CN113231070B - 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用 - Google Patents

一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用 Download PDF

Info

Publication number
CN113231070B
CN113231070B CN202110436826.2A CN202110436826A CN113231070B CN 113231070 B CN113231070 B CN 113231070B CN 202110436826 A CN202110436826 A CN 202110436826A CN 113231070 B CN113231070 B CN 113231070B
Authority
CN
China
Prior art keywords
catalyst
copper
solid solution
reaction
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110436826.2A
Other languages
English (en)
Other versions
CN113231070A (zh
Inventor
李峰
王浩
范国利
杨兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110436826.2A priority Critical patent/CN113231070B/zh
Publication of CN113231070A publication Critical patent/CN113231070A/zh
Application granted granted Critical
Publication of CN113231070B publication Critical patent/CN113231070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用。本发明采用微液膜反应器辅助的共沉淀法,以NaBH4为沉淀剂和还原剂,与硝酸铜、硝酸铈、硝酸锆和表面活性剂溶液同时加入微液膜反应器中爆发式快速成核,然后将得到的悬浊液移入高压反应釜中水热晶化,再经过洗涤、干燥、焙烧、还原得到复合金属氧化物固溶体负载铜的反向催化剂。将该催化剂应用于CO2加氢合成甲醇反应中,在压力3MPa,空速18000h‑1,220‑260℃温度下,转化率达到8%‑20%,选择性高达68%‑90%,而且催化剂在长达72h的反应中仍表现出很好的稳定性,在工业催化、新型能源化工等领域具有广阔的应用前景。

Description

一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法 及应用
技术领域
本发明属于催化剂制备技术领域,特别涉及一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用。
背景技术
近年来,随着大量二氧化碳的排放,不仅温室效应越来越严重,还造成了资源的浪费。二氧化碳的有效利用是一个很有前景的课题,目前取得了一些重要进展。有研究表明,CO2可以转化为一些高价值的产品,如甲烷、甲醇和烯烃。甲醇是一种重要的化工原料和很有前景的液体燃料,CO2转化为甲醇更有实际意义。在CO2加氢反应中,铜基和贵金属基催化剂已经有了一定研究。与贵金属基催化剂相比,铜基催化剂因其价格低廉、活性好、实用性强而得到了更广泛的研究。另一方面,研究人员逐渐意识到载体的重要性,载体不仅有利于提高活性金属的分散性,增强金属与载体之间的相互作用,也可以改变催化剂的表面化学状态(氧空位,表面酸碱性)。
负载型催化剂在CO2加氢反应中被广泛使用,活性金属与载体之间的相互作用和界面效应对催化性能尤为重要。传统的负载型催化剂往往由共沉淀法和浸渍法制备,然而这些方法中都使用金属盐前驱体作为活性组分负载到载体的表面,活性金属与载体之间的接触不够紧密,形成的界面较为匮乏,界面相互作用也较弱,容易导致活性组分的在制备过程中的团聚长大或是高温下的烧结,分散更加不均匀,稳定性差,从而影响催化性能。
发明内容
本发明的目的在于提供一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用。
本发明所述的复合金属氧化物固溶体负载铜的反向催化剂中,小颗粒的ZrO2-CeO2复合金属氧化物固溶体均匀分散在大粒径的铜活性纳米粒子周围,铜活性纳米粒子平均粒径为7-10nm,ZrO2-CeO2复合金属氧化物固溶体的平均粒径为5-7nm,铜的质量分数为20-40%,Ce与Zr的摩尔比为0.33-3,催化剂BET比表面积为80-200m2/g。
本发明所述的复合金属氧化物固溶体负载铜的反向催化剂的制备方法为:采用微液膜反应器辅助的共沉淀法,以NaBH4为沉淀剂和还原剂,与硝酸铜、硝酸铈、硝酸锆和表面活性剂溶液同时加入微液膜反应器中爆发式快速成核,然后将得到的悬浊液移入高压反应釜中水热晶化,再经过洗涤、干燥、焙烧、还原得到复合金属氧化物固溶体负载铜的反向催化剂。
本发明所述的复合金属氧化物固溶体负载铜的反向催化剂的制备方法的具体操作步骤为:
(1)称取0.5-2g硝酸铜、0.5-2g硝酸锆、0.5-2g硝酸铈和0.3-1.8g表面活性剂溶于30-60mL去离子水中,其中金属离子总浓度为0.2-0.3mol/L,Ce4+与Zr4+的摩尔比为0.33-3,表面活性剂的质量为Cu质量的1-5倍;
(2)配制30-60mL浓度为2-10mol/L的硼氢化钠溶液;
(3)将步骤(1)和(2)配好的溶液同时加入微液膜反应器中,在3000-4000rpm/min转速下搅拌2-5min,将得到的悬浊液转移到高压水热釜的聚四氟乙烯内胆中,在120-180℃下水热反应12-36h,降至室温后用去离子水过滤洗涤至中性,将沉淀物干燥并研磨;
(4)将步骤(3)的产物置于马弗炉中,在300-500℃下焙烧2-6h,得到催化剂前体ZrO2-CeO2/CuO;
(5)将催化剂前体置于管式炉中,在氢气和氮气混合气氛中,200-500℃下还原反应1-4h,得到复合金属氧化物固溶体负载铜的反向催化剂。
所述的表面活性剂选自聚乙烯吡咯烷酮、十六烷基三甲基溴化氨、十二烷基苯磺酸钠中的一种或几种。
将上述制备的复合金属氧化物固溶体负载铜的反向催化剂应用于催化CO2加氢合成甲醇反应中。所述的催化CO2加氢合成甲醇反应的具体条件为:采用高压固定床微反应器,称量0.1-0.5g复合金属氧化物固溶体负载铜的反向催化剂和0.1-0.5g的石英砂,混合均匀后装填到不锈钢反应管中,然后在氢气和氮气混合气氛下,以2-5℃/min的速率升温至300-500℃,还原反应1-3h;待温度降至室温后,切换为CO2、H2、Ar的混合反应气,再升温至220-260℃进行反应。
本发明制备的复合金属氧化物固溶体负载铜的反向催化剂,小颗粒的ZrO2-CeO2复合金属氧化物固溶体均匀分散在大粒径的铜活性纳米粒子周围,一方面能够显著增加ZrO2-CeO2固溶体与Cu颗粒的接触面积,形成更丰富的Cu-金属氧化物界面活性区域,有利于二氧化碳的吸附和进一步活化;另一方面能够抑制活性组分在制备过程中的团聚和高温反应时的烧结;反应中添加表面活性剂能够使复合金属氧化物固溶体粒子和Cu粒子分散更加均匀。将该催化剂应用于CO2加氢合成甲醇反应中,在压力为3MPa,空速为18000h-1,220-260℃温度范围内,转化率达到8%-20%,选择性高达68%-90%,超越了大部分文献报道。而且催化剂在长达72h的反应中表现出很好的稳定性,在传统工业催化,新型能源化工等诸多领域具有广阔的应用前景。
附图说明
图1为实施例1中的ZrO2-CeO2/Cu催化剂的XRD谱图。
图2为实施例1中的ZrO2-CeO2/Cu催化剂的HRTEM图片。
图3为实施例1中的ZrO2-CeO2/Cu催化剂的N2-吸脱附曲线。
图4为实施例1和实施例2中的ZrO2-CeO2/Cu催化剂的XPS中O1s表征结果。
图5为实施例1中的ZrO2-CeO2/Cu催化剂的稳定性曲线。
具体实施方式
实施例1
称取1.2708g的Cu(NO3)2·3H2O、1.0291g的Ce(NO3)4·6H2O、1.0175g的Zr(NO3)4·5H2O和0.3366g PVP溶于40mL去离子水中,记为溶液A。称取3.795g硼氢化钠溶于40mL去离子水,记为溶液B。
将溶液A和B沿着微液膜反应器内壁两侧缓缓倒入,在3500rpm/min转速下搅拌3min,将悬浊液转移到聚四氟乙烯内胆的高压水热釜中,在150℃下,水热24h,降至室温后用去离子水过滤洗涤至中性。沉淀物在60℃烘箱中干燥过夜。所得的固体沉淀物充分研磨后,置于马弗炉中,在400℃下焙烧4h,得到催化剂前体ZrO2-CeO2/CuO。将催化剂前体置于管式炉中,在氢氮混合气(10%H2)中300℃下还原2h,得到复合金属氧化物固溶体负载铜的反向催化剂ZrO2-CeO2/Cu。其中Cu颗粒平均大小为8.2nm,固溶体粒子平均大小为5.5nm,催化剂Cu的质量分数为30wt%,催化剂比表面积为141m2/g。
图1为实施例1中ZrO2-CeO2/Cu类反向催化剂样品的XRD谱图,在29.8°左右出现的衍射峰,介于CeO2(111)晶面和ZrO2(011)晶面的2θ值之间,是因为Zr4+半径较小,会嵌入到CeO2晶格中,造成CeO2的晶格收缩,形成ZrO2-CeO2复合相。而在43.5°左右的衍射峰归属于Cu(111)晶面,通过谢乐公式计算得到Cu颗粒平均尺寸为14.3nm,ZrO2-CeO2复合相的衍射峰强度低于Cu(111)晶面,可能是复合相的粒子较小,后面通过TEM表征加以证明。
图2为实施例1中ZrO2-CeO2/Cu类反向催化剂样品的高分辨透射电镜图片(HRTEM),能够看出小粒径的复合金属氧化物固溶体粒子均匀分散在大粒径的铜活性纳米粒子组分周围。其中固溶体平均粒子大小为6.5nm,铜粒子大小为8.2nm。在图中能够观察到Cu(111)晶面上的晶格条纹(0.209nm)和复合相(101)晶面上的晶格条纹(0.301nm),而且复合相(101)晶面上的晶格条纹紧密围绕着Cu(111)晶面,也证实了小粒子的金属氧化物固溶体紧密围绕在Cu颗粒四周,形成了ZrO2-CeO2/Cu类反向催化剂。
图3为实施例1中ZrO2-CeO2/Cu类反向催化剂样品的N2-吸脱附曲线,该样品为IV型吸附等温线,且在P/P0=0.6-1.0之间有滞后环,证明催化剂中介孔结构的存在。
图4为实施例1和实施例2中ZrO2-CeO2/Cu类反向催化剂样品的XPS表征结果,O1s轨道可以分为三个峰,530.1eV左右的谱带归属于晶格氧(Oα),531.9eV附近的谱带归属于缺陷氧(Oβ),533.2eV附近的谱带归属于羟基中的氧(Oγ)。可以看出实施例1和实施例2中制备的催化剂具有丰富的界面氧缺陷结构,且实施例1中催化剂Oβ/Oα(0.68)大于实施例2(0.57),证明Ce:Zr为1:1的催化剂含有的界面结构更为丰富。
催化剂应用测试:
使用高压固定床微反应器对催化剂样品的CO2加氢合成甲醇性能进行测试。称量0.2g催化剂样品和相同质量的石英砂。混合均匀后装填到不锈钢反应管(内径8mm)中。然后在10%v/v H2/N2(100mL/min)气氛下以5℃/min的速率升温至300℃,还原2h。待温度降至室温后,切换为体积比为CO2:H2:Ar=24:72:4的反应气,在温度为220-240℃,压力为3MPa,空速为18000条件下,进行性能评价。在反应6h后CO2转化率最高为9.73%,选择性最高为83.11%。
图5为实施例1中ZrO2-CeO2/Cu类反向催化剂样品的稳定性测试,发现在长达72小时的测试中,CO2转化率在0-8h内有一定的提高,是由于催化剂在高温下的活化,在剩余的8-72h内基本保持不变,而选择性也保持稳定的状态,这证明了催化剂在较长时间内稳定性好,应用前景更加广阔,为工业化提供了可能。
实施例2
称取1.3168g的Cu(NO3)2·3H2O、1.4816g的Ce(NO3)4·6H2O、0.4883g的Zr(NO3)4·5H2O和0.3366g CTAB溶于40mL去离子水中,记为溶液A;量取7.59g硼氢化钠溶于40mL去离子水,记为溶液B。
将溶液A和B沿着微液膜反应器内壁两侧缓缓倒入,在3500rpm/min转速下搅拌3min,将悬浊液转移到聚四氟乙烯内胆的高压水热釜中,在150℃下,水热24h,降至室温后用去离子水过滤洗涤至中性。沉淀物在60℃烘箱中干燥过夜。所得的固体沉淀物充分研磨后,置于马弗炉中,在400℃下焙烧4h,得到催化剂前体ZrO2-CeO2/Cu。将催化剂前体置于管式炉中,在氢氮混合气(10%H2)中300℃下还原2h,得到催化剂样品。其中Cu颗粒平均大小为9.1nm,固溶体粒子平均大小为6.3nm,催化剂Cu的质量分数为30wt%,催化剂比表面积为109m2/g。
使用高压固定床微反应器对催化剂样品的CO2加氢合成甲醇性能进行测试。称量0.2g催化剂样品和相同质量的石英砂。混合均匀后装填到不锈钢反应管(内径8mm)中。然后在10%v/v H2/N2(100mL/min)气氛下以5℃/min的速率升温至300℃,还原2h。待温度降至室温后,切换为体积比为CO2:H2:Ar=24:72:4的反应气,在温度为220-240℃,压力为3MPa,空速为18000条件下,进行性能评价。在反应6h后CO2转化率最高为11.48%,选择性最高为69.43%。
实施例3
称取1.2708g的Cu(NO3)2·3H2O、1.0291g的Ce(NO3)4·6H2O、1.0175g的Zr(NO3)4·5H2O和0.3366g SDBS溶于40mL去离子水中,记为溶液A;称取3.795g硼氢化钠溶于40mL去离子水,记为溶液B。
将溶液A和B沿着微液膜反应器内壁两侧缓缓倒入,在3500rpm/min转速下搅拌3min,将悬浊液转移到聚四氟乙烯内胆的高压水热釜中,在150℃下,水热12h,降至室温后用去离子水过滤洗涤至中性。沉淀物在60℃烘箱中干燥过夜。所得的固体沉淀物充分研磨后,置于马弗炉中,在500℃下焙烧4h,得到催化剂前体ZrO2-CeO2/Cu。将催化剂前体置于管式炉中,在氢氮混合气(10%H2)中300℃下还原2h,得到催化剂样品。其中Cu颗粒平均大小为9.5nm,固溶体粒子平均大小为6.8nm,催化剂Cu的质量分数为30wt%,催化剂比表面积为93m2/g。
使用高压固定床微反应器对催化剂样品的CO2加氢合成甲醇性能进行测试。称量0.2g催化剂样品和相同质量的石英砂。混合均匀后装填到不锈钢反应管(内径8mm)中。然后在10%v/v H2/N2(100mL/min)气氛下以5℃/min的速率升温至300℃,还原2h。待温度降至室温后,切换为体积比为CO2:H2:Ar=24:72:4的反应气,在温度为220-240℃,压力为3MPa,空速为18000条件下,进行性能评价。在反应6h后CO2转化率最高为9.75%,选择性最高为68.08%。
实施例4
称取1.2708g的Cu(NO3)2·3H2O、1.0291g的Ce(NO3)4·6H2O、1.0175g的Zr(NO3)4·5H2O和0.6732g PVP溶于40mL去离子水中,记为溶液A;称取3.795g硼氢化钠溶于40mL去离子水,记为溶液B。
将溶液A和B沿着微液膜反应器内壁两侧缓缓倒入,在3500rpm/min转速下搅拌3min,将悬浊液转移到聚四氟乙烯内胆的高压水热釜中,在120℃下,水热24h,降至室温后用去离子水过滤洗涤至中性。沉淀物在60℃烘箱中干燥过夜。所得的固体沉淀物充分研磨后,置于马弗炉中,在400℃下焙烧4h,得到催化剂前体ZrO2-CeO2/Cu。将催化剂前体置于管式炉中,在氢氮混合气(10%H2)中400℃下还原2h,得到催化剂样品。其中Cu颗粒平均大小为7.8nm,固溶体粒子平均大小为5.1nm,催化剂Cu的质量分数为30wt%,催化剂比表面积为158m2/g。
使用高压固定床微反应器对催化剂样品的CO2加氢合成甲醇性能进行测试。称量0.2g催化剂样品和相同质量的石英砂。混合均匀后装填到不锈钢反应管(内径8mm)中。然后在10%v/v H2/N2(100mL/min)气氛下以5℃/min的速率升温至300℃,还原2h。待温度降至室温后,切换为体积比为CO2:H2:Ar=24:72:4的反应气,在温度为220-240℃,压力为3MPa,空速为18000条件下,进行性能评价。在反应6h后CO2转化率最高为8.34%,选择性最高为78.31%。

Claims (5)

1.一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法,其特征在于,所述的催化剂中,小颗粒的ZrO2-CeO2复合金属氧化物固溶体均匀分散在大粒径的铜活性纳米粒子周围,铜活性纳米粒子平均粒径为7-10 nm,ZrO2-CeO2复合金属氧化物固溶体的平均粒径为5-7 nm,铜的质量分数为20-40%,Ce与Zr的摩尔比为0.33-3,催化剂BET比表面积为80-200m2/g;
所述的制备方法为:采用微液膜反应器辅助的共沉淀法,以NaBH4为沉淀剂和还原剂,与硝酸铜、硝酸铈、硝酸锆和表面活性剂溶液同时加入微液膜反应器中爆发式快速成核,然后将得到的悬浊液移入高压反应釜中水热晶化,再经过洗涤、干燥、焙烧、还原得到复合金属氧化物固溶体负载铜的反向催化剂。
2.根据权利要求1所述的制备方法,其特征在于,所述的制备方法的具体操作步骤为:
(1)称取0.5-2 g 硝酸铜、0.5-2 g 硝酸锆、0.5-2 g硝酸铈和0.3-1.8 g表面活性剂溶于30-60 mL去离子水中,其中金属离子总浓度为0.2-0.3 mol/L,Ce4+与Zr4+的摩尔比为0.33-3,表面活性剂的质量为Cu质量的1-5倍;
(2)配制30-60 mL浓度为2-10 mol/L的硼氢化钠溶液;
(3)将步骤(1)和(2)配好的溶液同时加入微液膜反应器中,在3000-4000 rpm/min转速下搅拌2-5 min,将得到的悬浊液转移到高压水热釜的聚四氟乙烯内胆中,在120-180 ℃下水热反应12-36 h,降至室温后用去离子水过滤洗涤至中性,将沉淀物干燥并研磨;
(4)将步骤(3)的产物置于马弗炉中,在300-500 ℃下焙烧2-6 h,得到催化剂前体ZrO2-CeO2/CuO;
(5)将催化剂前体置于管式炉中,在氢气和氮气混合气氛中,200-500 ℃下还原反应1-4 h,得到复合金属氧化物固溶体负载铜的反向催化剂。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的表面活性剂选自聚乙烯吡咯烷酮、十六烷基三甲基溴化氨、十二烷基苯磺酸钠中的一种或几种。
4.根据权利要求1或2所述的方法制备得到的复合金属氧化物固溶体负载铜的反向催化剂在催化CO2加氢合成甲醇反应中的应用。
5.根据权利要求4所述的应用,其特征在于,所述的催化CO2加氢合成甲醇反应的具体条件为:采用高压固定床微反应器,称量0.1-0.5 g复合金属氧化物固溶体负载铜的反向催化剂和0.1-0.5 g的石英砂,混合均匀后装填到不锈钢反应管中,然后在氢气和氮气混合气氛下,以2-5 ℃/min的速率升温至300-500 ℃,还原反应1-3 h;待温度降至室温后,切换为CO2、H2、Ar的混合反应气,再升温至220-260 ℃进行反应。
CN202110436826.2A 2021-04-22 2021-04-22 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用 Active CN113231070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110436826.2A CN113231070B (zh) 2021-04-22 2021-04-22 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110436826.2A CN113231070B (zh) 2021-04-22 2021-04-22 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113231070A CN113231070A (zh) 2021-08-10
CN113231070B true CN113231070B (zh) 2023-03-24

Family

ID=77128955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110436826.2A Active CN113231070B (zh) 2021-04-22 2021-04-22 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113231070B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996303B (zh) * 2021-11-25 2022-12-06 西安交通大学 一种双活性界面负载型催化剂及制备方法和应用
CN114160148B (zh) * 2021-12-08 2023-07-04 中国科学院生态环境研究中心 一种用于甲醇重整制氢的Cu基催化剂及其制备方法和应用
CN115069242A (zh) * 2022-05-05 2022-09-20 有研工程技术研究院有限公司 一种用于乙醇氧化重整制氢的催化剂及其制备和活化方法
CN115591549B (zh) * 2022-05-12 2023-10-27 北京化工大学 一种负载型Fe基催化剂及其制备方法和应用
CN116273025A (zh) * 2023-04-03 2023-06-23 中国石油大学(华东) 反向结构催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301843B (zh) * 2012-03-15 2014-12-03 北京化工大学 一种高分散负载型铜基催化剂及其制备方法和应用
CN105013492A (zh) * 2015-06-30 2015-11-04 中国科学院山西煤炭化学研究所 二氧化碳加氢合成甲醇催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN113231070A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN113231070B (zh) 一种复合金属氧化物固溶体负载铜的反向催化剂的制备方法及应用
Xiong et al. Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0. 3Zr0. 7O2-supported PdAu@ CeO2 core-shell nanoparticles for soot oxidation: Synergetic effect of Pd-Au-CeO2 ternary components
CN109305918B (zh) 一种卤代苯胺的合成方法
Li et al. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide
CN107199047B (zh) 一种分散于sba-15孔道内的镍基甲烷化催化剂及其制备和应用
Ye et al. The high photocatalytic efficiency and stability of LaNiO 3/gC 3 N 4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen
CN103801705A (zh) 一种多孔炭负载纳米金属氧化物或纳米金属材料的方法
CN111389416A (zh) 一种基于水滑石结构的单原子催化剂及其制备方法
Wu et al. Interfacial activation of catalytically inert Au (6.7 nm)-Fe 3 O 4 dumbbell nanoparticles for CO oxidation
CN102275962B (zh) 一种纳米氧化铝的制备方法及应用
CN106423161B (zh) 一种加氢催化剂的制备方法及催化剂
CN109999902B (zh) 封装型铂族亚纳米金属负载多孔级钛硅分子筛催化剂及其制备和应用
Rezaei et al. Ultrasound-assisted hydrothermal method for the preparation of the M-Fe2O3-CuO (M: Mn, Ag, Co) mixed oxides nanocatalysts for low-temperature CO oxidation
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
Wu et al. Recent progress of CeO2-based catalysts with special morphologies applied in air pollutants abatement: A review
CN111905755B (zh) 一种用于2,2,4,4-四甲基-1,3-环丁二酮加氢的催化剂及其制备方法、应用
Meilin et al. Activity and deactivation behavior of Au/LaMnO3 catalysts for CO oxidation
CN110270334A (zh) 一种钴基费托合成催化剂及其制备方法
Sun et al. Yolk-shell structured Pt-CeO2@ Ni-SiO2 as an efficient catalyst for enhanced hydrogen production from ethanol steam reforming
Chen et al. Precisely deposited Pd on ZnO (002) facets derived from complex reduction strategy for methanol steam reforming
Zhang et al. Enhanced catalytic stability of Cu-based catalyst for dimethyl oxalate hydrogenation
Hao et al. Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene
Sun et al. Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M= Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations
Chernykh et al. Influence of the Ag Content on the Activity of Ag/CeO 2 Catalysts in the Reduction of 4-Nitrophenol at Room Temperature and Atmospheric Pressure
Bingwa et al. Synergistic effect of mesoporous metal oxides and PtO2 nanoparticles in aerobic oxidation of ethanol and ionic liquid induced acetaldehyde selectivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant