CN1132731A - Composite self-lubricating zircite-graphite material - Google Patents

Composite self-lubricating zircite-graphite material Download PDF

Info

Publication number
CN1132731A
CN1132731A CN 95121439 CN95121439A CN1132731A CN 1132731 A CN1132731 A CN 1132731A CN 95121439 CN95121439 CN 95121439 CN 95121439 A CN95121439 A CN 95121439A CN 1132731 A CN1132731 A CN 1132731A
Authority
CN
China
Prior art keywords
graphite
ceramic material
sintering
lubricating
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 95121439
Other languages
Chinese (zh)
Other versions
CN1059416C (en
Inventor
刘惠文
薛群基
刘维民
杨生荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN95121439A priority Critical patent/CN1059416C/en
Publication of CN1132731A publication Critical patent/CN1132731A/en
Application granted granted Critical
Publication of CN1059416C publication Critical patent/CN1059416C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention provides a self lubricating compound ceramic material for a zirconium oxide-graphite. Nanometer ZrO2 ceramic powder (Y2O3 3 percent mol) is molded through prepressing forming and rapidly sintered under the low temperature by adding the mixture of sintering addition agent and the graphite lubricant with a certain quantity, , the densifying zirconium oxide-graphite compound ceramic material with the relative density of 97 percent is obtained. The compound ceramic material has high hardness, and the well antifriction and the abrasion proof performances are represented under the lubrication of the water.

Description

Zirconium white-graphite self-lubricating composite ceramic material
The present invention relates to a kind of zirconium white-graphite self-lubricating composite ceramic material and preparation method thereof.
Well-known zirconium white (TZP) pottery is a kind of purposes structured material very widely, all has in fields such as cutter, bearing, sealing member, engine parts and organism embedded materials preferably and uses.But usually the frictional coefficient of zirconia ceramics and wear rate thereby have hindered the performance of its excellent properties all than higher under unlubricated state.And technology such as common liquid lubrication, gas lubrication, solid lubrication and surface modification are difficult to satisfy following three conditions simultaneously: (1) can use under severe condition such as high temperature, vacuum, corrosive medium and heavy duty; (2) be easy to replenish or need not replenish; (3) easy to implement.
The present invention aims to provide a kind of novel self-lubricating zirconium white-graphite composite ceramic material and low temperature flash sintering method thereof.
The present invention passes through to use the nanometer titanium dioxide zirconium powder, oildag and suitable sintering aid, and fine and close zirconium white-graphite self-lubricating composite ceramics is burnt till in hot pressing at a lower temperature.
The prescription that the present invention uses (wt%) is nano zirconium dioxide 90, graphite 1~4, Bi 2O 35~8, Al 2O 3And SiO 20.62~2.
The nanometer titanium dioxide zirconium powder is for being the cubic phase zirconium dioxide [ZrO of structural stabilizing agent in the prescription that the present invention uses of the 3%mol yttrium oxide 2(Y 2O 33%mol)], be the matrix phase composition, its granularity is 10nm; Graphite is lubricant, and its granularity is 30 μ m; Bi 2O 3Be sintering aid; Al 2O 3And SiO 2Be grain growth inhibitor.Bi 2O 3, Al 2O 3And SiO 2Be analytical reagent.
Preparation method of the present invention comprises the steps such as hot pressed sintering of mixing, coldmoulding and the green compact of powder under certain proportioning, it is characterized in that:
Powder is evenly mixed under certain proportioning 1..
2. above-mentioned evenly mixed powder is carried out coldmoulding and make green compact.Become
Use stainless steel mould during type, two-way pressurization, specific pressure is 400-500MPa,
Dwell time is 1-3 minute.
3. the green compact to obtaining are used the middle frequency furnace hot pressed sintering.Use and strengthen stone
The China ink mould, sintering temperature is controlled at 1300 ℃-1350 ℃, and soaking time is
15-30 minute, carry out two-way pressurization, specific pressure is 10-20MPa.
According to zirconium white-graphite self-lubricating composite ceramic material that the inventive method makes, its density is 97% of theoretical density, microhardness (H v) be 1500Kg/mm 2The similar performance of the tetragonal zircite ceramic (TZP) of its result and Chinese patent (95102998.3), but the present invention has splendid tribological property.
Zirconium white-graphite self-lubricating the composite ceramic material that makes by aforesaid method under the water lubricating condition with GCr15 when rubbing, have extremely low stable friction co-efficient value (μ TZP-Gr.) through after running-in period, see Table 1.Also listed TZP pottery friction co-efficient value (μ TZP) under the same conditions as contrast with table.Table 2 has been listed under the water lubricating comparison at different loads TZP and TZP-Gr. wear rate.Table 1 and table 2 show that zirconium white-graphite self-lubricating composite ceramic material made from the inventive method shows good antifriction and antiwear characteristics under water lubricating.
The variation of table one, The friction coefficient load
Load 20N 40N 60N 100N μ TZP-Gr. 0.06 0.05 0.05 0.04 μ TZP 0.23 0.26 0.33 0.33
Table two, the comparison of TZP and TZP-Gr. wear rate under different loads
Wear rate (mm 3/ m) 2N 20N 40N 100N TZP-Gr. ≌ 0 4.80E-07 3.30E-06 2.30E-05 TZP 1.30E-07 1.10E-06 1.30E-05 3.70E-05
In order better to understand this explanation, now illustrate as follows: example 1: with nanometer titanium dioxide zirconium powder and graphite, Bi 2O 3, Al 2O 3And SiO 2With 90: 3: 6: 1 weight ratio was mixed, and through the two-way pressurization of 500MPa, pressurize 1min makes green compact in stainless steel mould.These green compact are carried out hot pressed sintering at 1350 ℃, and soaking time is 15min, carries out two-way pressurization, and specific pressure is 10MPa, can be made into relative density and be compact zirconia-graphite self-lubricating composite ceramics of 97%.Example 2: with nanometer titanium dioxide zirconium powder and graphite, Bi 2O 3, Al 2O 3And SiO 2With 90: 2: 6: 2 weight ratio was mixed, and through the two-way pressurization of 400MPa, pressurize 2min makes green compact in stainless steel mould.These green compact are carried out hot pressed sintering at 1350 ℃, and soaking time is 25min, carries out two-way pressurization, and specific pressure is 10MPa, can be made into relative density and be compact zirconia-graphite self-lubricating composite ceramics of 97%.Example 3: as zirconium white-graphite self-lubricating composite ceramics as described in the example 1, at 20N, can be reduced to 0.06 with the frictional coefficient of GCr15 steel ball when rubbing under the condition of 0.1m/s and water lubricating, wear rate is 4.80E-7mm 3/ m.Example 4: as zirconium white-graphite self-lubricating composite ceramics as described in the example 2, at 40N, can be reduced to 0.05 with the frictional coefficient of GCr15 steel ball when rubbing under the condition of 0.1m/s and water lubricating, wear rate is 3.30E-6mm 3/ m.

Claims (5)

1. zirconium white-graphite self-lubricating composite ceramic material, selecting prescription (wt%) for use is nanometer ZrO 290, oildag 1~4, sintering aid Bi 2O 35~8, grain growth inhibitor Al 2O 3And SiO 20.62-2.
2. material as claimed in claim 1 is characterized in that the zirconia ceramic powder for make the cubic phase zirconium dioxide of structural stabilizing agent of the 3%mol yttrium oxide, and its granularity is 10nm.
3. material as claimed in claim 1, the granularity that it is characterized in that graphite are 30 μ m.
4. material as claimed in claim 1 is characterized in that Bi 2O 3, Al 2O 3And SiO 2Be analytical reagent.
5. the sintering method as the said zirconium white of claim 1-graphite self-lubricating composite ceramic material comprises the steps such as hot pressed sintering of powder at mixing, coldmoulding and the green compact of certain proportioning, it is characterized in that:
(1) use stainless steel mould, two-way pressurization is 400-500MPa in specific pressure, and the dwell time is a pre-molding under 1-3 minute condition;
(2) use to strengthen graphite jig, at 1300~1350 ℃, dwell time 15-30 minute, carry out two-way pressurization, specific pressure is to carry out sintering under the operational condition of 10-20MPa.
CN95121439A 1995-12-28 1995-12-28 Composite self-lubricating zircite-graphite material Expired - Fee Related CN1059416C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN95121439A CN1059416C (en) 1995-12-28 1995-12-28 Composite self-lubricating zircite-graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN95121439A CN1059416C (en) 1995-12-28 1995-12-28 Composite self-lubricating zircite-graphite material

Publications (2)

Publication Number Publication Date
CN1132731A true CN1132731A (en) 1996-10-09
CN1059416C CN1059416C (en) 2000-12-13

Family

ID=5082439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95121439A Expired - Fee Related CN1059416C (en) 1995-12-28 1995-12-28 Composite self-lubricating zircite-graphite material

Country Status (1)

Country Link
CN (1) CN1059416C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092164A (en) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 Self-lubricating ceramic composite material with biomimetic structure and preparation method thereof
CN103073268A (en) * 2011-10-25 2013-05-01 中国科学院兰州化学物理研究所 Alumina ceramic self-lubricating composite material and preparation method thereof
CN104446456A (en) * 2014-11-11 2015-03-25 合肥皖为电气设备工程有限责任公司 Ceramic applied to high-bending-resistance cutter and preparation method of ceramic
CN105777170A (en) * 2016-04-08 2016-07-20 苏州捷德瑞精密机械有限公司 Self-lubricating ceramic bearing and preparation method thereof
CN110925311A (en) * 2019-12-10 2020-03-27 成都大学 Surface self-lubricating metal ceramic sliding bearing and preparation method thereof
CN111875375A (en) * 2020-07-25 2020-11-03 巩义正宇新材料有限公司 Yttrium stabilized zirconia and production process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817819A (en) * 1981-07-27 1983-02-02 Miura Eng Internatl Kk Method for gas-liquid contact
CN85107628B (en) * 1985-10-18 1987-09-16 冶金工业部钢铁研究总院 Self-lubricating solid material and its processing
CN1036796C (en) * 1992-07-17 1997-12-24 中国科学院兰州化学物理研究所 High-temp self-lubricating metal-ceramic material
CN1080478A (en) * 1993-05-29 1994-01-12 王风雄 Bone treating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092164A (en) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 Self-lubricating ceramic composite material with biomimetic structure and preparation method thereof
CN102092164B (en) * 2009-12-09 2014-04-16 中国科学院兰州化学物理研究所 Self-lubricating ceramic composite material with biomimetic structure and preparation method thereof
CN103073268A (en) * 2011-10-25 2013-05-01 中国科学院兰州化学物理研究所 Alumina ceramic self-lubricating composite material and preparation method thereof
CN104446456A (en) * 2014-11-11 2015-03-25 合肥皖为电气设备工程有限责任公司 Ceramic applied to high-bending-resistance cutter and preparation method of ceramic
CN105777170A (en) * 2016-04-08 2016-07-20 苏州捷德瑞精密机械有限公司 Self-lubricating ceramic bearing and preparation method thereof
CN110925311A (en) * 2019-12-10 2020-03-27 成都大学 Surface self-lubricating metal ceramic sliding bearing and preparation method thereof
CN111875375A (en) * 2020-07-25 2020-11-03 巩义正宇新材料有限公司 Yttrium stabilized zirconia and production process thereof

Also Published As

Publication number Publication date
CN1059416C (en) 2000-12-13

Similar Documents

Publication Publication Date Title
EP0466836B1 (en) Ceramics with high toughness, strength and hardness
Hannink et al. Friction and wear of partially stabilized zirconia: basic science and practical applications
CN1059415C (en) Sintering method of tetragonal zircite ceramic
CN1059416C (en) Composite self-lubricating zircite-graphite material
EP0199178B2 (en) Process for preparation of sintered silicon nitride
Wäsche et al. In situ formation of tribologically effective oxide interfaces in SiC‐based ceramics during dry oscillating sliding
EP0243476A1 (en) Sinterable and strengthened magnesium oxide ceramic materials
US5250477A (en) Silicon nitride based composite with improved fracture toughness
Abo-Naf et al. Mechanical and tribological properties of Nd-and Yb-SiAlON composites sintered by hot isostatic pressing
EP0624657A1 (en) A slide member made of an aluminium alloy
US5990026A (en) Method of producing a surface modified sialon composite
EP0255709A2 (en) Ceramic based composites with improved fracture toughness
EP0668253B1 (en) Low frictional composite material for sliding member
JPH0520382B2 (en)
Blanchard et al. Effect of silicon carbide whisker and titanium carbide particulate additions on the friction and wear behavior of silicon nitride
Liu et al. Wear mechanisms of zirconia/steel reciprocating sliding couple under water lubrication
US5480846A (en) Borosilicate glass
JPH07267730A (en) Zirconia vane for rotary compressor
Jahanmir Advanced ceramics in tribological applications
JP2836866B2 (en) Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts
Takano et al. Microstructure and mechanical properties of ZrO 2 (2Y)-toughened Al 2 O 3 ceramics fabricated by spark plasma sintering
Sivakumar et al. The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics
JPH06219837A (en) Silicon nitride ceramic sintered compact and its production
JPS63163025A (en) Carbon system slide material
Prakash Friction and wear characteristics of advanced ceramic composite materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee