CN113193206A - 一种乙醇燃料电池阳极催化剂的制备方法 - Google Patents

一种乙醇燃料电池阳极催化剂的制备方法 Download PDF

Info

Publication number
CN113193206A
CN113193206A CN202110326200.6A CN202110326200A CN113193206A CN 113193206 A CN113193206 A CN 113193206A CN 202110326200 A CN202110326200 A CN 202110326200A CN 113193206 A CN113193206 A CN 113193206A
Authority
CN
China
Prior art keywords
fuel cell
anode catalyst
ethanol fuel
carbon cloth
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110326200.6A
Other languages
English (en)
Inventor
袁小磊
黄嘉禄
杨虎
单秋磊
曹子轩
魏丛宇
徐文静
蒲岚
曹宇锋
华平
姚勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202110326200.6A priority Critical patent/CN113193206A/zh
Publication of CN113193206A publication Critical patent/CN113193206A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • H01M8/1013Other direct alcohol fuel cells [DAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种乙醇燃料电池阳极催化剂的制备方法,包括如下步骤:S10将一定量的表面活性剂溶于去离子水中获得反应溶剂;S20将前驱体钯盐和前驱体铋盐按照预设摩尔比溶于反应溶剂中,得到电解液;S30裁取一定面积的导电碳布;S40在一定电位,一定时间下,利用计时电流法,将电解液中的钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布PdnBi/CC,PdnBi/CC为乙醇燃料电池阳极催化剂。本发明的一种乙醇燃料电池阳极催化剂的制备方法,使用电沉积方法将钯离子和铋离子电沉积氧化还原到导电碳布上,得到乙醇燃料电池阳极催化剂,整体制备方法简单,且易于控制不同尺寸、形状和分布的金属纳米粒子的形核和生长。

Description

一种乙醇燃料电池阳极催化剂的制备方法
技术领域
本发明涉及新能源技术领域,具体涉及一种乙醇燃料电池阳极催化剂的制备方法。
背景技术
直接乙醇燃料电池(Direct ethanol fuel cells,DEFCs)是将乙醇液体燃料的化学能直接转变成电能的电化学反应装置。为了得到理想的电池性能,目前多采用Pt基电催化剂。但是,Pt的自然储量有限,而且由于工业上的广泛应用,其价格越来越昂贵。降低Pt用量的最好办法是寻找替代材料,这不仅能减少燃料电池对Pt的依赖性,而且能降低成本从而促进DEFC的商业化进程。钯不仅价格比铂低廉,储量相对丰富,而且在低温燃料电池、电解和传感器等电化学领域显示了独特的性能,使得其有望成为铂的替用材料。
然而从燃料电池的角度考虑,价格并不是Pd能替代Pt的主要原因。其真正的吸引力在于Pd在碱性环境中,具有优于Pt基电催化剂的性能,但是,在碱性环境中,阳极和阴极均能使用非Pt催化剂,如果对Pd进行掺杂或修饰使之活性增加,且能稳定地催化醇类氧化,将极大地推动该类催化剂在直接乙醇醇燃料电池中应用。
发明内容
为了解决上述问题,本发明提供一种乙醇燃料电池阳极催化剂的制备方法,使用电沉积方法将钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布PdnBi/CC,PdnBi/CC即乙醇燃料电池阳极催化剂,整体制备方法简单,且易于控制不同尺寸、形状和分布的金属纳米粒子的形核和生长。
为了实现以上目的,本发明采取的一种技术方案是:
一种乙醇燃料电池阳极催化剂的制备方法,包括如下步骤:S10将一定量的表面活性剂溶于去离子水中获得反应溶剂;S20将前驱体钯盐和前驱体铋盐按照预设摩尔比溶于反应溶剂中,得到电解液;S30裁取一定面积的导电碳布;S40在一定电位,一定时间下,利用计时电流法,将电解液中的钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布即PdnBi/carbon cloth(PdnBi/CC),PdnBi/CC为乙醇燃料电池阳极催化剂,其中n为[0.5,10]。
进一步地,表面活性剂为乙二胺四乙酸(EDTA),反应溶剂中EDTA的浓度不小于0.5mol/L。
进一步地,电解液中钯离子的浓度为0.02-0.08mol/L,铋离子的浓度为0.02-0.08mol/L。
进一步地,电解液中钯离子与铋离子的摩尔比为(0.5-10):1。
进一步地,前驱体钯盐为氯钯酸或氯亚钯酸钾中的至少一种。
进一步地,前驱体铋盐为新十二酸铋或五水硝酸铋中的至少一种。
进一步地,步骤S40中电沉积所需固定电位为-0.297V,电沉积所需时间为100-5000s。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明的一种乙醇燃料电池阳极催化剂的制备方法,使用电沉积方法将钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布PdnBi/CC,PdnBi/CC即乙醇燃料电池阳极催化剂,整体制备方法简单,且易于控制不同尺寸、形状和分布的金属纳米粒子的形核和生长。
(2)本发明的一种乙醇燃料电池阳极催化剂的制备方法,通过电沉积发获得的阳极催化剂能通过两种金属的协同作用,提高CO的抗毒性,最终提高阳极催化剂在催化乙醇氧化上的活性和稳定性。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1所示为本发明一实施例的乙醇燃料电池阳极催化剂的制备方法流程图;
图2所示为本发明一实施例的乙醇燃料电池阳极催化剂的扫描电子显微镜图;
图3所示为本发明一实施例的乙醇燃料电池阳极催化剂的X射线衍射图;
图4所示为本发明一实施例的乙醇燃料电池阳极催化剂的X射线光电子能谱图;
图5所示为本发明实施例1与实施例4获得的乙醇燃料电池阳极催化剂的乙醇氧化反应催化活性循环伏安曲线;
图6所示为本发明实施例1与实施例4获得的乙醇燃料电池阳极催化剂乙醇氧化反应催化活性计时电流曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例提供了一种乙醇燃料电池阳极催化剂的制备方法,如图1~4所示,包括如下步骤:S10将一定量的表面活性剂溶于去离子水中获得反应溶剂。S20将前驱体钯盐和前驱体铋盐按照预设摩尔比溶于反应溶剂中,得到电解液;S30裁取一定面积的导电碳布;S40在一定电位,一定时间下,利用计时电流法,将电解液中的钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布即PdnBi/carbon cloth(PdnBi/CC),PdnBi/CC为乙醇燃料电池阳极催化剂,其中n为[0.5,10]。
步骤S10中,表面活性剂为乙二胺四乙酸(EDTA),反应溶剂中EDTA的浓度不小于0.5mol/L。
步骤S20中,电解液中钯离子的浓度为0.02-0.08mol/L,铋离子的浓度为0.02-0.08mol/L,电解液中钯离子与铋离子的摩尔比为(0.5-10):1。前驱体钯盐为氯钯酸或氯亚钯酸钾中的至少一种,前驱体铋盐为新十二酸铋或五水硝酸铋中的至少一种。
步骤S40中电沉积所需固定电位为-0.297V,电沉积所需时间为100-5000s。
实施例1
乙醇燃料电池阳极催化剂的制备方法,包括如下步骤
S10将1.46g的表面活性剂溶于100mL的去离子水中超声30min,获得反应溶剂;
S20将摩尔比为5:1的氯钯酸与五水合硝酸铋溶于50mL反应溶剂中,超声30min,得到电解液,其中,电解液中,钯离子和铋离子的浓度均为0.02mol/L;
S30裁取2cm×2cm的导电碳布;
S40搭建三电极体系,将导电碳布固定在工作电极上,并浸没于电解液中,通过计时电流法进行电沉积。电沉积所需固定电位为-0.297V(相对于饱和甘汞电极,SCE),沉积时间为2000s,清洗电沉积后的导电碳布并晾干,获得具有Pd5Bi合金纳米颗粒的导电碳布,即Pd5Bi/CC。
通过扫描电子显微镜(SEM)对实施例1获得的乙醇燃料电池阳极催化剂进行观察,如图2所示,乙醇燃料电池阳极催化剂形貌为颗粒状结构,***有棱边。
将乙醇燃料电池阳极催化剂利用X射线衍射仪进行扫描,结果如图3所示,可以看出,所有XRD光谱峰均对应Pd的面心立方相(JCPDF,46-1043),其中,衍射峰2θ=43.4°,52.9°和78.9°可以被索引为纯Pd的(111)、(200)和(311)面。
进一步采用X射线光电子能谱检测乙醇燃料电池阳极催化剂中Bi的组分价态,如图4所示,对于Bi元素来说,在159.6eV和164.7eV处出现一对峰图谱,这可以归因于Bi(OH)3的存在,因此,可以证明上述制备出Bi(OH)3修饰的Pd纳米颗粒,即为Pd5Bi/CC催化剂。
乙醇氧化反应(EOR)催化活性测试:
(1)EOR测试
在Ar饱和的1mol/L NaOH+1mol/L C2H5OH中以50mV/s的扫描速率进行EOR测试。在含1mol/L C2H5OH的1mol/L NaOH溶液中,在-0.2V(相对于饱和甘汞电极,SCE),用计时安培法测定制备样品的长期稳定性。为了进行比较,此处将Pd/CC催化剂采用同样制备步骤和测试方法。
实施例1所得的Pd5Bi/CC催化剂的EOR性能通过采用晨华CHI660e工作站,在三极电池体系中进行测试。在三电极体系中,以饱和甘汞电极和Pt网分别作为参比电极和对电极。
图5为实施例1的Pd5Bi/CC催化剂催化剂在含1mol/L C2H5OH的1mol/LNaOH溶液中,电位范围-0.8V~0.2V(相对于饱和甘汞电极,SCE),扫速为50mV/s的循环伏安曲线。从图5可得出,Pd5Bi/CC催化剂的EOR活性为23.54mA cm-2,而相比之下,Pd/CC催化剂的活性仅有8.07mA cm-2
图6为实施例1的Pd5Bi/CC催化剂在含1mol/L C2H5OH的1mol/L NaOH溶液中,电位-0.2V(相对于饱和甘汞电极,SCE)条件下,3600s后电位变化情况。从图6可以得出,3600s稳定性测试后,Pd5Bi/CC催化剂活性下降了70%。相比之下,Pd/CC,3600s稳定性测试后,活性下降了90%,活性几乎趋近于0,即失去活性。
实施例2
乙醇燃料电池阳极催化剂的制备方法,包括如下步骤
S10将1.46g的表面活性剂溶于100mL的去离子水中超声30min,获得反应溶剂;
S20将摩尔比为10:1的氯亚钯酸钾与五水合硝酸铋溶于50mL反应溶剂中,超声30min,得到电解液;
S30裁取2cm×2cm的导电碳布;
S40搭建三电极体系,将导电碳布固定在工作电极上,并浸没于电解液中,通过计时电流法进行电沉积。电沉积所需固定电位为-0.297V(相对于饱和甘汞电极,SCE),沉积时间为2000s,清洗电沉积后的导电碳布并晾干,获得具有Pd10Bi合金纳米颗粒的导电碳布,即Pd10Bi/CC。
实施例3
乙醇燃料电池阳极催化剂的制备方法,包括如下步骤
S10将1.46g的表面活性剂溶于100mL的去离子水中超声30min,获得反应溶剂;
S20将摩尔比5:1的氯亚钯酸钾与新十二酸铋溶于50mL反应溶剂中,超声30min,得到电解液,其中,电解液中,钯离子和铋离子的浓度均为0.08mol/L;
S30裁取2cm×2cm的导电碳布;
S40搭建三电极体系,将导电碳布固定在工作电极上,并浸没于电解液中,通过计时电流法进行电沉积。电沉积所需固定电位为-0.297V(相对于饱和甘汞电极,SCE),沉积时间为100s,清洗电沉积后的导电碳布并晾干,获得具有Pd5Bi合金纳米颗粒的导电碳布,即Pd5Bi/CC。
实施例4
乙醇燃料电池阳极催化剂的制备方法,包括如下步骤
S10将1.46g的表面活性剂溶于100mL的去离子水中超声30min,获得反应溶剂;
S20将摩尔比0.5:1的氯钯酸与新十二酸铋溶于50mL反应溶剂中,超声30min,得到电解液,其中,电解液中,钯离子和铋离子的浓度均为0.08mol/L;
S30裁取2cm×2cm的导电碳布;
S40搭建三电极体系,将导电碳布固定在工作电极上,并浸没于电解液中,通过计时电流法进行电沉积。电沉积所需固定电位为-0.297V(相对于饱和甘汞电极,SCE),沉积时间为5000s,清洗电沉积后的导电碳布并晾干,获得具有Pd0.5Bi合金纳米颗粒的导电碳布,即Pd0.5Bi/CC。
以上所述仅为本发明的示例性实施例,并非因此限制本发明专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种乙醇燃料电池阳极催化剂的制备方法,其特征在于,包括如下步骤
S10将一定量的表面活性剂溶于去离子水中获得反应溶剂;
S20将前驱体钯盐和前驱体铋盐按照预设摩尔比溶于反应溶剂中,得到电解液;
S30裁取一定面积的导电碳布;
S40在一定电位,一定时间下,利用计时电流法,将电解液中的钯离子和铋离子电沉积氧化还原到导电碳布上,得到负载PdnBi合金纳米颗粒的导电碳布即PdnBi/carbon cloth(PdnBi/CC),PdnBi/CC为乙醇燃料电池阳极催化剂,其中n为[0.5,10]。
2.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,表面活性剂为乙二胺四乙酸(EDTA),反应溶剂中EDTA的浓度不小于0.5mol/L。
3.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,电解液中钯离子的浓度为0.02-0.08mol/L,铋离子的浓度为0.02-0.08mol/L。
4.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,电解液中钯离子与铋离子的摩尔比为(0.5-10):1。
5.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,前驱体钯盐为氯钯酸或氯亚钯酸钾中的至少一种。
6.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,前驱体铋盐为新十二酸铋或五水硝酸铋中的至少一种。
7.根据权利要求1所述的乙醇燃料电池阳极催化剂的制备方法,其特征在于,步骤S40中电沉积所需固定电位为-0.297V,电沉积所需时间为100-5000s。
CN202110326200.6A 2021-03-26 2021-03-26 一种乙醇燃料电池阳极催化剂的制备方法 Pending CN113193206A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110326200.6A CN113193206A (zh) 2021-03-26 2021-03-26 一种乙醇燃料电池阳极催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110326200.6A CN113193206A (zh) 2021-03-26 2021-03-26 一种乙醇燃料电池阳极催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN113193206A true CN113193206A (zh) 2021-07-30

Family

ID=76974046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110326200.6A Pending CN113193206A (zh) 2021-03-26 2021-03-26 一种乙醇燃料电池阳极催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113193206A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004639A1 (en) * 2010-07-09 2012-01-12 Universidade De Trás-Os-Montes E Alto Douro Palladium alloy catalysts for fuel cell cathodes and a method of preparing the same
CN102925923A (zh) * 2012-10-26 2013-02-13 复旦大学 一种三维多孔结构的纳米钯或钯镍合金催化剂的制备方法
US20130101911A1 (en) * 2010-03-26 2013-04-25 Alexandros Anastasopoulos Fuel cell, catalyst and methods
CN105036259A (zh) * 2015-07-01 2015-11-11 湖南大学 一种电沉积双金属修饰活性炭纤维电极的改性方法及应用
CN106953087A (zh) * 2017-04-11 2017-07-14 中南大学 钴酸锌、钴酸锌/碳布柔性复合材料的制备方法及其应用
CN106981650A (zh) * 2017-02-10 2017-07-25 中山大学 一种纳米级单质铋的制备方法
KR20180064290A (ko) * 2017-11-24 2018-06-14 대영엔지니어링 주식회사 탄소섬유강화플라스틱의 전착도장 방법 및 전착도장된 탄소섬유강화플라스틱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130101911A1 (en) * 2010-03-26 2013-04-25 Alexandros Anastasopoulos Fuel cell, catalyst and methods
WO2012004639A1 (en) * 2010-07-09 2012-01-12 Universidade De Trás-Os-Montes E Alto Douro Palladium alloy catalysts for fuel cell cathodes and a method of preparing the same
CN102925923A (zh) * 2012-10-26 2013-02-13 复旦大学 一种三维多孔结构的纳米钯或钯镍合金催化剂的制备方法
CN105036259A (zh) * 2015-07-01 2015-11-11 湖南大学 一种电沉积双金属修饰活性炭纤维电极的改性方法及应用
CN106981650A (zh) * 2017-02-10 2017-07-25 中山大学 一种纳米级单质铋的制备方法
CN106953087A (zh) * 2017-04-11 2017-07-14 中南大学 钴酸锌、钴酸锌/碳布柔性复合材料的制备方法及其应用
KR20180064290A (ko) * 2017-11-24 2018-06-14 대영엔지니어링 주식회사 탄소섬유강화플라스틱의 전착도장 방법 및 전착도장된 탄소섬유강화플라스틱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YUNFEI 等: "Pulsed Electrodeposition of Metastable Pd31Bi12 Nanoparticles for Oxygen Reduction Electrocatalysis", ACS ENERGY LETTERS, vol. 5, no. 1, pages 17 - 22 *

Similar Documents

Publication Publication Date Title
Maya-Cornejo et al. PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell
CN108736031B (zh) 一种自支撑PtCo合金纳米颗粒催化剂及其制备方法与应用
Geraldes et al. Palladium and palladium–tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell
JP6628867B2 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池
Zhao et al. High-performance Ru2P anodic catalyst for alkaline polymer electrolyte fuel cells
Zhang et al. Non-precious Ir–V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction
CN102881916B (zh) 载有双壳层核壳催化剂的气体扩散电极及其制备和应用
CN110201662B (zh) 碳载单原子金属催化剂的电化学制备方法
CN108067248B (zh) 三维纳米棒结构的PtNi合金催化剂及其制备和应用
EP2854207B1 (en) Method for producing catalyst for fuel cells, and fuel cell which comprises catalyst for fuel cells produced by said production method
US8906580B2 (en) De-alloyed membrane electrode assemblies in fuel cells
Huang et al. Pt catalyst supported within TiO2 mesoporous films for oxygen reduction reaction
CN103165914B (zh) 一种Pt/Au/PdCo/C催化剂及其制备和应用
Jha et al. Electro-deposited Pt3Co on carbon fiber paper as nafion-free electrode for enhanced electro-catalytic activity toward oxygen reduction reaction
Shi et al. Electrocatalytic activity and stability of carbon nanotubes-supported Pt-on-Au, Pd-on-Au, Pt-on-Pd-on-Au, Pt-on-Pd, and Pd-on-Pt catalysts for methanol oxidation reaction
US10998556B2 (en) Catalyst for solid polymer fuel cell and method for producing same
Li et al. Carbon supported Ir nanoparticles modified and dealloyed with M (M= V, Co, Ni and Ti) as anode catalysts for polymer electrolyte fuel cells
Beydaghi et al. Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent
Muthukumar et al. Electrodeposited Pt–Pd dendrite on carbon support as anode for direct formic acid fuel cells
Yu et al. A robust electrocatalytic activity and stability of Pd electrocatalyst derived from carbon coating
Abrari et al. Multi-walled carbon nanotube-supported Ni@ Pd core–shell electrocatalyst for direct formate fuel cells
Tian et al. PtTiO x/C Electrocatalysts with Improved Durability in H2/O2 PEMFCs without External Humidification
Yavari et al. SrFeO3-δ assisting with Pd nanoparticles on the performance of alcohols catalytic oxidation
Xiaojuan et al. Electrocatalytic enhancement of methanol oxidation by adding CeO2 nanoparticle on porous electrode
Xu et al. Electrosynthesis of dendritic palladium supported on Ti/TiO2NTs/Ni/CeO2 as high-performing and stable anode electrocatalyst for methanol electrooxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination