根据本公开中描述的实施例的操作。例如,处理器210可以用信号通知时隙配置并且根据经用信号通知的时隙配置来执行通信。
接下来,通信模块220可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块120可以以内部或外部形式包括多个网络接口卡,诸如蜂窝通信接口卡221和222以及未授权频带通信接口卡223。在附图中,通信模块220被示出为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡221可以通过使用移动通信网络与基站100、外部装置和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡221可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡221的至少一个NIC模块可以在由所对应的NIC模块支持的小于6GHz的频带中依照蜂窝通信标准或协议独立地与基站100、外部装置和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡222可以通过使用移动通信网络与基站100、外部装置和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡222可以包括使用6GHz或更高的频带的至少一个NIC模块。蜂窝通信接口卡222的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz或更高的频带中依照蜂窝通信标准或协议独立地与基站100、外部装置和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡223通过使用作为未授权频带的第三频带与基站100、外部装置和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器210的指令提供未授权频带通信服务。未授权频带通信接口卡223可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz或5GHz的频带。未授权频带通信接口卡223的至少一个NIC模块可以依照由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或依赖地与基站100、外部装置和服务器中的至少一个执行无线通信。
图11是图示根据本公开的实施例的UE 100和基站200的框图,并且单独地示出的框是装置的逻辑上划分的元件。因此,可以根据装置的设计将装置的前述元件安装在单个芯片或多个芯片中。此外,可以在UE 100中选择性地提供UE 100的配置的一部分,例如,用户接口140、显示单元150等。此外,必要时可以在基站200中附加地提供用户接口140、显示单元150等。
SMTC中的SSB接收
要由本公开解决的说明性问题涉及在同步信号块(SSB)测量时间配置(SMTC)中接收SSB。此实施例的UE对应于图11的UE 100。因此,此实施例中的UE的每个操作可以由UE100的处理器110或通信模块120执行。此实施例的基站对应于图11的基站200。因此,此实施例中的基站的每个操作可以由基站200的处理器210或通信模块220执行。
当将SSB完全包括在活动带宽部分中时,要求UE能够在没有测量间隙的情况下执行测量。在频率范围FR2上或者当测量信号的子载波间隔与PDSCH/PDCCH的子载波间隔不同时,调度灵活性可能存在限制。
具体地,当在频率范围FR1上测量信号的子载波间隔与PDSCH/PDCCH的子载波间隔相同时,调度灵活性没有限制。当在频率范围FR1上测量信号的子载波间隔与PDSCH/PDCCH的子载波间隔不同时,调度灵活性可能存在如下限制。首先,当UE能够接收具有不同子载波间隔的SSB与数据信号时(即,当UE支持simultaneousRxDataSSB-DiffNumerology时),调度可用性没有限制。另一方面,当UE不能接收具有不同子载波间隔的SSB与数据信号时(即,当UE不支持simultaneousRxDataSSB-DiffNumerology时),对UE来说调度可用性存在限制。在这种情况下,以下调度可用性限制被应用于SS-RSRP/RSRQ/SINR测量。
1)如果启用了deriveSSB_IndexFromCell,则UE不预期在SMTC窗口内的连续SSB符号中以及在紧接在连续SSB符号之前和紧接在其之后的一个符号中接收PDCCH/PDSCH或发送PUCCH/PUSCH。
2)如果禁用了deriveSSB_IndexFromCell,则UE不预期在SMTC窗口内的所有符号中接收PDCCH/PDSCH或发送PUCCH/PUSCH。
这里,deriveSSB_IndexFromCell指示UE是否能够使用具有相同的SSB频率和子载波间隔的小区的定时来导出针对所指示的SSB频率和子载波间隔的小区的SSB索引。
在频率范围FR2上,以下调度可用性限制被应用于SS-RSRP/SINR测量。
1)UE不预期在SMTC窗口内的连续SSB符号中以及在紧接在连续SSB符号之前和紧接在其之后的一个符号中接收PDCCH/PDSCH或发送PUCCH/PUSCH。
在频率范围FR2上,以下调度可用性限制被应用于SS-RSRQ测量。
1)UE不预期在SMTC窗口内的连续SSB符号、RSSI测量符号以及紧接在连续SSB/RSSI符号之前和紧接在其之后的一个符号中接收PDCCH/PDSCH或发送PUCCH/PUSCH。
在以上描述中,当经由更高层配置smtc2时,SMTC窗口遵循smtc2,否则,SMTC窗口遵循smtc1。
要由本公开解决的问题是当UE接收测量信号的调度可用性存在限制时依照调度可用性限制来确定用于重复地发送PUCCH的时隙。更具体地,当UE被配置成重复地发送PUCCH k次时,UE将确定要用于重复地发送PUCCH的k个时隙。
假定了UE被配置有通过对两个或更多个小区进行组合来执行传输的载波聚合或双连接性。也假定了UE被配置有两个小区。以下描述可以适用于UE被配置有两个或更多个小区的情况。两个小区中的一个被称为“Pcell”。Pcell对应于UE在其中发送PUCCH的小区。两个小区中的另一个被称为“Scell”。Scell对应UE在其中不发送PUCCH的小区。可以为Scell配置测量信号。
可以经由更高层为UE配置MeasObjectNR信息元素(IE)。MeasObjectNR IE包括用于频率内/频率间测量的信息。MeasObjectNR IE中包括的ssbFrequency指示SSB的频率,ssbFrequencySpacing指示SSB的子载波间隔,并且ssb-ToMeasure指示要测量的SSB的时域配置信息。MeasObjectNR IE中包括的smtc1或smtc2指示SMTC窗口的配置。
根据本公开的实施例,当UE被配置成在K个时隙中重复地发送PUCCH时,用于确定用于发送PUCCH的K个时隙的方法如下。根据第一方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)重叠时,UE不将该时隙包括在用于发送PUCCH的K个时隙中。根据第二方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)和紧接在测量信号之后的一个符号重叠时,UE不将该时隙包括在用于发送PUCCH的K个时隙中。根据第三方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)和紧接在测量信号之后或之前的一个符号重叠时,UE不将该时隙包括在用于发送PUCCH的K个时隙中。附加地,以上操作仅在调度可用性存在限制时才适用。
根据本公开的另一实施例,当UE被配置成在K个时隙中重复地发送PUCCH并且确定用于发送PUCCH的K个时隙时,SMTC窗口内的PUCCH传输如下。根据第一方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)和紧接在测量信号之后的一个符号重叠时,UE不在该时隙中发送PUCCH。根据第二方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)和紧接在测量信号之后的一个符号重叠时,UE不在该时隙中发送PUCCH。根据第三方法,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的测量信号(通过MeasObjectNR配置的SSB)和紧接在测量信号之后或紧接在其之前的一个符号重叠时,UE不在该时隙中发送PUCCH。附加地,以上操作仅在调度可用性存在限制时才适用。
要由本公开解决的另一问题是在UE仅具有半双工能力的情形下确定用于重复PUCCH传输的时隙。当UE仅具有半双工能力时,UE不能够同时地执行传输和接收。也就是说,当UE在一个小区中执行传输时,UE不能够在另一小区中执行接收。另外,当UE在一个小区中执行接收时,UE不能够在另一小区中执行传输。因此,UE应该仅在传输和接收当中的一个方向上操作。更具体地,要解决的问题是用于当存在要由UE在Pcell/Scell中接收的测量信号时确定UE在其中发送PUCCH的K个时隙的方法,并且UE被配置成在K个时隙中在Pcell中重复地发送PUCCH。当UE在不考虑要在Pcell/Scell中接收的测量信号的情况下确定用于在Pcell中发送PUCCH的K个时隙时,UE将在Pcell中发送PUCCH并且将在一些时隙中在Pcell/Scell中接收测量信号。该操作对具有全双工能力的UE来说是允许的,但是对具有半双工能力的UE来说是不允许的。因此,UE应该考虑Pcell/Scell的测量信号来确定用于发送PUCCH的时隙。
根据本公开的实施例,在用于由具有半双工能力的UE确定用于重复地发送PUCCH的K个时隙的方法中,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的Pcell/Scell的测量信号重叠时,UE可以从用于重复地发送PUCCH的K个时隙中排除该时隙。
根据本公开的实施例,在用于由具有半双工能力的UE确定用于重复地发送PUCCH的K个时隙的方法中,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的Pcell/Scell的测量信号和紧接在测量信号之后的一个符号重叠时,UE可以从用于重复地发送PUCCH的K个时隙中排除该时隙。
根据本公开的实施例,在用于由具有半双工能力的UE确定用于重复地发送PUCCH的K个时隙的方法中,当在一个时隙中被分配PUCCH传输的符号与SMTC窗口内的Pcell/Scell的测量信号和紧接在测量信号之后或紧接在其之前的一个符号重叠时,UE可以从用于重复地发送PUCCH的K个时隙中排除该时隙。
这里,测量信号可以包括通过MeasObjectNR配置的SSB。另外,测量信号可以包括通过MeasObjectNR配置的CSI-RS。这里,可以通过MeasObjectNR IE当中的csi-rs-ResourceConfigMobility来配置CSI-RS。
PUSCH重复传输
在正在3GPP NR版本16中开发的增强型超可靠低延迟通信(eURLLC)中,已讨论了用于提供低延迟和高可靠服务的各种技术。特别地,在上行链路情况下,为了减少延迟并且增加可靠性,将支持用于由UE尽可能迅速地向基站重复地发送物理上行链路共享信道(PUSCH)的方案。根据本公开的一个方面,公开了用于由UE尽可能迅速地重复地发送PUSCH的方案。
通常,UE从基站接收PUSCH的调度信息。可以经由例如PDCCH(或DCI)接收PUSCH的调度信息。UE基于所接收到的调度信息经由上行链路发送PUSCH。在这种情况下,UE可以通过使用被包括在DCI中的用于PUSCH传输的时域资源指配(TDRA)和频域资源指配(FDRA)来识别将在其中发送PUSCH的时间-频率资源。在其中发送PUSCH的时间资源包括连续符号,并且一个PUSCH可能无法被调度超过时隙边界。
在3GPP NR版本15中,支持时隙之间的PUSCH的重复传输。首先,可以由基站为UE配置重复传输次数。假定为UE配置的重复传输次数的值是K。当指示UE在时隙n中接收用于调度PUSCH的PDCCH(或DCI)并且在时隙n+k中发送PUSCH时,UE可以在从时隙n+k起的K个连续时隙中发送PUSCH。也就是说,UE可以在时隙n+k、时隙n+k+1、…和时隙n+k+K-1中发送PUSCH。另外,在每个时隙中发送PUSCH的时间和频率资源与通过DCI所指示的相同。也就是说,可以在时隙中的相同符号和相同PRB中发送PUSCH。在频域中,可以为UE配置跳频以获取分集增益。可以将跳频配置为用于在时隙中执行跳频的时隙内跳频和用于对于每个时隙执行跳频的时隙间跳频。当为UE配置时隙内跳频时,UE在时域中的每个时隙中将PUSCH一分为二,在调度的PRB中发送一半,并且在通过将偏移值加到调度的PRB所获取的PRB中发送另一半。这里,可以经由更高层为偏移值配置两个值或四个值,并且可以经由DCI指示这些值中的一个。当为UE配置时隙间跳频时,UE可以在其中发送PUSCH的奇数时隙中在调度的PRB中发送PUSCH,而在偶数时隙中在通过将偏移值加到调度的PRB所获得的PRB中发送PUSCH。当UE在时隙中执行重复传输并且将在其中发送PUSCH的符号在特定时隙中被配置为半静态DL符号时,UE在该时隙中不发送PUSCH。不会将未能被发送的PUSCH推迟到另一时隙而是不发送它。
在下面描述为什么版本15中的上述重复传输不适合于eURLLC服务提供的原因。
首先,难以提供高可靠服务。例如,如果一个时隙包括14个符号,并且在符号12和符号13中发送PUSCH,则在下一个时隙中在符号12和符号13中重复地发送PUSCH。在下一个时隙中允许在符号1至11中执行传输,但是却不执行传输,由此难以实现高可靠性。
接下来,难以提供高水平的低延迟服务。例如,假定一个时隙包括14个符号,并且在符号0至13中发送PUSCH以实现高可靠性。PUSCH的最后符号即符号13要被接收,使得基站可以成功地接收PUSCH。因此,发生根据PUSCH的长度增加延迟的问题。
为了解决以上问题,根据本公开的一个方面,公开了一种用于在一个时隙中重复地发送PUSCH的方法。更具体地,UE可以连续地且重复地发送调度的PUSCH。这里,“连续地”发送调度的PUSCH的含义是在紧接在一个PUSCH的传输结束的符号之后的符号中再次发送PUSCH。可以将此方法称为“微时隙级PUSCH重复”,并且可以将上述3GPP NR版本15中的重复方法称为“时隙级PUSCH传输方法”。
微时隙级PUSCH重复传输可以解决时隙级PUSCH重复传输方法的上述问题。
首先,可以提供高可靠服务。例如,如果一个时隙包括14个符号,并且在符号12和符号13中发送PUSCH,则在下一个时隙中在符号1和符号2中重复地发送PUSCH。因此,连续地执行传输,由此可以实现高可靠性。
然而,难以提供高水平的低延迟服务。例如,假定一个时隙包括14个符号,并且在符号0和符号1中发送PUSCH以实现高可靠性。可以在符号2和符号3中再次发送PUSCH,并且可以在符号4和符号5中重复地发送PUSCH,因为在该时隙中执行重复传输。因此,可靠性与在其中发送在一个时隙中的长度为14的PUSCH的情况下的可靠性相同。然而,在这种情况下,基站可以根据信道情形在重复传输中间成功地接收PUSCH,而不是接收到所有重复传输才成功地接收PUSCH。因此,根据情形,由于在第一重复传输结束的符号2之后成功地接收到PUSCH因此可以减少延迟。
要由本公开解决的说明性问题涉及在超过一个时隙的另一时隙中连续地执行微时隙级PUSCH重复传输的情况。如上所述,在微时隙级PUSCH重复传输的情况下,在紧接在其中一个PUSCH传输结束的符号之后的符号中,下一个PUSCH重复传输开始。然而,在以下情形下,可能无法连续地执行传输。
第一情形是当在紧接在PUSCH传输结束的符号之后的符号中发送PUSCH时由PUSCH占用的符号与半静态DL符号重叠的情况。在这种情况下,用于发送PUSCH的符号与半静态DL符号重叠,并且因此可能无法在紧接在重叠符号之后的符号中发送PUSCH。因此,将在另一符号中重复地发送PUSCH。
第二情形是当在紧接在PUSCH传输结束的符号之后的符号中发送PUSCH时PUSCH超过时隙边界的情况。不允许一个PUSCH超过时隙边界,并且因此在另一符号中发送PUSCH。
根据本公开的一个方面,公开了考虑到以上情形的PUSCH重复传输方法。
根据本公开的实施例,当UE被配置成执行微时隙级PUSCH重复传输时,UE在紧接在一个PUSCH传输之后的符号中发送PUSCH。在这种情况下,当PUSCH未能被发送(如上所述,例如,用于发送PUSCH的符号与半静态DL符号重叠,或者超过时隙边界)时,UE可以在可以在其中执行传输的符号当中的最快符号中执行PUSCH传输,或者可以在排除可能无法在其中执行PUSCH重复传输的符号之后的剩余的符号中执行PUSCH重复传输。这里,可以在其中执行传输的符号当中的最快符号对应于例如PUSCH既不与半静态DL符号重叠也不超过时隙边界的情况。
图12是图示根据实施例的用于在无线通信***中由UE向基站重复地发送PUSCH的方法的流程图。图12的基站可以是图11的基站200,并且图12的UE可以是图11的UE。因此,此实施例中的UE的每个操作可以由UE 100的处理器110或通信模块120执行,并且此实施例中的基站的每个操作可以由基站200的处理器210或通信模块220执行。
如图12中指出的,UE从基站接收无线电资源控制(RRC)信号(操作S1200)。RRC信号可以包括与半静态下行链路符号有关的配置信息。配置信息可以将特定符号指定为半静态下行链路符号。
如上所述,基站可以将UE配置成重复地发送PUSCH,例如K次。当UE被配置成重复地发送PUSCH时,在数据方面,也可以重复地发送由PUSCH承载的数据(例如,至少一个传输块(TB))。在本公开中描述的PUSCH的重复传输不意指由于基站的接收失败而由UE对TB的重传。
为了描述的方便,当PUSCH被配置成被重复地发送时,将要重复地发送的PUSCH称为“PUSCH重复”。换句话说,当UE被配置成重复地发送PUSCH例如K次时,UE发送包括K个PUSCH重复的PUSCH。
UE确定用于相应的PUSCH重复的传输的所需数目的符号中的至少一个是否对应于可能无法在其中发送PUSCH重复的情况(操作S1210)。可以将与可能无法在其中发送PUSCH重复的情况相对应的符号称为PUSCH重复的无效符号,并且换句话说,UE可以确定每个PUSCH重复的无效符号。在微时隙级PUSCH重复中,用于PUSCH重复的所需数目的符号是紧接在其中执行先前PUSCH重复传输的符号之后的预定数目的符号。
可能无法在其中发送PUSCH重复的情况包括例如用于PUSCH重复传输的所需数目的符号中的至少一个是通过RRC信号中包括的配置信息被指定为半静态下行链路符号的符号的情况。换句话说,可以将经由RRC信号指示为下行链路符号的符号认为是PUSCH重复的无效符号。根据一个方面,可能无法在其中发送PUSCH的情况还可以包括用于PUSCH重复传输的所需数目的符号中的至少一个被定位在时隙边界之前并且至少一个被定位在时隙边界之后的情况。另外,根据一个方面,UE可以经由RRC信号从基站接收关于可能无法在其中发送PUSCH重复的至少一个符号的信息(操作S1200),并且可能无法在其中发送PUSCH重复的情况可以包括PUSCH重复由关于可能无法在其中发送PUSCH重复的至少一个符号的信息被指示为无法被发送的情况,所述信息是经由RRC信号从用于调度PUSCH的PDCCH接收的。换句话说,UE也可以通过更高层(例如,RRC层)参数来执行针对可能无法在其中发送PUSCH重复的情况的配置。
为了描述的方便,图12在操作S1200中图示在单个阶段中执行经由包括半静态DL符号的配置信息和/或关于可能无法在其中发送PUSCH重复的符号的信息的RRC信号的传输,但是半静态DL符号和可能无法在其中发送PUSCH重复的符号的配置信息的信令时间点可以相同,或者可以分别在不同的时间点处用信号通知半静态DL符号和可能无法在其中发送PUSCH重复的符号的配置信息。
参考图12,当确定了用于每个PUSCH重复传输的所需数目的符号中的至少一个是否对应于可能无法在其中发送PUSCH重复的情况时,UE基于该确定执行每个PUSCH重复传输(操作S1220)。例如,UE可以在排除可能无法在其中发送PUSCH重复的至少一个符号之后的剩余的符号中发送PUSCH重复。或者,UE可以在可以在其中发送PUSCH重复的符号当中的最快符号中发送PUSCH重复。
图13图示下行链路符号、时隙边界和PUSCH重复之间的关系。参考图13,例如,UE被配置成重复地发送微时隙级PUSCH四次,并且经由PDCCH(或DCI)指示以通过从时隙中的第五符号开始的四个符号发送PUSCH。在图13中,在半静态DL/UL配置中,D、U和F分别指示下行链路符号、上行链路符号和灵活符号。根据本公开的实施例,UE可以在时隙中的符号5、符号6、符号7和符号8中发送PUSCH重复,并且可以识别是否可以在紧接后续的符号即符号9、符号10、符号11和符号12中发送PUSCH重复。如果可以发送PUSCH重复(也就是说,例如,如果符号与半静态DL符号不重叠,并且符号不超过时隙边界),则UE可以在符号9、符号10、符号11和符号12中发送PUSCH重复。从下一个符号符号13开始的PUSCH超过时隙边界并且与半静态DL符号重叠,因此可能无法发送所对应的PUSCH。接下来可发送的符号是下一个时隙中的符号3、符号4、符号5和符号6。这些符号是灵活符号,并且因此可以被发送。因此,在所对应的符号中发送第三PUSCH重复。在接下来的符号即符号7、符号8、符号9和符号10中发送第四PUSCH重复。UE已完成PUSCH重复传输四次,并且因此UE不再执行重复传输。
图14图示PUSCH重复与继半静态DL符号之后的阈值数目或更少的灵活符号之间的关系。根据本公开的一个方面,可能无法在预定数目的符号中发送PUSCH重复的情况可以包括用于PUSCH重复传输的所需数目的符号中的至少一个对应于继半静态下行链路符号之后的阈值数目或更少的灵活符号的情况。
更具体地,根据本公开的实施例,当UE被配置成发送微时隙级PUSCH重复时,UE可以在紧接在其中发送一个PUSCH重复的符号之后的符号中发送PUSCH重复。在这种情况下,当PUSCH未能被发送时(例如,当符号与半静态DL符号和紧接后续的X个灵活符号重叠或者超过时隙边界时),UE可以在排除可能无法在其中发送PUSCH重复的符号之后的剩余的符号中发送PUSCH重复,或者可以在可以在其中发送PUSCH传输的符号当中的最快符号中发送PUSCH重复。这里,可以在其中执行传输的符号当中的最快符号对应于PUSCH重复与半静态DL符号不重叠、与紧接在半静态DL符号之后的X个灵活符号不重叠并且不超过时隙边界的情况。参考图14,UE被配置成发送微时隙级PUSCH重复四次,并且经由PDCCH(或DCI)指示,以通过从时隙中的第五符号开始的四个符号发送PUSCH。在图14中,在半静态DL/UL配置中,D、U和F分别指示下行链路符号、上行链路符号和灵活符号。根据本公开的实施例,UE可以在时隙中的符号5、符号6、符号7和符号8中发送PUSCH重复,并且可以识别是否可以在紧随后续的符号即符号9、符号10、符号11和符号12中发送PUSCH重复。如果可以发送PUSCH重复(也就是说,例如,如果符号与半静态DL符号不重叠,与紧接在半静态DL符号之后的X个灵活符号不重叠,并且不超过时隙边界),则UE可以在符号9、符号10、符号11和符号12中发送PUSCH重复。从下一个符号符号13开始的PUSCH重复超过时隙边界并且与半静态DL符号重叠,并且因此可能无法发送所对应的PUSCH重复。图14(a)图示X=1的情况,图14(b)图示X=2的情况。参考图14(a),接下来可发送的符号是下一个时隙中的符号4、符号5、符号6和符号7。这些符号是灵活符号,并且因此可以被发送。因此,在所对应的符号中发送第三PUSCH重复。在接下来的符号即符号8、符号9、符号10和符号11中发送第四PUSCH重复。UE已完成PUSCH重复传输四次,并且因此UE不再执行重复传输。参考图14(b),接下来可发送的符号是下一个时隙中的符号5、符号6、符号7和符号8。这些符号是灵活符号或半静态UL符号,并且因此可以被发送。因此,在所对应的符号中发送第三PUSCH重复。在接下来的符号即符号9、符号10、符号11和符号12中发送第四PUSCH重复。UE已完成PUSCH重复传输四次,并且因此UE不再执行重复传输。
根据本公开的一个方面,可能无法在预定符号中发送PUSCH重复的情况可以包括以下情况中的至少一种:用于PUSCH重复传输的所需数目的符号中的至少一个被包括在同步信号(SS)/物理广播信道(PBCH)中的情况,以及这些符号中的至少一个对应于继SS/PBCH块之后的阈值数目或更少的灵活符号的情况。
更具体地,根据本公开的实施例,当在其中发送PUSCH重复的小区中配置了SS/PBCH块时,或者当在另一小区中配置了用于测量的SS/PBCH块并且将要执行测量时,UE可以以与针对半静态DL符号的方式相同的方式处理与SS/PBCH块相对应的符号。例如,在可能无法在其中发送PUSCH重复的以上实施例中描述的情况,除了包括符号与半静态DL符号重叠、与紧接在半静态DL符号之后的X个灵活符号重叠或者超过时隙边界的情况之外,还可以包括符号与SS/PBCH块重叠并且与紧接在与SS/PBCH块重叠的符号之后的X个灵活符号重叠的情况。
如上所述,根据本公开的实施例,被配置成发送PUSCH K次的UE可以推迟PUSCH重复,直到找到可以在其中发送PUSCH重复K次的符号为止。然而,将PUSCH重复推迟太长的时间间隔不满足用于支持微时隙级PUSCH重复的目的。换句话说,微时隙级PUSCH重复是用于支持上行链路URLLC业务的方法,但是如果PUSCH重复被推迟太长的时间间隔,则推迟已经导致对URLLC服务要求的违背。另外,对于在将PUSCH重复推迟太长的时间间隔之后发送PUSCH重复的操作,基站浪费网络资源,因为所对应的资源可能无法用于另一UE。因此,要由本公开解决的另一问题与用于终止微时隙级PUSCH重复传输的条件有关。
根据本公开的实施例,当对其配置了微时隙级PUSCH重复的UE发送PUSCH重复时,可以在以下条件下终止传输。例如,图11的UE100的处理器110可以被配置成通过通信模块120控制PUSCH重复传输,而当满足以下条件中的至少一个时,处理器110可以控制PUSCH重复被挂起。另外,当满足以下条件中的至少一个时,可以挂起如图12所示的执行PUSCH重复传输的操作(操作S1220)。
图15图示用于终止PUSCH重复传输的条件。
根据第一终止条件,可以响应于对具有与要发送的PUSCH重复的HARQ过程编号(HPN)相同的HPN的PUSCH的调度而挂起PUSCH重复。也就是说,当调度具有与要重复地发送的PUSCH重复的HPN相同的HPN的新PUSCH时,UE可以挂起先前PUSCH重复。更具体地,参考图15(a),当调度了要重复地发送的PUSCH时,“HPN=i”被包括在调度信息中。当用于调度PUSCH的另一PDCCH(或DCI)(DCI格式0_0或0_1)具有与所对应的HPN相同的HPN(HPN=i)或者新数据指示(NDI)被触发时,在所对应的PDCCH之后可以不发送先前PUSCH重复。附加地,由于接收PDCCH并且取消PUSCH重复要求处理时间,所以可能无法取消在PDCCH的最后符号之后的预定时间间隔之前的PUSCH重复,而仅可以取消此后的PUSCH。
根据第二终止条件,当在与在其中发送PUSCH重复的符号相同的符号中调度另一PUSCH时,UE可以不发送PUSCH重复。更具体地,参考图15的(b),可以调度PDCCH以在时域中与先前调度的PUSCH重叠,使得可以终止先前PUSCH重复传输。
根据第三终止条件,当UE接收到针对要重复地发送的PUSCH的显式HARQ-ACK时,UE可以不再发送PUSCH重复。显式HARQ-ACK是由基站通过单独的信道向UE通知是否成功地发送PUSCH的信息。
根据第四终止条件,UE可以在预定时间间隔过去之后不再发送PUSCH重复。例如,如果发送PUSCH重复的URLLC服务的要求包括在1ms内终止传输,则UE可以在1ms之后不再发送PUSCH重复。这里,预定时间间隔可以被配置为诸如1ms的绝对时间,或者可以以时隙为单位(诸如两个时隙)被配置。预定时间间隔是可以由基站配置的值。
图16图示用于对PUSCH重复次数进行计数的方法。本公开的实施例涉及用于由被配置成重复地发送PUSCH K次的UE对重复地发送K次的PUSCH重复次数进行计数的方法。在以上描述中,只有当UE实际上发送PUSCH重复时,要发送的PUSCH重复数目才增加。然而,如上所述,PUSCH延迟可能在太长的时间间隔内发生而不能发送PUSCH K次。为了解决问题,根据本公开的实施例,描述了以下计数规则。
第一计数规则如下。当UE实际上发送PUSCH重复时对重复次数进行计数。另外,当对于Y个符号未能发送PUSCH重复时对重复次数进行计数。如果经计数的PUSCH重复次数超过K,则UE不再发送PUSCH重复。这里,Y可以对应于为PUSCH重复分配的符号的数目。在另一示例中,Y可以对应于一个时隙中包括的符号的数目。在另一示例中,Y可以对应于经由更高层配置的值。图16(a)图示根据第一计数规则获得的PUSCH重复次数。这里,PUSCH重复次数被配置为K(K=4)。另外,假定了Y=5。UE在第一时隙中的最后符号和第二时隙的前四个符号中不发送PUSCH重复,但是因为传输在Y(Y=5)个符号期间已失败,所以将对重复次数进行计数。另外,可以在第二时隙中的符号4、5、6和7中发送最后第四PUSCH重复。
第二计数规则如下。当UE实际上发送PUSCH重复时对重复次数进行计数。另外,当在Z时隙中PUSCH重复甚至一次也无法被发送时对重复次数进行计数。如果经计数的PUSCH重复次数超过K,则UE不再发送PUSCH重复。这里,Z时隙可以对应一个时隙。在另一示例中,Z可以对应于经由更高层配置的值。图16(b)图示根据第二计数规则获得的PUSCH重复次数。这里,PUSCH重复次数被配置为K(K=4)。另外,假定了Z=1。UE在第二时隙中不发送PUSCH重复,但是因为传输在Z(Z=1)个时隙期间已失败,所以将对重复次数进行计数。另外,可以在第三时隙中的符号10、11、12和13中发送最后第四PUSCH重复。
参考标准文档3GPP TS38.213,用于由UE发送上行链路数据的PUSCH可能无法超过时隙边界。也就是说,应该将调度PUSCH的起始符号和最后符号始终定位在同一时隙内。(在PUSCH重复的情况下,可以将起始符号和最后符号定位在不同的时隙中,但是这里,描述排除重复传输的情况的正常PUSCH传输情况。)更具体地,基站通过起始长度指示值(SLIV)向UE通知关于可以在其中发送PUSCH的符号的信息。SLIV可以指示时隙中的起始符号的位置(这里,指示为“S”并且具有0、1、2、…和13当中的值)和长度(这里,指示为“L”并且具有1、2、…和14当中的值)。SLIV具有S+L(S+L=1、2、…和14)的值当中的值。当使用满足S+L>14的值的组合时,可能无法将起始符号和最后符号定位在同一时隙中。例如,如果S=5并且L=10,则起始符号是时隙中的第六符号并且长度对应于10个符号的长度,因此一个符号被定位在下一个时隙中的第一符号中。因此,起始符号和最后符号分别被定位在不同的时隙中。参考3GPP TS38.213,可以根据下面的等式1来获得SLIV。
[等式1]
如果(L-1)≤7则
SLIV=14·(L-1)+S
否则
SLIV=14·(14-L+1)+(14-1-S)
其中0<L≤14-S,并且
为了提供URLLC服务,基站应该向UE分配资源,使得PUSCH传输可以尽可能迅速地开始。另外,为了足够的可靠性,需要使用足够数目的符号。然而,如上所述,由于可能无法调度PUSCH超过时隙边界,所以当在当前时隙中没有足够数目的符号用于上行链路传输时,应该在下一个时隙中调度PUSCH重复传输。此方案不适合于URLLC服务,因为在下一个时隙中执行传输之前发生延迟。解决该问题所需要的方案是使用允许超过时隙边界的调度的SLIV。该方案被称为“多段传输”方案。根据本公开的一个方面,公开了允许超过时隙边界的调度的SLIV设计方法。
当UE接收到需要超过时隙边界(也就是说,S+L>14)的调度的调度信息时,通过SLIV,UE可能无法发送超过时隙边界的PUSCH。因此,参考时隙边界,在与在前时隙相对应的符号中发送第一PUSCH重复,并且可以在与后续时隙相对应的符号中发送第二PUSCH重复。更具体地,在在前时隙中长度为L1(L1=13-S+1)的符号S至符号13(最后符号)中发送第一PUSCH重复,并且在后续时隙中长度为L2的符号0至符号L2-1中发送第二PUSCH重复。这里,L2=L-L1。第一PUSCH重复和第二PUSCH重复的传输可以是同一传输块(TB)重复传输。如果以上符号对应于可能无法经由上行链路发送的符号,则UE可以在排除所对应的符号之后的剩余的符号中发送第一PUSCH重复和第二PUSCH重复。这里,可能无法经由上行链路发送的符号可以是根据半静态DL/UL指配而确定的DL符号、紧接在根据半静态DL/UL指配而确定的DL符号之后的P个灵活符号、与SS/PBCH块相对应的符号以及紧接在与SS/PBCH块相对应的符号之后的P个灵活符号。这里,例如,P可以具有1或2的值。
图17图示超过时隙边界的PUSCH传输。参考图17(a),当调度起始符号(S)为符号6并且长度为14的PUSCH时,可以在第一时隙中长度为8的符号6至符号13中发送第一PUSCH重复,并且可以在第二时隙中长度为6的符号0至符号5中发送第二PUSCH重复。参考图17(b),当可能无法经由上行链路发送第二时隙中的前两个符号时,UE可以不在这两个符号中发送PUSCH重复。因此,可以在第二时隙中从第三符号开始的四个符号中发送第二PUSCH重复。
根据以上方案,当存在可能无法用于上行链路传输的符号时,PUSCH的长度减少了。为了防止减少,在其中不允许上行链路传输的符号重叠的情况下,传输被推迟并在其中不允许上行链路传输的符号之后的允许上行链路传输的符号中执行。例如,参考图17(c),当第二时隙中的前两个符号对应于可能无法经由上行链路发送的符号时,UE可以在所对应的两个符号之后的允许上行链路传输的六个符号中发送第二PUSCH重复。因此,即使PUSCH重复被推迟,也可以维持为PUSCH重复分配的符号的数目,并且因此可以防止PUSCH的接收性能的劣化。
根据本公开的一个方面,SLIV设计方法如下。
根据本公开的实施例,可以将SLIV设计成满足以下条件。起始符号位置(S)可以具有0、1、…和13当中的值,并且整个PUSCH长度(L)可以具有1、2、…和14当中的值。这里,S+L的值可以是从1到27的值,而没有任何单独的限制。用于获得满足该条件的SLIV的等式如下。
-SLIV=S+14*(L-1)或
-SLIV=L-1+14*S
当将SLIV=S+14*(L-1)用作用于获得SLIV的等式时,可以通过在将SLIV除以14(S=SLIV mod 14)之后的余数来获得S,并且可以通过将1加到通过将SLIV除以14所获得的商来获得L(L=floor(SLIV/14)+1)。另外,当将SLIV=L-1+14*S用作用于获得SLIV的等式时,可以通过将1加到通过将SLIV除以14所获得的余数来获得L(L=(SLIV mod 14)+1),并且可以通过通过将SLIV除以14所获得的商来获得S(S=floor(SLIV/14))。
如果根据以上方案确定SLIV,则UE可以执行超过一个时隙的边界的调度。然而,当根据以上方案来执行调度时,可以不执行包括第二时隙的最后符号的调度(这里,参考时隙边界,在前时隙被称作第一时隙,而后续时隙被称作第二时隙)。即使在第二时隙中有可用符号,也使用仅几个符号,由此在频率使用效率方面效率低。解决以上问题的本公开的实施例如下。
起始符号位置(S)可以具有0、1、...和13当中的值,并且整个PUSCH长度(L)可以具有1、2、...和28当中的值。这里,S+L的值应该等于或小于28。在这种情况下,L可以是28(L=28),但是根据SLIV发送的PUSCH是参考时隙边界划分的,因此一个PUSCH重复的长度等于或小于14。用于获得满足以上条件的SLIV的等式如下。
如果(L-1)≤7+14则
SLIV=14*(L-1)+S
否则
SLIV=14*14+14*(28-L+1)+(14-1-S)
其中0<L≤28-S
通常,起始符号位置(S)可以具有0、1、...和B当中的值,并且整个PUSCH长度(L)可以具有1、2、...和A当中的值。这里,S+L的值应该等于或小于A。用于获得满足以上条件的SLIV的等式如下。
如果(L-1)-flOOr((A-(B+1))/2)≤floor(A/2)则
SLIV=(B+1)*(L-1)+S
否则
SLIV=(B+1)*(A-L+A-B)+(B-S)
其中0<L≤A-S
A=14且B=13的情况与等式1中的情况相同,而A=28且B=13的情况与先前实施例中的情况相同。可以将A确定为一个时隙中包括的符号的数目的倍数。例如,当一个时隙中包括的符号的数目是14时,可以将A确定为14、28、42等的值。可以将B确定为通过从一个符号中包括的符号的数目中减去1所获得的值。例如,当一个时隙中包括的符号的数目是14时,可以将B确定为13、27、41等的值。
根据本公开的另一实施例,可以通过将现有等式1中的SLIV当中的长度值乘以一个整数来获得允许超过时隙边界的SLIV。起始符号位置(S)可以具有0、1、...和13当中的值,并且整个PUSCH长度(L)可以具有2、4、6、...和28当中的值。这里,S+L的值应该等于或小于28。用于获得满足以上条件的SLIV的等式如下。这里,可以根据L=2*X来获得L,其中X可以具有1、2、3、...、和14当中的值。根据此方案,根据等式1获得的长度值加倍,并且因此超过时隙边界的调度是允许的。通常,可以根据L=A*X来获得L,其中可以将A确定成具有大于或等于2的自然数当中的值。
如果(X-1)≤7则
SLIV=14*(X-1)+S
否则
SLIV=14*(14-X+1)+(14-1-S)
其中0<X≤14-S
以上方案具有与等式1的SLIV解释方案类似的SLIV解释方案,并且在开销方面也是优越的,因为SLIV由相同数目的比特来表示。
根据本公开的另一实施例,根据等式1,SLIV可以具有的值总共为105(14*15/2)个,包括0、1、...和104。这可以由七个比特表示。0、1、...、和127可以由7个比特表示,并且因此不使用105、106、...、和127的总共23个值。根据本公开的实施例,基站可以通过使用那23个值(SLIV=105至127)来执行超过时隙边界的调度。更具体地,当SLIV具有105、106、...和127当中的值时,起始符号位置(S)和长度(L)中的每一个可以具有预定值。例如,当SLIV=105时,可以确定S和L,诸如S=7且L=14。
通过组合微时隙级PUSCH重复传输方案和多段传输方案,描述了根据另一实施例的PUSCH重复传输方案。
图18图示根据本公开的一个方面的第一PUSCH传输方法。第一PUSCH传输方法如下。参考图18,基站向UE发送PUSCH的第一PUSCH重复的时域资源分配信息(S:起始符号,L:长度)。发送重复次数(K)。UE通过使用所传送的信息来确定在其中发送PUSCH重复的符号。这里,在紧接在第一PUSCH重复之后的符号中连续地发送后续PUSCH重复。当一个PUSCH重复超过时隙边界时,可以参考时隙边界划分所对应的PUSCH重复。另外,当一个PUSCH重复与半静态UL/DL配置中配置的DL符号或SS/PBCH块重叠时,可以在与DL符号不重叠的符号中发送PUSCH重复。附加地,UE可以排除紧接在半静态UL/DL配置中配置的DL符号之后的灵活符号以用于PUSCH重复。参考图18,当将4给出为第一PUSCH重复的起始符号索引,将4给出为长度,并且将5给出为重复次数时,第三PUSCH重复超过时隙边界,因此参考时隙边界划分PUSCH重复。在此方案中,当参考时隙边界划分PUSCH重复时,可能引起一个PUSCH重复具有太少的符号的缺点。根据用于解决问题的本公开的实施例,当PUSCH重复被配置有仅一个符号时,UE可以不发送所对应的PUSCH重复。这是因为当PUSCH重复被配置有仅一个符号时,可能无法在所对应的符号中发送除DM-RS以外的数据。此外,当用于PUSCH重复传输的符号的数目等于或小于要通过PUSCH重复发送的DM-RS符号的数目时,UE可以不发送所对应的PUSCH重复。
图19图示根据本公开的一个方面的第二PUSCH传输方法。第二PUSCH传输方法如下。参考图19,基站向UE发送PUSCH的时域资源分配信息(S:起始符号,L:长度)。发送重复次数(K)。基站识别从起始符号起的L*K个符号是否超过时隙边界。当没有超过时隙边界的符号时,第一PUSCH重复被配置有从起始符号起的L个符号,并且后续K-1个PUSCH重复可以从紧接在第一PUSCH重复之后的符号起连续地开始,并且可以占用L个符号。当存在超过时隙边界的符号时,UE可以通过参考时隙边界划分L*K个符号来将PUSCH重复划分成若干部分。参考图19,当将4给出为第一PUSCH重复的起始符号索引,将4给出为长度,并且将5给出为重复次数时,从起始符号索引4开始的20个符号超过时隙边界,并且因此UE可以参考时隙边界划分那20个符号。因此,可以在图19中发送两个PUSCH重复。
图20图示根据本公开的一个方面的第三PUSCH传输方法。第三PUSCH传输方法如下。参考图20,基站向UE发送PUSCH的第一PUSCH重复的时域资源分配信息(S:起始符号,L:长度)。发送重复次数(K)。UE通过使用所传送的信息来确定在其中发送PUSCH重复的符号。这里,在紧接在第一PUSCH重复之后的符号中连续地发送后续PUSCH重复。当一个PUSCH重复超过时隙边界时,UE不发送所对应的PUSCH重复。附加地,当一个PUSCH重复与半静态UL/DL配置中配置的DL符号或SS/PBCH块重叠时,UE不发送所对应的PUSCH重复。在图20中,第三PUSCH重复与时隙边界重叠并且因此不被发送。
图21图示根据本公开的一个方面的第四PUSCH传输方法。第四PUSCH传输方法如下。参考图21,基站向UE发送PUSCH的第一PUSCH重复的时域资源分配信息(S:起始符号,L:长度)。发送重复次数(K)。UE通过使用所传送的信息来确定在其中发送PUSCH重复的符号。这里,在紧接在第一PUSCH重复之后的符号中连续地发送后续PUSCH重复。当一个PUSCH重复超过时隙边界时,UE参考时隙边界划分分配给所对应的PUSCH重复的符号,并且将经划分的符号包括在同一时隙中的相邻PUSCH重复中。当在同一时隙中没有相邻PUSCH重复时,UE可以在所对应的符号中发送PUSCH重复。在图21中,分配给第三PUSCH重复的符号超过时隙边界。符号被划分成两个符号组,其中前两个符号被包括在先前PUSCH重复中并且后两个符号被包括在后续PUSCH重复中。
图22图示关于可能无法在其中发送PUSCH重复的符号的信息的传输的实施例。参考图22,基站可以附加地发送关于可能无法在其中发送PUSCH重复的符号的信息。UE可以通过使用以上第一至第四传输方法来发送PUSCH重复,其中,当通过由基站发送的信息指定的可能无法在其中送PUSCH重复的符号与被分配有所对应的PUSCH重复的符号重叠时,可以从所对应的PUSCH重复中排除可能无法在其中发送PUSCH重复的符号。或者,当可能无法在其中发送PUSCH重复的符号与被分配有所对应的PUSCH重复的符号重叠时,UE可以不发送所对应的PUSCH重复。可以经由RRC信号为UE配置关于可能无法在其中发送PUSCH重复的符号的信息。另外,经由RRC信号为UE配置可能无法在其中发送PUSCH重复的符号,并且可以经由DCI指示所配置的可能无法在其中发送PUSCH重复的符号当中的可能无法在其中实际上发送PUSCH重复的符号。另外,当基站在为UE配置时域资源指配(TDRA)表时,可以针对该表的条目配置不同的可能无法在其中发送PUSCH重复的符号。经由DCI配置的TDRA表的一个条目被指示给UE,并且可以根据为每个条目配置的可能无法在其中发送PUSCH重复的符号来发送PUSCH重复。
要由本公开解决的另一个问题涉及用于在PUSCH重复传输期间获得传输块(TB)大小的方法。根据TS38.214,TB大小可以与被分配PUSCH的资源的RE数成比例。也就是说,被分配有更多RE的PUSCH可以具有更大的TB大小。然而,如与PUSCH重复有关的先前实施例中描述的,相应的PUSCH重复可以占用的RE的数目可以不同。例如,第一PUSCH重复可以占用两个符号,而第二PUSCH重复可以占用10个符号。在这种情况下,需要用于确定TB大小的参考RE数。
根据本公开的实施例,可以确定TB大小以便使第一PUSCH变得可解码。使用PUSCH重复的原因是为了通过快速解码的成功来减少延迟。因此,重要的是发送可解码的PUSCH。出于此目的,UE可以根据第一PUSCH的RE数来确定TB大小。通常,UE可以参考与冗余版本(RV)值为0的PUSCH重复相对应的最小RE值来确定TB大小。然而,当始终参考第一PUSCH的RE数来确定TB大小时,存在由于未考虑由另一PUSCH占用的RE的数目,所以可能无法确定最佳TB大小的问题。例如,在由第一PUSCH占用的RE的数目大于由第二PUSCH占用的RE的数目的情况下,当参考由第一PUSCH占用的RE的数目来确定TB大小时,由于由第二PUSCH占用的RE的数目较小,所以码率可能增加,由此可能发生性能劣化。
根据用于解决问题的本公开的实施例,如果第一PUSCH重复的RE数小于所有重复RE数的平均值(也就是说,通过将所有PUSCH重复RE数除以重复次数所获得的值),则可以根据第一PUSCH重复RE数来确定TB大小,否则,可以根据所有重复RE数的平均值来确定TB大小。根据用于解决问题的本公开的实施例,如果根据第一PUSCH重复RE数的TB大小小于根据所有重复RE数的TB大小的平均值(即,通过将根据相应的PUSCH RE数的TB大小的和除以重复次数所获得的值),则可以根据第一PUSCH重复RE数来确定TB大小,否则,可以根据根据所有重复RE数的TB大小的平均值来确定TB大小。
PUSCH重复传输和UCI捎带
要由本公开解决的另一个说明性问题与PUSCH重复传输和UCI捎带(或UCI复用)有关。
图23图示用于PUSCH的覆盖范围扩展和迅速解码的PUSCH重复传输。参考图23,当发送PUSCH时,为了PUSCH的覆盖范围扩展和迅速解码,UE可以重复地发送PUSCH。更具体地,对于PUSCH重复传输,PUSCH重复次数可以由基站为UE配置或指示给UE。当UE已接收到用于调度PUSCH传输的DCI时,DCI可以指示由要重复地发送的PUSCH的第一PUSCH重复占用的时间-频率区域。UE可以根据由DCI指示的第一PUSCH重复之后的重复次数重复地发送PUSCH。参考图23(a),UE可以被配置和指示成重复地发送PUSCH两次,并且UE可以根据经由DCI指示的时间-频率资源分配信息来发送第一PUSCH重复(PUSCH rep#0)。另外,可以在第一PUSCH重复(PUSCH rep#0)之后发送第二PUSCH重复(PUSCH rep#1)。可以将用于信道估计的DM-RS包括在每个PUSCH重复中并发送。图23(a)示出针对每个PUSCH重复在第一符号中发送DM-RS的示例。可以在其中发送DM-RS的符号的位置可以由基站配置。在本公开中,为了描述的方便,在DM-RS被配置成定位在PUSCH重复的第一符号中的假定下描述,但是可以将本公开的思想以相同方式应用于DM-RS被配置成定位在不同位置中的情况。
参考图23(b),当重复地发送PUSCH时,UE可以通过从PUSCH重复中省略DM-RS来发送PUSCH重复。要经由上行链路(即,UL-SCH)发送的数据可以与从中省略了DM-RS的资源速率匹配并且可以被发送。在省略DM-RS的情况下,基站可以通过使用另一PUSCH重复的DM-RS来执行信道估计,并且可以通过使用该值来接收经由上行链路发送的数据。通过不发送DM-RS,可以将更多资源用于要经由上行链路(UL-SCH)发送的数据,并且因此可以增加成功地发送PUSCH的概率。
根据本公开的实施例,当UE重复地发送PUSCH时,可以如下确定PUSCH重复是否包括DM-RS。
根据第一方法,基站可以为UE配置包括DM-RS的PUSCH重复周期(数)。更具体地,基站可以将UE配置成每X个PUSCH重复包括DM-RS。在这种情况下,每个时隙中的第一PUSCH重复可以始终包括DM-RS,并且可以将DM-RS包括在从时隙中的第一PUSCH重复起的每X个PUSCH重复中。如果X=2,则UE可以在时隙中的第一PUSCH重复中包括DM-RS并且可以从第二PUSCH中省略DM-RS。UE可以将DM-RS包括在第三PUSCH中并且可以从第四PUSCH重复中省略DM-RS。如果X=3,则UE可以将DM-RS包括在第一PUSCH重复中,并且可以从第二PUSCH重复和第三PUSCH重复中省略DM-RS。UE可以将DM-RS包括在第四PUSCH重复中,并且可以从第五PUSCH重复和第六重复中省略DM-RS。图31图示超过时隙边界重复地发送PUSCH重复的情况。由于每个时隙中的第一PUSCH重复应该始终包括DM-RS,所以第一PUSCH重复(PUSCH rep#0)和第二PUSCH重复(PUSCH rep#1)中的每一个包括DM-RS。如果从第二PUSCH重复应用X=2,则可以从第三PUSCH重复中省略DM-RS,并且可以将DM-RS包括在第四PUSCH重复中。
可能由第一方法引起的缺点是未考虑PUSCH的长度。在第一方法中,当PUSCH的长度改变时,DM-RS符号之间的空间改变。信道估计所需要的DM-RS空间是实际上根据信道环境来确定的,并且因此第一方法不可取。用于解决第一方法中的问题的第二方法是由基站为UE配置符号编号Y作为DM-RS符号之间的空间。UE可以每Y个符号空间布置DM-RS。更具体地,当配置Y时,可以如下确定PUSCH重复是否包括DM-RS。首先,时隙中的第一PUSCH重复应该始终包括DM-RS。当第二PUSCH重复的DM-RS符号与第一PUSCH重复的DM-RS符号之间的空间小于Y个符号时,UE可以从第二PUSCH重复中省略DM-RS。另一方面,当第二PUSCH重复的DM-RS符号与第一PUSCH重复的DM-RS符号之间的空间等于或大于Y个符号时,UE可以将DM-RS包括在第二PUSCH重复中。为了确定是否包括第n PUSCH重复的DM-RS,当最近的在前DM-RS符号与第n PUSCH重复的DM-RS符号之间的空间小于Y个符号时,UE可以从第n PUSCH重复中省略DM-RS。另一方面,当最近的在前DM-RS符号与第n PUSCH重复的DM-RS符号之间的空间等于或大于Y个符号时,UE可以将DM-RS包括在第n PUSCH重复中。根据另一方案,未部分地包括在距DM-RS的Y个符号中而是完全地包括在其中的PUSCH重复可以省略DM-RS符号。或者,当PUSCH重复被部分地包括或根本未包括在距DM-RS的Y个符号内时,所对应的PUSCH重复可以始终包括DM-RS。
图24图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的复用或捎带。参考图24,要由本公开解决的问题涉及用于在UE被配置或指示为使得在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH时复用(或捎带)PUCCH中包括的上行链路控制信息(UCI)并且发送该UCI的方法。参考标准文档3GPP TS38.213,当UE被配置和指示为使得在同一符号中发送PUSCH和PUCCH时,可以复用(或捎带)PUCCH中包括的UCI,其中,可以将UCI被映射到的时间-频率资源定位在紧接在PUSCH的DM-RS之后的符号中。由于将UCI布置在紧接在DM-RS之后的符号中,所以可以增加UCI的可靠性(即,成功地发送UCI的概率)。另外,当存在与一个PUCCH重叠的两个或更多个PUSCH时,UE可以针对重叠PUSCH重复中的每一个执行PUCCH中包括的UCI的复用(或捎带)。然而,尚未确定要用于在由UE发送的PUSCH重复不包括DM-RS符号的情况下由UE发送PUCCH中包括的UCI的时间-频率资源。在本公开中,建议了用于确定用于发送要被复用(或捎带)的UCI的符号的方法。
图25图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的UCI传输。根据本公开的实施例,参考图25,当UE被配置和指示为使得在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH,可以从在从中省略了DM-RS的PUSCH重复中的指定符号开始发送PUCCH中包括的UCI。指定符号的位置可以是PUSCH重复中的第一符号。指定符号的位置可以是PUSCH重复中的最后符号。图25示出UCI被映射到的符号是在第二PUSCH重复(PUSCH rep#1)中的第一符号中。
图26图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中尚未省略被省略的DM-RS的假定下的UCI传输。根据本公开的另一实施例,参考图26,当UE被配置和指示为使得在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH时,DM-RS被从PUSCH重复中省略并且不存在,但是UE可以假定DM-RS存在并且可以将UCI映射在紧接在所对应的DM-RS之后的符号中以发送该UCI。此方案是有利的原因在于包括DM-RS的PUSCH重复与没有DM-RS的PUSCH重复之间的UCI映射可以保持相同。图26示出如果在第二PUSCH重复(PUSCH rep#1)中发送DM-RS,则可以在紧接在要由DM-RS占用的符号之后的符号中发送UCI。
图27图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的针对相邻DM-RS传输PUSCH重复的UCI复用。根据另一实施例,参考图27,当UE被配置和指示为使得在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH时,UE可以通过在相邻PUSCH重复当中的在其中发送DM-RS的PUSCH重复上复用(或捎带)UCI来发送UCI。这里,在其中发送DM-RS的PUSCH重复可以是在同一符号中与PUCCH不重叠的PUSCH重复。UE可以通过将UCI映射到紧接在其中发送DM-RS的PUSCH重复的DM-RS符号之后的符号来发送UCI。根据本公开的实施例,可以根据以下方法中的一种来确定相邻PUSCH重复当中的在其中发送DM-RS的PUSCH重复。根据第一方法,在其中发送DM-RS的PUSCH重复对应于从中省略了DM-RS的重叠PUSCH重复之前的PUSCH重复当中的包括DM-RS的最接近的PUSCH重复。根据第二方法,在其中发送DM-RS的PUSCH重复对应于从中省略了DM-RS的重叠PUSCH重复之后的PUSCH重复当中的包括DM-RS的最接近的PUSCH重复。根据第三方法,在其中发送DM-RS的PUSCH重复对应于包括DM-RS的PUSCH重复,其中,PUSCH重复最接近于重叠PUCCH。图27示出根据第一方法在第一PUSCH重复(PUSCH rep#0)中发送UCI。图28示出根据第三方法在第三PUSCH重复(PUSCH rep#2)中发送UCI。
根据本公开的另一实施例,当UE被配置和指示为使得在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH时,UE可以不发送PUSCH重复但是丢弃PUSCH重复并且发送PUCCH。然而,当UE被配置和指示为使得在同一符号中发送包括DM-RS的PUSCH重复和另一PUCCH时,可以在PUSCH重复上复用(或捎带)PUCCH的UCI并发送。
图29图示在同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的配置中的UCI复用的省略。根据本公开的另一实施例,参考图29,在UE被配置和指示为使得在相同一符号中发送从中省略了DM-RS的PUSCH重复和另一PUCCH的情况下,当在至少一个PUSCH重复中发送PUCCH中包括的UCI时,UE可以不在从中省略了DM-RS的PUSCH重复上复用或捎带UCI并且可以不发送该UCI。图29示出UE被配置和指示为使得在同一符号中发送第二PUSCH重复(PUSCH rep#1)、第三PUSCH重复(PUSCH rep#2)、第四PUSCH重复(PUSCH rep#3)和PUCCH。这里,从第二PUSCH重复和第四PUSCH重复中的每一个中省略DM-RS,并且将DM-RS包括在第一PUSCH重复和第三PUSCH重复中的每一个中。由于DM-RS存在于第三PUSCH中,所以在所对应的PUSCH重复上复用(或捎带)UCI并发送。因此,可以不在从中省略了DM-RS的第二PUSCH重复和第四PUSCH重复上复用(或捎带)UCI。
要由本公开解决的另一说明性问题涉及用于在多个PUSCH重复在符号中与一个PUCCH重叠的情形下执行UCI复用(或捎带)的方法。例如,当四个2符号PUSCH重复(第一PUSCH重复、第二PUSCH重复、第三PUSCH重复和第四重复)与一个PUCCH重叠时,UE应该在四个PUSCH重复上捎带UCI。在这种情况下,在四个PUSCH重复中重复地发送同一UCI,并且因此可能存在要用于UCI传输的资源的数目增加的问题,并且也可能存在要用于用于UCI传输的上行链路数据(即,UL-SCH)的资源缺少的问题,由此上行链路数据传输可能失败。在本公开中,建议了用于解决该问题的方法。
根据本公开的实施例,当多个PUSCH重复与一个PUCCH重叠时,UE可以通过在仅一个PUSCH重复上复用(或捎带)UCI来发送UCI,并且可以不在剩余PUSCH重复中发送UCI。该一个PUSCH重复可以是PUSCH重复当中最在前的第一PUSCH重复。根据另一方法,该一个PUSCH重复可以是与PUCCH重叠的PUSCH重复当中最在前的PUSCH重复。根据另一方法,该一个PUSCH重复可以是PUSCH重复当中的最后PUSCH重复。根据另一方法,该一个PUSCH重复可以是与PUCCH重叠的PUSCH重复当中的最后PUSCH重复。根据另一方法,该一个PUSCH重复可以是满足PUCCH处理时间的PUSCH重复当中最在前的PUSCH重复。根据另一方法,该一个PUSCH重复可以是在其中发送PUCCH的时隙中的PUSCH重复当中最在前的PUSCH重复。根据另一方法,该一个PUSCH重复可以是在其中发送PUCCH的时隙中的PUSCH重复当中的最后PUSCH重复。根据另一方法,该一个PUSCH重复可以是与PUCCH重叠的PUSCH重复当中的最后PUSCH重复。根据另一方法,该一个PUSCH重复可以是在其中发送PUCCH的时隙中满足PUCCH处理时间的PUSCH重复当中最在前的PUSCH重复。在选择过程中,可以排除没有DM-RS的PUSCH重复。
根据本公开的实施例,当在多个PUSCH重复上复用(或捎带)UCI并发送时,UE不在每个PUSCH重复中发送所有UCI,而是可以将UCI划分成各部分来发送在相应的PUSCH重复中各部分。例如,当UCI由N比特给出,并且在两个PUSCH重复上复用(或捎带)UCI并发送时,UE可以在一个PUSCH重复中发送N比特UCI的一半(N/2个比特、ceil(N/2)个比特或floor(N/2)个比特),并且可以在另一个PUSCH重复中发送另一半(N/2个比特或floor(N/2)个比特或ceil(N/2)个比特)。通常,当在K个PUSCH重复上复用(或捎带)UCI并发送时,可以在K1(K1=mod(N,K))个PUSCH重复中发送UCI的ceil(N/K)个比特,或者可以在K2(K2=K-K1)个PUSCH重复中发送UCI的floor(N/K)个比特。在这种情况下,可以单独地划分不同类型的UCI。也就是说,将UCI分段成HARQ-ACK信息、CSI部分1和CSI部分2,并且可以将经分段的HARQ-ACK信息、CSI部分1和CSI部分2映射到相应的PUSCH重复并发送。
要由本公开解决的另一说明性问题涉及用于当具有时隙内跳变配置的PUSCH在符号中与PUCCH重叠时发送PUCCH中包括的UCI的方法。参考标准文档3GPP TS38.213,可以将UCI划分成在其中配置了时隙内跳变的两个PUSCH跳(第一跳和第二跳),并且可以在各跳上复用(或捎带)并发送UCI。图30图示在具有时隙内跳变配置的PUSCH在至少一个符号中重叠的情况下的UCI传输。例如,参考图30,当PUCCH在至少一个符号中与PUSCH重叠时,可以在两跳中发送UCI。通过在两跳中发送UCI,UCI可以获取频率分集增益,并且因此成功接收的概率可以增加。然而,参考图30,与单独发送仅PUCCH的情况相比,当在两跳中发送UCI时,接收到要在第二跳中发送的UCI才可以接收所有UCI。因此,在接收UCI时可能发生延迟。在本公开中,建议了用于解决问题的方法。
根据本公开的实施例,UE可以在仅在与PUCCH重叠的PUSCH跳上复用(或捎带)UCI。也就是说,参考图30,当PUCCH与第一跳重叠但与第二跳不重叠时,在第一跳上复用(或捎带)并发送所有UCI。根据另一个实施例,UE可以在与PUCCH重叠的PUSCH跳和先前跳上复用(或捎带)UCI。也就是说,当PUCCH与第一跳重叠但与第二跳不重叠时,在第一跳上复用(或捎带)并发送所有UCI,而当PUCCH与第一跳不重叠时,可以将UCI划分成两个部分并且分别在第一跳和第二跳上复用(或捎带)并发送两个UCI部分。
尽管已连同具体实施例一起描述了本公开的方法和***,但是可以使用具有通用硬件架构的计算***来实现它们的组件或操作中的一些或全部。
本公开的以上描述仅出于说明性目的,并且本公开所涉及领域的普通技术人员将能够理解,能够在不改变本公开的技术精神或实质特征的情况下容易地修改其他特定形式。因此,应该理解,上述实施例在所有方面都是说明性的而非限制性的。例如,可以以分布式方式实现被描述为单一类型的每个组件,并且类似地,也可以以组合形式实现被描述为分布式的组件。
本公开的范围由要稍后描述的权利要求而不是详细描述来指示,并且从权利要求的含义和范围及其等同构思导出的所有变化或修改的形式都应该被解释为被包括在本发明的范围内。

Claims (13)

1.一种用于在无线通信***中由用户设备(UE)发送物理上行链路共享信道(PUSCH)重复的方法,所述方法包括:
接收包括配置信息的无线电资源控制(RRC)信号,
其中,所述配置信息包括用于时隙的符号的信息,以及所述符号的每个被配置为上行链路符号、灵活符号和下行链路符号中的一个;
接收在符号集上用于调度至少一个PUSCH重复的物理下行链路控制信道(PDCCH);
确定在所述符号集中对于至少一个PUSCH重复的一个或多个无效符号;以及
在所述确定之后,在一个或多个有效符号上发送所述至少一个PUSCH重复,其中所述一个或多个有效符号是所述符号集的剩余符号,
其中,所述一个或多个无效符号包括由所述配置信息指示为下行链路符号的符号,
当(i)所述至少一个PUSCH重复的第一PUSCH重复与由下行链路控制信息(DCI)调度的PUSCH重叠,以及(ii)所述PUSCH具有与所述第一PUSCH重复相同的HARQ过程编号(HPN)时,所述第一PUSCH重复的传输被终止。
2.根据权利要求1所述的方法,
其中,所述至少一个PUSCH重复的数量被配置为两个或更多个。
3.根据权利要求1所述的方法,
其中,所述至少一个PUSCH重复的每个在所述符号集中的相应子集的最快有效符号上被发送。
4.根据权利要求1所述的方法,
其中,所述一个或多个无效符号包括在所述符号集中由所述配置信息指示为下行链路符号的最后符号之后的特定数量的符号。
5.根据权利要求1所述的方法,
其中,所述一个或多个无效符号包括用于同步信号(SS)/物理广播信道(PBCH)块的一个或多个符号。
6.根据权利要求1所述的方法,
其中,所述PDCCH将从0到13的值指示为所述至少一个PUSCH重复的起始符号位置S,并且将从1到14的值指示为所述至少一个PUSCH重复的长度L,并且所述S和所述L的和具有从1到27的值。
7.一种被配置成在无线通信***中发送物理上行链路共享信道(PUSCH)重复的用户设备(UE),所述UE包括:
通信模块;以及
处理器,所述处理器功能地连接到所述通信模块,
其中,所述处理器被配置为:
接收包括配置信息的无线电资源控制(RRC)信号,
其中,所述配置信息包括用于时隙的符号的信息,以及所述符号的每个被配置为上行链路符号、灵活符号和下行链路符号中的一个;
接收在符号集上用于调度至少一个PUSCH重复的物理下行链路控制信道(PDCCH);
确定在所述符号集中对于至少一个PUSCH重复的一个或多个无效符号;以及
在所述确定之后,在一个或多个有效符号上发送所述至少一个PUSCH重复,其中所述一个或多个有效符号是所述符号集的剩余符号,
其中,所述一个或多个无效符号包括由所述配置信息指示为下行链路符号的符号,
当(i)所述至少一个PUSCH重复的第一PUSCH重复与由下行链路控制信息(DCI)调度的PUSCH重叠,以及(ii)所述PUSCH具有与所述第一PUSCH重复相同的HARQ过程编号(HPN)时,所述第一PUSCH重复的传输被终止。
8.根据权利要求7所述的UE,
其中,所述至少一个PUSCH重复的数量被配置为两个或更多个。
9.根据权利要求7所述的UE,
其中,所述至少一个PUSCH重复的每个在所述符号集中的相应子集的最快有效符号上被发送。
10.根据权利要求7所述的UE,
其中,所述一个或多个无效符号包括在所述符号集中由所述配置信息指示为下行链路符号的最后符号之后的特定数量的符号。
11.根据权利要求7所述的UE,
其中,所述一个或多个无效符号包括用于同步信号(SS)/物理广播信道(PBCH)块的一个或多个符号。
12.根据权利要求7所述的UE,其中,所述PDCCH将从0到13的值指示为所述至少一个PUSCH重复的起始符号位置S,并且将从1到14的值指示为所述至少一个PUSCH重复的长度L,并且所述S和所述L的和具有从1到27的值。
13.一种被配置成在无线通信***中接收物理上行链路共享信道(PUSCH)重复的基站,所述基站包括:
通信模块;以及
处理器,所述处理器功能地连接到所述通信模块,
其中,所述处理器被配置为:
发送包括配置信息的无线电资源控制(RRC)信号,
其中,所述配置信息包括用于时隙的符号的信息,以及所述符号的每个被配置为上行链路符号、灵活符号和下行链路符号中的一个;
发送在符号集上用于调度至少一个PUSCH重复的物理下行链路控制信道(PDCCH);
发送在所述符号集中对于至少一个PUSCH重复的一个或多个无效符号的信息;以及
在一个或多个有效符号上接收所述至少一个PUSCH重复,其中所述一个或多个有效符号是在排除所述一个或多个无效符号之后的所述符号集的剩余符号,
其中,所述一个或多个无效符号包括由所述配置信息指示为下行链路符号的符号,
当(i)所述至少一个PUSCH重复的第一PUSCH重复与由下行链路控制信息(DCI)调度的PUSCH重叠,以及(ii)所述PUSCH具有与所述第一PUSCH重复相同的HARQ过程编号(HPN)时,所述第一PUSCH重复的传输被终止。
CN202080008892.3A 2019-01-10 2020-01-10 在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置 Active CN113316913B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
KR10-2019-0003578 2019-01-10
KR20190003578 2019-01-10
KR20190017303 2019-02-14
KR10-2019-0017490 2019-02-14
KR20190017490 2019-02-14
KR10-2019-0017303 2019-02-14
KR20190037696 2019-04-01
KR10-2019-0037696 2019-04-01
PCT/KR2020/000547 WO2020145769A1 (ko) 2019-01-10 2020-01-10 무선 통신 시스템에서 상향링크 공유채널의 전송 방법 및 이를 이용하는 장치

Publications (2)

Publication Number Publication Date
CN113316913A CN113316913A (zh) 2021-08-27
CN113316913B true CN113316913B (zh) 2024-07-05

Family

ID=71521015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008892.3A Active CN113316913B (zh) 2019-01-10 2020-01-10 在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置

Country Status (6)

Country Link
US (1) US20220104224A1 (zh)
EP (3) EP3910851A4 (zh)
JP (3) JP7448242B2 (zh)
KR (1) KR20210097798A (zh)
CN (1) CN113316913B (zh)
WO (1) WO2020145769A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589372B2 (en) * 2019-04-09 2023-02-21 Qualcomm Incorporated Handling collisions between uplink data repetitions and an uplink control transmission
WO2020225913A1 (ja) * 2019-05-09 2020-11-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN114375604A (zh) * 2019-07-10 2022-04-19 株式会社Ntt都科摩 终端以及无线通信方法
JP7367028B2 (ja) * 2019-07-31 2023-10-23 株式会社Nttドコモ 端末、無線通信方法及びシステム
KR20210095430A (ko) * 2020-01-23 2021-08-02 삼성전자주식회사 무선통신 시스템에서 상향링크 채널 송신 방법 및 장치
CN114080036A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 资源分配方法及装置
US11996941B2 (en) 2020-09-11 2024-05-28 Qualcomm Incorporated Techniques for providing dedicated demodulation reference signals for transmission repetitions
US20220360368A1 (en) * 2021-05-04 2022-11-10 Qualcomm Incorporated Repetition across slot boundary handling
CN118044139A (zh) * 2021-09-28 2024-05-14 惠州Tcl云创科技有限公司 无线通信方法、用户设备和基站
CN116095836A (zh) * 2021-11-04 2023-05-09 维沃移动通信有限公司 可用时隙的确定方法、装置及终端
WO2024103516A1 (en) * 2023-01-12 2024-05-23 Zte Corporation Methods and devices for uci multiplexing for pusch and pucch with repetitions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453677A (zh) * 2013-08-23 2016-03-30 夏普株式会社 终端装置、基站装置、通信方法以及集成电路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832759B1 (ko) * 2010-04-20 2018-02-27 엘지전자 주식회사 경쟁기반의 상향링크 채널을 통한 상향링크 신호 전송 방법
KR101851240B1 (ko) * 2011-05-23 2018-04-23 삼성전자 주식회사 무선 통신 시스템을 위한 동적 시분할 복식 데이터 채널 전송 방법 및 이를 위한 장치
WO2012167489A1 (zh) * 2011-07-27 2012-12-13 华为技术有限公司 传输数据的方法和设备
US8948111B2 (en) * 2011-10-03 2015-02-03 Qualcomm Incorporated Uplink resource management under coordinated multipoint transmission
CN104137573B (zh) * 2011-12-23 2016-07-20 黑莓有限公司 在无线***中使用的用户设备ue中实现的方法
CN105493557B (zh) * 2013-09-26 2019-02-05 夏普株式会社 终端装置、基站装置、集成电路以及通信方法
CN104780549A (zh) * 2014-01-10 2015-07-15 夏普株式会社 物理信道配置方法以及基站和用户设备
US10034308B2 (en) * 2014-03-11 2018-07-24 Lg Electronics Inc. Method for allocating temporary identifier to terminal in random access procedure in wireless communication system and apparatus therefor
CN107431888B (zh) * 2015-04-10 2021-02-26 Lg电子株式会社 在无线接入***中控制探测参考信号发送的方法和装置
KR102511925B1 (ko) * 2015-11-06 2023-03-20 주식회사 아이티엘 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법
US10341998B2 (en) * 2017-03-23 2019-07-02 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10448414B2 (en) * 2017-03-23 2019-10-15 Sharp Kabushiki Kaisha Downlink control channel for uplink ultra-reliable and low-latency communications
US10601551B2 (en) * 2017-05-04 2020-03-24 Sharp Kabushiki Kaisha Hybrid automatic repeat request for uplink ultra-reliable and low-latency communications
US11032844B2 (en) * 2017-06-22 2021-06-08 Qualcomm Incorporated Physical shared channel transmission to acknowledgement delay optimization
CN109474313B (zh) * 2017-09-08 2020-08-04 华硕电脑股份有限公司 非许可频谱中考虑波束成形传送的信道使用的方法
CN116582935A (zh) * 2017-09-11 2023-08-11 韦勒斯标准与技术协会公司 无线通信***中的上行链路传输和下行链路接收的方法、设备和***
EP3832924A4 (en) * 2018-08-03 2022-03-09 NTT DoCoMo, Inc. USER TERMINAL AND RADIO COMMUNICATION METHOD
CN113347723B (zh) * 2018-08-10 2022-12-20 中兴通讯股份有限公司 重复传输方法、装置、网络设备和计算机可读存储介质
DE202020005739U1 (de) * 2019-08-01 2022-08-17 Wilus Institue of Standards and Technology Inc. Gerät und System zum Übertragen und Empfangen eines Physical Uplink Shared Channel (PUSCH) in einem drahtlosen Kommunikationssystem

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453677A (zh) * 2013-08-23 2016-03-30 夏普株式会社 终端装置、基站装置、通信方法以及集成电路

Also Published As

Publication number Publication date
EP3910851A4 (en) 2022-10-12
EP4391432A2 (en) 2024-06-26
JP2024045657A (ja) 2024-04-02
EP4391433A2 (en) 2024-06-26
KR20210097798A (ko) 2021-08-09
EP3910851A1 (en) 2021-11-17
JP7448242B2 (ja) 2024-03-12
WO2020145769A1 (ko) 2020-07-16
US20220104224A1 (en) 2022-03-31
JP2024045656A (ja) 2024-04-02
JP2022517071A (ja) 2022-03-04
CN113316913A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN113228549B (zh) 在无线通信***中生成harq-ack码本的方法以及使用该方法的装置
CN112106316B (zh) 在无线通信***中多路复用上行链路控制信息的方法和使用该方法的装置
CN111742510B (zh) 无线通信***中发送上行链路控制信息的方法及使用其的装置
CN111587554B (zh) 无线通信***的信道复用方法和复用的信道传输方法及使用该方法的设备
CN113924813B (zh) 在无线通信***中发送和接收共享信道的方法以及支持该方法的装置
CN111316731B (zh) 无线通信***中的上行链路传输和下行链路接收的方法、设备和***
CN111567117B (zh) 无线通信***的资源分配方法、装置和***
US20220191854A1 (en) Data transmission method and reception method for wireless communication system and device using same
CN113316913B (zh) 在无线通信***中发送上行链路共享信道的方法以及使用该方法的装置
US12010693B2 (en) Method for receiving physical control channel in wireless communication system, and device using same
CN114731688A (zh) 在无线通信***中取消上行链路传输的方法、装置和***
US11956802B2 (en) Method for transmitting physical downlink control channel and device for same in wireless communication system
CN118020266A (zh) 无线通信***中发送上行链路信道的方法及其装置
CN118400078A (zh) 无线通信***中发送上行链路控制信息的方法及使用其的装置
CN118400076A (zh) 无线通信***中发送上行链路控制信息的方法及使用其的装置
CN118400077A (zh) 无线通信***中发送上行链路控制信息的方法及使用其的装置
CN116584139A (zh) 无线通信***中上行链路传输的方法、设备和***
CN116458247A (zh) 在无线通信***中发送上行链路信道的方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant