CN113292222A - 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法 - Google Patents

连续式实时调节絮凝方案的废弃泥浆处理***及实施方法 Download PDF

Info

Publication number
CN113292222A
CN113292222A CN202110582370.0A CN202110582370A CN113292222A CN 113292222 A CN113292222 A CN 113292222A CN 202110582370 A CN202110582370 A CN 202110582370A CN 113292222 A CN113292222 A CN 113292222A
Authority
CN
China
Prior art keywords
slurry
mud
pipeline
water content
material tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110582370.0A
Other languages
English (en)
Other versions
CN113292222B (zh
Inventor
姜朋明
李晓道
吴思麟
周爱兆
徐浩青
王丽艳
吴涛
刘志涛
黄献文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202110582370.0A priority Critical patent/CN113292222B/zh
Publication of CN113292222A publication Critical patent/CN113292222A/zh
Application granted granted Critical
Publication of CN113292222B publication Critical patent/CN113292222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了连续式实时调节絮凝方案的废弃泥浆处理***及实施方法,***包括泥浆池、泥浆含水率实时检测***、最优絮凝方案控制***、上清液导排***和防淤堵抽滤刮泥***,泥浆池与泥浆含水率实时检测***通过泥浆输送管道连通,防淤堵抽滤刮泥***位于上清液导排***内部,泥浆含水率实时检测***、最优絮凝方案控制***和上清液导排***之间管道连通。本发明在泥浆含水率监测装置处可以实时的测试泥浆的含水率,通过泥浆的稀释或絮凝剂浓度的调配,实现最优的絮凝方法。

Description

连续式实时调节絮凝方案的废弃泥浆处理***及实施方法
技术领域
本发明涉及废弃工程高含水率泥浆处理装置及方法,特别涉及连续式实时调节絮凝方案的废弃泥浆处理***及实施方法。
背景技术
目前高含水率泥浆的处理方法大都采用带式压滤机、板框压滤机、离心机等进行泥水分离和脱水,这些方法在处理粘粒含量较高的高含水率废弃泥浆都存在工作效率低、不能批量的进行工作等缺陷。现有的快速泥浆脱水减量化的方法多是真空抽滤的技术方案,如申请号为201210317079.1的中国发明专利公开《一种用于泥浆快速浓缩的浓缩***》,在浓缩池下布设浓缩抽泥管道,通过重力和负压压差共同作用实现泥浆浓缩,大幅度提升了浓缩效率。但该***存在以下缺陷:
①该发明专利采用的固定浓缩装置,当浓缩管道发生堵塞浓缩效果降低时,装置清洗困难:装置的彻底清洗需要将浓缩池的泥浆排尽,拆卸抽滤装置后清洗;
②淤堵泥皮清洗的方式采用了反冲洗吹脱的方式,具体是将聚集在真空抽滤管周围的泥皮吹脱以恢复滤层的渗滤能力;这种反冲洗的方式具有缺陷,对于抽滤面积较大的抽滤装置,该方式的泥皮反冲洗效果并不理想,在某一点位泥皮被吹脱后,该吹脱区域成为冲击气体的优先通过区域,而抽滤装置其余位置的泥皮便无法冲洗干净,因此气体冲洗的方式清洗泥皮效率不高;
③当泥浆发生一定沉降分层时,同时存在上清液和下层泥浆,该***并没有设计上清液去除方案,导致抽滤下层泥浆浓缩的过程中,上清液通过下层泥浆的脱水通道被排出,使得***的工作效率较低。
申请号为201510391789.2的中国发明专利公开《一种基于泥皮透水的疏浚泥浆脱水方法》,通过对泥浆先絮凝后真空抽滤的方法实现泥浆快速减量的效果。但该方法同样存在类似的不足:
①该方法没有涉及到泥浆含水率与絮凝剂浓度之间的关系,实际工程产生的泥浆含水率多变,该***不能实时的根据泥浆含水率调节絮凝方案,导致絮凝效果差,不实用;
②该方法没有设置泥皮堵塞情况时的处理方法,泥浆在絮凝后所形成的泥皮会使装置发生堵塞停止运行,无法确保整个浓缩工艺的连续性;
③该方法中也未设置上清液排出装置,当泥浆发生一定沉降分层时,即同时存在上清液和下层泥浆时,使用该方法浓缩效率较低。
鉴于此,工程上急需一种能够弥补上述缺陷的快速的、连续的高含水率泥浆的浓缩减量技术方法。
发明内容
发明目的:针对现有泥浆浓缩技术的不连续性、泥浆絮凝效果低、泥皮堵塞时处理不理想、抽滤效率低效等问题,本发明专利提供一种连续式的实时调节最优絮凝方案的废弃工程泥浆快速浓缩抽滤***及实施方法。
技术方案:本发明提供一种连续式实时调节絮凝方案的废弃泥浆处理***,包括如下步骤:
包括泥浆池、泥浆含水率实时检测***、最优絮凝方案控制***、上清液导排***和防淤堵抽滤刮泥***,泥浆池与泥浆含水率实时检测***通过泥浆输送管道连通,防淤堵抽滤刮泥***位于上清液导排***内部,泥浆含水率实时检测***、最优絮凝方案控制***和上清液导排***之间管道连通。
进一步地,所述泥浆含水率实时检测***包括:玻璃管道、信号传输模块、透光率仪、环形玻璃管道、开关、L形泥浆输送管道以及开关,玻璃管道、环形玻璃管道以及L形泥浆输送管道用于输送泥浆,玻璃管道上设置透光率仪,透光率仪与信号传输模块连接,信号传输模块将获取的含水率或透光度通过电子信号传递至最优絮凝方案控制***的信号接受及处理模块,玻璃管道与环形玻璃管道连通,交合处设置开关,用于控制泥浆流向,环形玻璃管道与L形泥浆输送管道相连,交合处设置开关,用于控制泥浆流向。
玻璃管道、环形玻璃管道以及L形泥浆输送管道为泥浆输送管道中的一部分(其中环形玻璃管道可以使泥浆始终均匀稀释),用于配合检测泥浆含水率,玻璃管道长度优选为20cm,直径优选为15cm,环形玻璃管道周长优选为40cm,直径优选为20cm,L形泥浆输送管道直径优选为15cm。管道外测设置透光率仪用来实时测试泥浆的透光度(包括玻璃管道与环形玻璃管道内的泥浆透光度)Tn。透光率仪与信号传输模块用于测量并计算泥浆实时的含水率,泥浆实时的含水率的计算方法为ωn=aω0T/T0,其中a为系数,ω0、T0分别为泥浆某已知含水率泥浆及其对应的透光度。其中a、ω0、T0取值可以通过已知各梯度的泥浆含水率的透光试验获取。以泥浆含水率300%为分界线,当泥浆实时的含水率ωn≥300%,信号传输模块将获取的实时泥浆含水率通过电子信号传递至最优絮凝方案控制***的信号接受及处理模块;当泥浆含水率ωn≤300%时,信号传输模块会将此时的泥浆输送至环形玻璃管道进行稀释,使透光度满足Tn=T1,随后通过电子信号传递至最优絮凝方案控制***的信号接受及处理模块,其中T1为泥浆含水率为300%的透光度。
进一步地,所述最优絮凝方案控制***包括:信号接受及处理模块、絮凝剂稀释模块和絮凝剂输送管道,絮凝剂输送管道与泥浆输送管道连通。
进一步地,所述信号接受及处理模块用于接收信号传输模块传送来的泥浆含水率信号,并处理该信号,指示下一步的处理方式,当接收到的信号为泥浆含水率ωn≥300%时,信号接受及处理模块会向絮凝剂稀释模块发出信号,对絮凝剂进行稀释,絮凝剂的浓度Cn将被稀释为Cn=eC3ωn0,e为常数,可以通过已知各梯度泥浆含水率的絮凝试验获取;当接收到的信号为泥浆的透光度Tn=T1时,其对应的泥浆含水率为300%,此时絮凝剂的最优添加浓度C3,通过室内试验获取泥浆在300%含水率时,絮凝剂的最优添加浓度C3,絮凝剂经过稀释处理后与泥浆混合完成絮凝。
进一步地,所述上清液导排***包括物料罐,物料罐采用双层结构,分别为内层和外层,内层和外层通过钢筋条连接,物料罐上部设置上清液出口,上清液出口与上清液导排管道连接,上清液导排管道与外层连接,物料罐下部设置抽滤口,抽滤口与抽滤管道连通,抽滤管道连接真空泵,真空泵连接排水管,物料罐底部设置排泥口,物料罐泥浆输送进口处的管道采用S形管道。优选地,物料罐外层与内层处同一高度,高度比为5∶4,截面圆面积比5∶3。泥浆入口出位于物料罐内层,距离顶部1/5处。上清液导出管道与物料罐外层连接,上清液导出口处于物料罐外层中央处,当***运行时,絮凝后的泥浆沉入物料罐底部,上清液由此导管自动连续排出。
进一步地,所述防淤堵抽滤刮泥***包括物料罐内的中央钢柱,中央钢柱与刮泥板通过钢筋条相连,刮泥板与物料罐底部的锥形区域紧密相接,中央钢柱顶部与搅拌器相连,锥形区域外壁的内外侧设置滤布,锥形区域外部设置外壳。优选地,物料罐底部锥形区域设置小孔,孔径0.5cm,其内外侧均设置滤布。锥形区域外侧采用密封式塑料外壳,壳与滤布的间距为10cm。真空泵抽滤口设置在锥形区域1/2高处,选用10kPa作为抽滤负压,抽滤负压值最高不超过15kPa。
所述的连续式实时调节絮凝方案的废弃泥浆处理***的实施方法,所述废弃泥浆泵入泥浆输送管道,进入泥浆含水率实时检测***,测定泥浆的含水率,并将信号(ωn或Tn=T1)传递到最优絮凝方案控制***,最优絮凝方案控制***的信号接受及处理模块作出反应并且选择稀释絮凝剂或直接输送絮凝剂,进而得到最优的絮凝剂浓度泵送至泥浆输送管道;在上清液导排***的物料罐入口处的S形管道处与泥浆充分混合后进入物料罐内层,经由絮凝后浓泥沉入物料罐底部,上清液由上清液导管自动连续排出;此时防淤堵抽滤刮泥***开始工作,刮泥板运行,最终泥浆经絮凝和抽滤后的浓缩泥饼由物料罐底部的竖向排泥口自动排出。
更进一步地,上述各类***所用的泥浆输送管道均采用直径为15cm的不锈钢管道,其中泥浆输送管道在物料罐进口处设置成S形;絮凝剂输送管道采用直径为5cm的防腐蚀塑料管道;上清液抽取管道采用5cm防腐蚀塑料管道。
工作原理:
运行中的***首先,泥浆池中的泥浆通过泥浆管道运送至泥浆含水率实时监测装置,此处根据透光率仪实测泥浆的透光度,根据含水率与透光度的关系式ωn=aω0T/T0,实时监测泥浆含水率。
其次,絮凝剂的调配装置根据泥浆的含水率及透光度:
①当泥浆含水率ωn≥300%,可以根据小试试验得到的关系式Cn=eC3ωn0调制适宜浓度的絮凝剂,然后通过输送管道在泥浆输送管道的中央处完成混合,并且在物料罐的进口处S形管道内混合均匀,并送至物料罐内层。
②当泥浆含水率ωn≤300%,可以将泥浆输送至环形玻璃管道进行稀释,使透光度Tn=T1,然后将C3浓度的絮凝剂通入泥浆中,然后通过输送管道在泥浆输送管道的中央处完成混合,并且在物料罐的进口处S形管道内混合均匀,并送至物料罐内层。
再次,在物料罐内部的双层结构中,将上清液的导排管道放置在上清液中(外层),经过絮凝分层后,上清液由上清液导排管排出。
最后,物料罐底部的锥形区域在塑料壳内部放置抽滤管道对浓泥进行二次抽滤,抽滤后的浓泥由底部的竖向排泥管道排出。
有益效果:本发明在泥浆含水率监测装置处可以实时的测试泥浆的含水率,通过泥浆的稀释或絮凝剂浓度的调配,给出一个最优的絮凝方案并执行。此外,S形输送管道可以将泥浆与絮凝剂充分融合调匀,始终保持装置的最优絮凝效果。物料罐双层设置,可以更有效的将上清液自动导排至物料罐外;此外,中央设置钢柱连接刮泥板,可以避免整个***发生堵塞终止,提供一个连续工作的环境。锥形区域的真空抽滤装置可以更有效地对絮凝的浓泥进行浓缩减量,使减量化更加彻底,加强浓缩的效果。
附图说明
图1为本发明的结构示意图;
图2为泥浆含水率实时监测***示意图;
图3为物料罐锥形区域俯视图。
具体实施方式
如图1,本实施例的废弃工程泥浆快速浓缩抽滤***包括含水率实时监测装置2(由玻璃管道26、信号传输器27、透光率仪28、环形玻璃管道29、开关30、L形泥浆输送管道31和开关32组成),其中包括玻璃管道26(其直径为15cm,长度为20cm,为泥浆输送管道3的一部分,采用玻璃材质便于测量透光度)、信号传输器27和透光率仪28、环形玻璃管道29、开关30、L形泥浆输送管道31以及开关32。当***开始运行时,打开透光率仪28,根据透光率仪28测得的透光度,由公式ωn=aω0T/T0测得泥浆的含水率,当泥浆含水率ωn≥300%时,此时开关30处于闭合阶段(即开关30与玻璃管道下管道闭合),通过信号传输器28传递到最优絮凝剂控制***;当泥浆含水率ωn≤300%时,此时开关30处于开合阶段(即开关30与玻璃管道上管道相连),将稀释后的泥浆透光度Tn=T1,通过信号传输器28传递到最优絮凝剂控制***。
最优絮凝剂浓度控制***包括浓度为C3(对应泥浆含水率300%的絮凝剂浓度)的絮凝剂稀释模块8、信号接受处理器6。其中信号处理器6接收泥浆含水率检测***2传递过来的信息作出处理:
实施例1
当泥浆含水率ωn≥300%时,可以根据公式Cn=eC3ωn0,求得此时所对应的絮凝剂浓度,e为常数,可以通过已知各梯度泥浆含水率的絮凝试验获取,根据小试试验测得e的值为0.3,C3为泥浆含水率为300%时对应的絮凝剂浓度,根据小试试验测得C3的值为2‰,泥浆的某已知含水率ω0的值为200%;假设此时的泥浆含水率为400%,则絮凝剂Cn的浓度为Cn=0.3×0.002×4÷2,Cn=1.2‰。絮凝剂浓度配置完成后输送至泥浆输送管道3中。絮凝剂输送管道4采用直径为5cm的防腐蚀塑料管道,物料罐A泥浆输送进口处的管道采用S形管道5,在此处,泥浆会与絮凝剂充分混合均匀。泥浆输送管道进口处11位于物料罐内层12距离物料罐A上部1/5处,搅拌器10与中央钢柱14相连,运行的转速为30r/min,保证与其相连的刮泥板17匀速转动,防止泥皮堵塞过滤网;钢筋条9采用焊接的方式将物料罐内层12与物料罐外层13连接起来,此处采用的钢筋规格为
Figure BDA0003087828780000061
连接刮泥板17与钢柱的钢筋9规格为
Figure BDA0003087828780000062
上清液导排管道16与物料罐外层13相连,上清液出口15距离物料罐A顶部1/2处,絮凝后的上清液直接从16溢出。
真空泵23负责为抽滤提供负压,根据小试试验得到的最优负压值为10KPa,最大值不超过15KPa,物料罐底部锥形区域内外侧设置滤布18,用塑料外壳20罩住锥形区域,保证二者之间的距离为10cm,***运行中,抽滤管道22通过抽滤口21进入,抽滤管道的直径设置为10cm,抽滤出来的水通过抽滤排水管道24排出。最后,经过二次抽滤后的浓泥通过排泥口25排出。
实施例2
当泥浆含水率ωn≤300%时,信号接受处理器6会将泥浆输送至环形管道29,此时开关32闭合,泥浆在此管道会均匀稀释,稀释至透光度与泥浆含水率为300%的透光度一致,根据小试试验,泥浆含水率300%的透光度T1=60%,假设此时泥浆的含水率为200%,对应的透光度为Tn,稀释后的泥浆透光度T1=Tn=60%,此时打开开关32,然后泥浆由L形泥浆输送管道31进入泥浆输送管道3,C3=2‰的絮凝剂输送至泥浆输送管道3中与泥浆混合。絮凝剂输送管道4采用直径为5cm的防腐蚀塑料管道,物料罐A泥浆输送进口处的管道采用S形管道5,在此处,泥浆会与絮凝剂充分混合均匀。泥浆输送管道进口处11位于物料罐内层12距离物料罐A上部1/5处,搅拌器10与中央钢柱14相连,运行的转速为30r/min,保证与其相连的刮泥板17匀速转动,防止泥皮堵塞过滤网;钢筋条9采用焊接的方式将物料罐内层12与物料罐外层13连接起来,此处采用的钢筋规格为
Figure BDA0003087828780000064
连接刮泥板17与钢柱的钢筋9规格为
Figure BDA0003087828780000063
上清液导排管道16与物料罐外层13相连,上清液出口15距离物料罐A顶部1/2处,絮凝后的上清液直接从16溢出。
真空泵23负责为抽滤提供负压,并与排水管24连接。根据小试试验得到的最优负压值为10KPa,最大值不超过15KPa,运行中取10KPa,物料罐底部锥形区域内外侧设置滤布18,用塑料外壳20罩住锥形区域,保证二者之间的距离为10cm,***运行中,抽滤管道22通过抽滤口21进入,抽滤管道的直径设置为10cm,抽滤出来的水通过抽滤排水管道24排出。最后,经过二次抽滤后的浓泥通过排泥口25排出。

Claims (7)

1.一种连续式实时调节絮凝方案的废弃泥浆处理***,其特征在于:包括泥浆池(1)、泥浆含水率实时检测***(2)、最优絮凝方案控制***、上清液导排***和防淤堵抽滤刮泥***,泥浆池(1)与泥浆含水率实时检测***通过泥浆输送管道(3)连通,防淤堵抽滤刮泥***位于上清液导排***内部,泥浆含水率实时检测***、最优絮凝方案控制***和上清液导排***之间管道连通。
2.根据权利要求1所述的连续式实时调节絮凝方案的废弃泥浆处理***,其特征在于:所述泥浆含水率实时检测***包括:玻璃管道(26)、信号传输模块(27)、透光率仪(28)、环形玻璃管道(29)、开关(30)、L形泥浆输送管道(31)以及开关(32),玻璃管道(26)、环形玻璃管道(29)以及L形泥浆输送管道(31)用于输送泥浆,玻璃管道(26)上设置透光率仪(28),透光率仪(28)与信号传输模块(27)连接,信号传输模块(27)将获取的含水率或透光度通过电子信号传递至最优絮凝方案控制***的信号接受及处理模块(6),玻璃管道(26)与环形玻璃管道(29)连通,交合处设置开关(30),用于控制泥浆流向,环形玻璃管道(29)与L形泥浆输送管道(31)相连,交合处设置开关(32),用于控制泥浆流向。
3.根据权利要求1所述的连续式实时调节絮凝方案的废弃泥浆处理***,其特征在于:所述最优絮凝方案控制***包括:信号接受及处理模块(6)、絮凝剂稀释模块(8)和絮凝剂输送管道(4),絮凝剂输送管道(4)与泥浆输送管道(3)连通。
4.根据权利要求2或3所述的连续式实时调节絮凝方案的废弃泥浆处理***,其特征在于:所述信号接受及处理模块(6)用于接收信号传输模块(27)传送来的泥浆含水率或透光度信号,并处理该信号,指示下一步的处理方式,当接收到的信号为泥浆含水率ωn≥300%时,信号接受及处理模块(6)会向絮凝剂稀释模块(8)发出信号,对絮凝剂进行稀释,絮凝剂的浓度Cn将被稀释为Cn=eC3ωn0,e为常数,可以通过已知各梯度泥浆含水率的絮凝试验获取;当接收到的信号为泥浆的透光度Tn=T1时,其对应的泥浆含水率为300%,此时絮凝剂的最优添加浓度C3,通过室内试验获取泥浆在300%含水率时,絮凝剂的最优添加浓度C3,絮凝剂经过稀释处理后与泥浆混合完成絮凝。
5.根据权利要求1所述的连续式实时调节絮凝方案的废弃泥浆处理***及实施方法,其特征在于:所述上清液导排***包括物料罐,物料罐采用双层结构,分别为内层(12)和外层(13),内层(12)和外层(13)通过钢筋条(9)连接,物料罐上部设置上清液出口(15),上清液出口(15)与上清液导排管道(16)连接,上清液导排管道(16)与外层(13)连接,物料罐下部设置抽滤口(21),抽滤口(21)与抽滤管道(22)连通,抽滤管道(22)连接真空泵(23),真空泵(23)连接排水管(24),物料罐底部设置排泥口(25),物料罐泥浆输送进口处的管道采用S形管道(5)。
6.根据权利要求1所述的连续式实时调节絮凝方案的废弃泥浆处理***及实施方法,其特征在于:所述防淤堵抽滤刮泥***包括物料罐内的中央钢柱(14),中央钢柱(14)与刮泥板(17)通过钢筋条(9)相连,刮泥板(17)与物料罐底部的锥形区域紧密相接,中央钢柱(14)顶部与搅拌器(10)相连,锥形区域外壁(19)的内外侧设置滤布(18),锥形区域外部设置外壳(20)。
7.权利要求1-6任一项所述的连续式实时调节絮凝方案的废弃泥浆处理***的实施方法,其特征在于:所述废弃泥浆泵入泥浆输送管道(3),进入泥浆含水率实时检测***(2),测定泥浆的含水率或透光度,并将信号(ωn或Tn=T1)传递到最优絮凝方案控制***,最优絮凝方案控制***的信号接受及处理模块(6)作出反应并且选择稀释絮凝剂或直接输送絮凝剂,进而得到最优的絮凝剂浓度泵送至泥浆输送管道(3);在上清液导排***的物料罐入口处的S形管道(5)处与泥浆充分混合后进入物料罐内层(12),经由絮凝后浓泥沉入物料罐底部,上清液由上清液导管自动连续排出;此时防淤堵抽滤刮泥***开始工作,刮泥板运行,最终泥浆经絮凝和抽滤后的浓缩泥饼由物料罐底部的竖向排泥口(25)自动排出。
CN202110582370.0A 2021-05-27 2021-05-27 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法 Active CN113292222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110582370.0A CN113292222B (zh) 2021-05-27 2021-05-27 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110582370.0A CN113292222B (zh) 2021-05-27 2021-05-27 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法

Publications (2)

Publication Number Publication Date
CN113292222A true CN113292222A (zh) 2021-08-24
CN113292222B CN113292222B (zh) 2023-06-23

Family

ID=77325406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110582370.0A Active CN113292222B (zh) 2021-05-27 2021-05-27 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法

Country Status (1)

Country Link
CN (1) CN113292222B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477710A (zh) * 2021-12-22 2022-05-13 镇江市给排水管理处 一种自动优化絮凝-大孔抗堵再生滤质的脱水***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913751A (zh) * 2010-07-14 2010-12-15 江苏江达生态科技有限公司 泥浆脱水组合***
CN103708703A (zh) * 2014-01-22 2014-04-09 杨才千 一种建筑泥浆快速深度脱水及资源化***与工艺
CN109081533A (zh) * 2017-06-14 2018-12-25 刘汉东 污水处理厂污泥综合利用方法及装置
CN208562111U (zh) * 2018-05-15 2019-03-01 水利部交通运输部国家能源局南京水利科学研究院 真空盘式淤泥脱水***
CN109896667A (zh) * 2019-04-03 2019-06-18 青岛瑞铵特环保有限公司 一种氧化镁法脱硫废水零排放技术及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913751A (zh) * 2010-07-14 2010-12-15 江苏江达生态科技有限公司 泥浆脱水组合***
CN103708703A (zh) * 2014-01-22 2014-04-09 杨才千 一种建筑泥浆快速深度脱水及资源化***与工艺
CN109081533A (zh) * 2017-06-14 2018-12-25 刘汉东 污水处理厂污泥综合利用方法及装置
CN208562111U (zh) * 2018-05-15 2019-03-01 水利部交通运输部国家能源局南京水利科学研究院 真空盘式淤泥脱水***
CN109896667A (zh) * 2019-04-03 2019-06-18 青岛瑞铵特环保有限公司 一种氧化镁法脱硫废水零排放技术及其设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477710A (zh) * 2021-12-22 2022-05-13 镇江市给排水管理处 一种自动优化絮凝-大孔抗堵再生滤质的脱水***及方法
CN114477710B (zh) * 2021-12-22 2022-11-11 镇江市给排水管理处 一种自动优化絮凝-大孔抗堵再生滤质的脱水***及方法

Also Published As

Publication number Publication date
CN113292222B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN103408207B (zh) 一种河湖清淤污泥脱水干化一体化试验装置及方法
CN207941295U (zh) 污水沉淀处理***
CN218146188U (zh) 絮凝沉降桶及废水沉淀过滤***
CN113292222A (zh) 连续式实时调节絮凝方案的废弃泥浆处理***及实施方法
CN208517114U (zh) 一种化工污水净化设备
CN105082361B (zh) 一种混凝土搅拌站废料残渣利用***及操作工艺
CN105314816B (zh) 一种污泥连续脱水装置和方法
CN212731365U (zh) Pc搅拌站废浆水环保处理***
CN218811313U (zh) 一种用于分离泥和水的设备
WO2018027514A1 (zh) 一种生活污水循环处理***
CN115006875B (zh) 一种基于连续逆流提取的黄芩苷生产线及方法
CN108238700A (zh) 一种果胶废水处理方法
CN208244180U (zh) 一种沉淀池浮渣收集处置***
CN205088040U (zh) 污水处理厂提标技术改造深度过滤***
CN110255848B (zh) 污泥脱水***
CN203545852U (zh) 一种河湖清淤污泥脱水干化一体化试验装置
CN202924745U (zh) 白炭黑合成液的洗涤脱水装置
CN219907135U (zh) 带超声波和超滤功能的废水预处理***
CN218810722U (zh) 一种荧光废液处理装置
JP2021049509A (ja) ろ過装置
CN205391910U (zh) 一种带式真空过滤机入料旋流装置
CN219971910U (zh) 带气浮及超滤功能的废水预处理***
JPH09150200A (ja) 汚泥の濃縮装置並びにその洗浄方法
CN210528745U (zh) 污泥脱水机构
CN215352980U (zh) 一种自带清洗装置的过滤设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant