CN113292338B - 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法 - Google Patents

一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113292338B
CN113292338B CN202110622929.8A CN202110622929A CN113292338B CN 113292338 B CN113292338 B CN 113292338B CN 202110622929 A CN202110622929 A CN 202110622929A CN 113292338 B CN113292338 B CN 113292338B
Authority
CN
China
Prior art keywords
sintering
temperature
low
coo
baco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110622929.8A
Other languages
English (en)
Other versions
CN113292338A (zh
Inventor
李元勋
杨昕
彭睿
陆永成
苏桦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Yanchuang Electronic Technology Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110622929.8A priority Critical patent/CN113292338B/zh
Publication of CN113292338A publication Critical patent/CN113292338A/zh
Application granted granted Critical
Publication of CN113292338B publication Critical patent/CN113292338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子材料技术领域,具体涉及一种Ba‑Co‑V基低介低烧微波陶瓷材料及其制备方法,其烧结温度低,且具有高Q*f值和正τf值,可应用于LTCC技术领域。本发明在具有高微波介电性能的Ba3(VO4)2陶瓷基础上,未添加降烧剂通过调整原料配比,首次采用Co2+取代Ba3(VO4)2中的Ba2+,通过不同的取代量,在900℃~950℃低温致密烧结,获得了τf为+14.5ppm/℃~+23.8ppm/℃,Q*f为25318GHz~54,063GHz的Ba‑Co‑V基低介微波介电陶瓷材料;由于未添加助烧剂B2O3,因此避免了后期LTCC领域应用对流延工艺的影响,可作为微波介质陶瓷τf调节材料有效应用于LTCC技术领域。

Description

一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
技术领域
本发明属于电子材料技术领域,具体涉及一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法,其烧结温度低,且具有高Q*f值和正τf值,可应用于LTCC技术领域。
背景技术
电子通信的高速发展,尤其涉及微波频段通信(300MHz~300GHz)的重要性日益增加,广泛的应用于移动手持电话、蓝牙、雷达、广播电视等领域。因此微波器件的发展,诸如谐振器、滤波器、介质天线等微波元器件的需求也日益增加。微波介质陶瓷具有尺寸可控,利用其制作的谐振器与微带线等构成的集成电路,可使器件尺寸达到毫米量级,使得微波介质陶瓷成为基础及关键材料。
低温共烧陶瓷技术(简称LTCC)作为一种多学科交叉的整合组件技术,目前主要应用于先进无源集成和混合电路封装领域,特别是高频高速高可靠性的技术领域,更是尤为突出,可广泛用于批量制作滤波器,电桥,巴伦器,功分器、天线等无源集成器件及陶瓷基板制造等领域。其中的一类关键材料-微波介电陶瓷,由于具有高品质因数、高频特性优良、良好的加工特性及稳定性,更是受到了科研工作者的关注。为了降低烧结温度,通常通过B2O3,Bi2O3等低熔点氧化物或助熔剂的添加,借助液相传质机理来实现;通过加入TiO2,CaTiO3等具有正温度谐振频率系数材料将其温度谐振频率系数调节近零。但由于添加的谐振频率温度系数调节材料通常都具有高介电常数,低Q*f,高烧结温度等缺点,会极大的恶化陶瓷的微波介电性能与影响烧结温度,从而大大限制了此类材料的应用范围。
Ba3(VO4)2具有低介电常数,高Q*f,较大正τf等特点,是一种良好的谐振频率温度系数调节材料,通常也被用作τf调节剂将微波介电陶瓷的τf调整近零,从而保证信号在传输时的完整性,但由于其致密化温度通常在1100℃以上,限制了在LTCC领域的应用。为了实现低温烧结,研究人员针对Ba3(VO4)2的烧结特性进行了大量的改性研究。Ryosuke Umemura等人通过加入助烧剂B2O3,将Ba3(VO4)2烧结温度降低至925℃,τf为27.4~66.1ppm/℃,但Q*f值却降低至了41,065GHz,并由于引入了助烧剂B2O3导致后期流延工艺不可用,在制作器件电路图形时出现渗银现象(主要原因是大量的B2O3助烧剂与Ag浆中的玻璃发生相互反应导致),使得无法真正可应用于LTCC器件的制作。
发明内容
针对上述存在问题或不足,为解决现有Ba3(VO4)2作为正温度系数调节材料,在满足高Q*f、正τf值的情况下难以实现低温烧结应用于LTCC领域的问题,本发明提供了一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法,实现了Ba3(VO4)2材料在低温下的致密化与良好的烧结特性,并保持较好的微波介电性能,可应用于LTCC领域。
为实现上述技术目的,具体技术方案如下:
一种Ba-Co-V基低介低烧微波陶瓷材料,具有高Q*f值,正τf值,其化学通式为B3- xCox(VO4)2,其中x=0.05~0.5;τf为+14.5ppm/℃~+23.8ppm/℃,Q*f为25318GHz~54,063GHz。
采用BaCO3、CoO和V2O5为原料,按摩尔比BaCO3:CoO:V2O5为2.5~2.95:0.05~0.5:1,通过固相法制得,其中BaCO3与CoO的摩尔比此消彼长;固相法中预烧温度为700℃~800℃,烧结温度为900℃~950℃。
上述一种Ba-Co-V基低介微波陶瓷材料的制备方法,包括以下步骤:
步骤1、按摩尔比将原料BaCO3:CoO:V2O5为2.5~2.95:0.05~0.5:1进行配料备用,其中BaCO3与CoO的摩尔比此消彼长。
步骤2、将步骤1所备原料按照物料:去离子水:球的质量比为1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间为6h~8h,进行第一次球磨;然后在80℃~120℃下烘干后过80~120目筛网。
步骤3、将步骤2所得球磨粉料在700℃~800℃进行预烧,保温时间2h~3h,升温速率为1℃/min~2℃/min。
步骤4、将步骤3所得产物按照物料:去离子水:球的质量比1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间8h~12h进行第二次球磨;然后在80℃~120℃下烘干,烘干后添加8~12wt%(PVA水溶液占总质量的百分比)的PVA水溶液(浓度为10wt%)作为粘结剂造粒,8MPa~10MPa压制成型,保压时间为30s~60s。
步骤5、将步骤4所得样品在900℃~950℃烧结,升温速率为1℃~2℃/min,保温时间为4h~6h,待其自然冷却即可得到正τf值的Ba-Co-V基低介微波介电陶瓷材料B3-xCox(VO4)2
本发明在具有高微波介电性能的Ba3(VO4)2陶瓷基础上,未添加降烧剂通过调整原料配比,首次采用Co2+取代Ba3(VO4)2中的Ba2+,通过不同的取代量,在900℃~950℃低温致密烧结,获得了τf为+14.5ppm/℃~+23.8ppm/℃,Q*f为25318GHz~54,063GHz的Ba-Co-V基低介微波介电陶瓷材料;由于未添加助烧剂B2O3,因此避免了后期LTCC领域应用对流延工艺的影响,可作为微波介质陶瓷τf调节材料有效应用于LTCC技术领域。
附图说明
图1为本发明固相反应法制备材料的工艺流程图;
图2为实施例1-10中Ba3-xCox(VO4)2的XRD图,其中x指代Co2+的摩尔比;
图3为实施例1-10中Ba3-xCox(VO4)2的相对密度值,其中x指代Co2+的摩尔比;
图4为实施例1,2,5,6,7,9中Ba3-xCox(VO4)2的SEM图,其中x指代Co2+的摩尔比;
图5为实施例1-10中Ba3-xCox(VO4)2的τf值,其中x指代Co2+的摩尔比;
图6为实施例1-10中Ba3-xCox(VO4)2的Q*f值,其中x指代Co2+的摩尔比;
图7为实施例6中Ba2.7Co0.3(VO4)2与Ag浆共烧后的SEM图。
图8为实施例6中Ba2.7Co0.3(VO4)2材料制得的生瓷片实物图。
图9为实施例6中Ba2.7Co0.3(VO4)2材料制得的生瓷片采用Ag浆料印刷所得电路图形。
具体实施方式
下面结合附图和实施例,采用本发明前述固相法制备以下各实施例对本发明技术效果进行相应的验证说明,以对本发明做进一步的详细说明。
实施例1:
(1)采用下述原料组成成分及其含量配置材料Ba2.95Co0.05(VO4)2
表1:实施例1配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.95 1 0.05
(2)按照表1配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为950℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例2:
(1)采用下述原料组成成分及其含量配置材料Ba2.9Co0.1(VO4)2
表2:实施例2配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.9 1 0.1
(2)按照表2配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为950℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例3:
(1)采用下述原料组成成分及其含量配置材料Ba2.85Co0.15(VO4)2
表3:实施例3配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.85 1 0.15
(2)按照表3配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为950℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例4:
(1)采用下述原料组成成分及其含量配置材料Ba2.8Co0.2(VO4)2
表4:实施例4配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.8 1 0.2
(2)按照表4配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为925℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例5:
(1)采用下述原料组成成分及其含量配置材料Ba2.75Co0.25(VO4)2
表5:实施例5配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.75 1 0.25
(2)按照表5配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为925℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例6:
(1)采用下述原料组成成分及其含量配置材料Ba2.7Co0.3(VO4)2
表6:实施例6配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.7 1 0.3
(2)按照表6配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为925℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例7:
(1)采用下述原料组成成分及其含量配置材料Ba2.65Co0.35(VO4)2
表7:实施7配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.65 1 0.35
(2)按照表7配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为925℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例8:
(1)采用下述原料组成成分及其含量配置材料Ba2.6Co0.4(VO4)2
表8:实施例8配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.6 1 0.4
(2)按照表8配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为900℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例9:
(1)采用下述原料组成成分及其含量配置材料Ba2.55Co0.45(VO4)2
表9:实施例9配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.55 1 0.45
(2)按照表9配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为900℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
实施例10:
(1)采用下述原料组成成分及其含量配置材料Ba2.5Co0.5(VO4)2
表10:实施例10配方表(单位:mol)
BaCO<sub>3</sub> V<sub>2</sub>O<sub>5</sub> CoO
2.5 1 0.5
(2)按照表3配方比例计算称取原料,将原料依次经过球磨混合、烘干、粉碎过筛、预烧结、造粒、成型、烧结得到具有优良微波介电性能,正τf的材料。其中预烧温度为800℃,成型压力为10MPa,保压时间为30s,烧结温度为900℃,升温速率和降温速率为2℃/min,保温时64h,温度降为700℃后自然冷却。
对上述10个实施例制备的材料进行测试,得到的结果如图2~图6。对实施例1,2,5,6,7,9的SEM测试结果如图3所示,可以看出对于Co2+取代Ba3(VO4)2,不同配比均极大的降低了材料的致密化温度;对实施例1到10的振频率温度系数及Q*f值测试结果如图4,图5所示,显示陶瓷获得了较大的正向谐振频率温度系数(τf=+14.5ppm/℃~+23.8ppm/℃)与高的Q*f(25318GHz~54,063GHz)值。取代量同时采用实施例6所得的Ba2.7Co0.3(VO4)2陶瓷材料与Ag浆共烧后,未发生任何反应,具有较好的匹配特性,其界面的SEM图见图7。采用实施例6的Ba2.7Co0.3(VO4)2陶瓷材料经流延后得到的生瓷片和在此基础上用Ag浆料印刷所得电路图形见图8和图9,可见图形分辨良好,未出现渗银现象,很好的解决了此类材料在实际制作LTCC器件应用过程中所存在的问题。
综上可见,本发明在具有高微波介电性能的Ba3(VO4)2基础上,首次采用Co2+取代Ba3(VO4)2中的Ba2+,采用BaCO3、CoO和V2O5作为原料以及配方比例选择,在未采用降烧剂的情况下,实现了LTCC低温烧结工艺,获得了Ba3(VO4)2陶瓷材料的高Q*f、较大正值的谐振频率温度系数(τf=+14.5ppm/℃~+23.8ppm/℃)的改性,使其符合LTCC技术领域的要求,具有更好的应用前景。

Claims (1)

1.一种Ba-Co-V基低介低烧微波陶瓷材料,其特征在于:
具有高Q*f值,正τf值,其化学通式为B3-xCox (VO4)2,其中x=0.05~0.5;τf为+14.5ppm/℃~+23.8ppm/℃,Q*f为25318GHz~54,063 GHz;
采用BaCO3、CoO和V2O5为原料,按摩尔比BaCO3:CoO:V2O5为2.5~2.95:0.05~0.5:1,通过固相法制得,其中BaCO3与CoO的摩尔比此消彼长;固相法中预烧温度为700℃~800℃,烧结温度为900℃~950℃;
上述Ba-Co-V基低介低烧微波陶瓷材料的制备方法,包括以下步骤:
步骤1、按摩尔比将原料BaCO3:CoO:V2O5为2.5~2.95:0.05~0.5:1进行配料备用,其中BaCO3与CoO的摩尔比此消彼长;
步骤2、将步骤1所备原料按照物料:去离子水:球的质量比为1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间为6h~8h,进行第一次球磨;然后在80℃~120℃下烘干后过80~120目筛网;
步骤3、将步骤2所得球磨粉料在700℃~800℃进行预烧,保温时间2h~3h,升温速率为1℃/min~2℃/min;
步骤4、将步骤3所得产物按照物料:去离子水:球的质量比1:1:1.2~1.5,球磨机转速250r/min~300r/min,球磨时间8h~12h进行第二次球磨;然后在80℃~120℃下烘干,烘干后添加PVA水溶液作为粘结剂造粒,于8MPa~10MPa压制成型,保压时间为30s~60s;所述PVA水溶液占总质量的百分比为8~12wt%,其浓度为5~15wt%;
步骤5、将步骤4所得样品在900℃~950℃烧结,升温速率为1℃~2℃/min,保温时间为4h~6h,待其自然冷却即可得到正τf值的Ba-Co-V基低介微波介电陶瓷材料B3-xCox (VO4)2
CN202110622929.8A 2021-06-04 2021-06-04 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法 Active CN113292338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110622929.8A CN113292338B (zh) 2021-06-04 2021-06-04 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110622929.8A CN113292338B (zh) 2021-06-04 2021-06-04 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113292338A CN113292338A (zh) 2021-08-24
CN113292338B true CN113292338B (zh) 2022-03-15

Family

ID=77327126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110622929.8A Active CN113292338B (zh) 2021-06-04 2021-06-04 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113292338B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771842A (zh) * 2014-01-10 2014-05-07 电子科技大学 低成本低介低损耗ltcc微波陶瓷材料及其制备方法
CN107935584A (zh) * 2017-12-12 2018-04-20 湖南先导电子陶瓷科技产业园发展有限公司 一种用于ltcc的微波介质陶瓷材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025156A1 (ja) * 2007-08-17 2009-02-26 Murata Manufacturing Co., Ltd. セラミック組成物およびその製造方法、セラミック基板、ならびにセラミックグリーン層の製造方法
KR102023398B1 (ko) * 2017-03-31 2019-09-23 강릉원주대학교산학협력단 Bmw계 고주파 유전체 세라믹 소재 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771842A (zh) * 2014-01-10 2014-05-07 电子科技大学 低成本低介低损耗ltcc微波陶瓷材料及其制备方法
CN107935584A (zh) * 2017-12-12 2018-04-20 湖南先导电子陶瓷科技产业园发展有限公司 一种用于ltcc的微波介质陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Low temperature sintering and dielectric properties of Ba3(VO4)2 microwave ceramics using Co2O3 additives;Zhiyuan Zhang et al.;《J Mater Sci》;20170830;第1-6页 *
Microwave dielectric properties of low-temperature;R. Umemura et al.;《Journal of the European Ceramic Society》;20051231;第2865–2870页 *
Structural characteristics and microwave dielectric properties of lowfiring;C.-H. Su et al.;《Journal of Alloys and Compounds》;20161231;第608-615页 *

Also Published As

Publication number Publication date
CN113292338A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN110066169B (zh) 一种氧化硅基低介电常数微波介质陶瓷及制备方法
CN101583579B (zh) 无玻璃微波介电陶瓷及其制法
CN100457678C (zh) 一种介电可调的陶瓷材料及其制备方法
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN108516826B (zh) 一种含Sn中介微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN113354399A (zh) 低温共烧复合陶瓷材料及制备方法
US11897815B2 (en) Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof
CN108147809B (zh) 中低温烧结钡-钛系微波介质材料及制备方法
CN114716238A (zh) 一种硅酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN113292338B (zh) 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法
CN106986636B (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN106587991B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN111943673B (zh) 一种低温烧结bnt微波介质材料及其制备方法
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN104876568B (zh) 钒基温度稳定型超低温烧结微波介质陶瓷材料及其制备方法
KR100842854B1 (ko) 저온 소결용 마이크로파 유전체 세라믹스 및 그 제조방법
CN111825445B (zh) 一种高介电常数微波介质陶瓷材料、制备及其应用
CN109650886B (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN113072373A (zh) 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法
CN106977203B (zh) 一种零温度系数低温烧结微波介质及其制备方法
CN112079631A (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN111205066A (zh) 一种微波介质陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230421

Address after: 341400 Building 16, Phase I, Lingang Electronic Information Industrial Park, Longling Town, Nankang District, Ganzhou City, Jiangxi Province

Patentee after: Jiangxi chenchuang Electronic Material Co.,Ltd.

Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan)

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230629

Address after: 341000 Industrial Park, Ganzhou economic and Technological Development Zone, Jiangxi Province

Patentee after: Ganzhou Yanchuang Electronic Technology Co.,Ltd.

Address before: 341400 Building 16, Phase I, Lingang Electronic Information Industrial Park, Longling Town, Nankang District, Ganzhou City, Jiangxi Province

Patentee before: Jiangxi chenchuang Electronic Material Co.,Ltd.

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Ba Co-V based low dielectric and low firing microwave ceramic material and its preparation method

Granted publication date: 20220315

Pledgee: Ganzhou rural commercial bank Limited by Share Ltd.

Pledgor: Ganzhou Yanchuang Electronic Technology Co.,Ltd.

Registration number: Y2024980002104

PE01 Entry into force of the registration of the contract for pledge of patent right